Skip to main content
Erschienen in: Journal of Electronic Materials 9/2022

12.06.2022 | Original Research Article

Photoactive Copper-Doped Zinc Stannate Thin Films for Ultraviolet–Visible Light Photodetector

verfasst von: Ching-Tai Fu, Chia-Tung Kuo, Chong-Chi Chi, Lu-Cheng Hou, Chao-I Liu, Shu-Chih Chang, Yuan-Mau Lee, Yu-Hsuan Chuang, Tri-Rung Yew

Erschienen in: Journal of Electronic Materials | Ausgabe 9/2022

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

A photodetector capable of detecting light illuminations ranging from ultraviolet (UV) to visible light spectrum using earth-abundant and environmentally friendly Cu-doped zinc tin oxide (Cu-doped ZTO) thin films is reported. Trilayer photodetector devices comprising P+-Si/10 at.% Cu-doped-ZTO-thin-film/indium-tin-oxide were successfully fabricated using radio-frequency (RF) magnetron sputtering. Optical and photoconductive characteristics of trilayer photodetector devices were investigated. The devices were found to exhibit superior photodetection capabilities, including high sensitivities of 1147 and 758, under 630-nm and 352-nm light illumination, respectively, and corresponding fast photoresponse times with a rise-time/fall-time of 8.9 ms/8.0 ms and 8.8 ms/8.0 ms. The induced mid-gap states from the Cu-dopant contributed extensively to the photoresponse through stable optical transitions. Air-annealing the Cu-ZTO thin films at 600°C effectively reduced the dark current, enabling Cu-ZTO thin films suitable for UV–visible light, wide spectral photodetector applications.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat S. Cho, and N.M. Jokerst, Integrated Thin Film Photodetectors with Vertically Coupled Microring Resonators for Chip Scale Spectral Analysis. Appl. Phys. Lett. 90, 101105 (2007).CrossRef S. Cho, and N.M. Jokerst, Integrated Thin Film Photodetectors with Vertically Coupled Microring Resonators for Chip Scale Spectral Analysis. Appl. Phys. Lett. 90, 101105 (2007).CrossRef
2.
Zurück zum Zitat S.K. Bishnu, S. Chowdhury, P. Sarkar, S. Khan, M. Paul, A. Gupta, P. Roy, S. Samanta, N. Maity, Heart rate monitoring system using IR photodetector sensor, in IEMCON (2018), p. 914 S.K. Bishnu, S. Chowdhury, P. Sarkar, S. Khan, M. Paul, A. Gupta, P. Roy, S. Samanta, N. Maity, Heart rate monitoring system using IR photodetector sensor, in IEMCON (2018), p. 914
3.
Zurück zum Zitat Y. Sui, H. Liang, Q. Chen, W. Huo, X. Du, and Z. Mei, Room-Temperature Ozone Sensing Capability of IGZO-Decorated Amorphous Ga2O3 Films. ACS Appl. Mater. Interfaces 12, 8929 (2020).CrossRef Y. Sui, H. Liang, Q. Chen, W. Huo, X. Du, and Z. Mei, Room-Temperature Ozone Sensing Capability of IGZO-Decorated Amorphous Ga2O3 Films. ACS Appl. Mater. Interfaces 12, 8929 (2020).CrossRef
4.
Zurück zum Zitat M. Razeghi, and A. Rogalski, Semiconductor Ultraviolet Detectors. J. Appl. Phys. 79, 7433 (1996).CrossRef M. Razeghi, and A. Rogalski, Semiconductor Ultraviolet Detectors. J. Appl. Phys. 79, 7433 (1996).CrossRef
5.
Zurück zum Zitat T. Ghosh, and D. Basak, Highly Efficient Ultraviolet Photodetection in Nanocolumnar RF Sputtered ZnO Films: A Comparison Between Sputtered, Sol–Gel and Aqueous Chemically Grown Nanostructures. Nanotechnology 21, 375202 (2010).CrossRef T. Ghosh, and D. Basak, Highly Efficient Ultraviolet Photodetection in Nanocolumnar RF Sputtered ZnO Films: A Comparison Between Sputtered, Sol–Gel and Aqueous Chemically Grown Nanostructures. Nanotechnology 21, 375202 (2010).CrossRef
6.
Zurück zum Zitat T. Oshima, T. Okuno, and S. Fujita, UV-B Sensor Based on a SnO2 Thin Film. Jpn. J. Appl. Phys. 48, 120207 (2009).CrossRef T. Oshima, T. Okuno, and S. Fujita, UV-B Sensor Based on a SnO2 Thin Film. Jpn. J. Appl. Phys. 48, 120207 (2009).CrossRef
7.
Zurück zum Zitat L.P. Wang, Y. Zhao, C. Wong, M. Srinivasan, and Z.J. Xu, Polycrystalline Zinc Stannate as an Anode Material for Sodium-Ion Batteries. J. Mater. Chem. A 3, 14033 (2015).CrossRef L.P. Wang, Y. Zhao, C. Wong, M. Srinivasan, and Z.J. Xu, Polycrystalline Zinc Stannate as an Anode Material for Sodium-Ion Batteries. J. Mater. Chem. A 3, 14033 (2015).CrossRef
8.
Zurück zum Zitat A.S.H. Makhlouf, Intelligent Stannate-Based Coatings of Self-Healing Functionality for Magnesium Alloys, in Intelligent Coatings for Corrosion Control (2015), p. 537 A.S.H. Makhlouf, Intelligent Stannate-Based Coatings of Self-Healing Functionality for Magnesium Alloys, in Intelligent Coatings for Corrosion Control (2015), p. 537
9.
Zurück zum Zitat G.R. Dillip, P.C. Nagajyothi, R. Ramaraghavulu, A.N. Banerjee, B.V. Reddy, and S.W. Joo, Synthesis of Crystalline Zinc Hydroxystannate and Its Thermally Driven Amorphization and Recrystallization into Zinc Orthostannate and Their Phase-Dependent Cytotoxicity Evaluation. Mater. Chem. Phys. 248, 122946 (2020).CrossRef G.R. Dillip, P.C. Nagajyothi, R. Ramaraghavulu, A.N. Banerjee, B.V. Reddy, and S.W. Joo, Synthesis of Crystalline Zinc Hydroxystannate and Its Thermally Driven Amorphization and Recrystallization into Zinc Orthostannate and Their Phase-Dependent Cytotoxicity Evaluation. Mater. Chem. Phys. 248, 122946 (2020).CrossRef
10.
Zurück zum Zitat U. Ozgur, Y.I. Alivov, C. Liu, A. Teke, M.A. Reshchikov, S. Dogan, V. Avrutin, S.J. Cho, and H. Morkoc, A Comprehensive Review of ZnO Materials and Devices. J. Appl. Phys. 98, 041301 (2005).CrossRef U. Ozgur, Y.I. Alivov, C. Liu, A. Teke, M.A. Reshchikov, S. Dogan, V. Avrutin, S.J. Cho, and H. Morkoc, A Comprehensive Review of ZnO Materials and Devices. J. Appl. Phys. 98, 041301 (2005).CrossRef
11.
Zurück zum Zitat A. Mahapatra, and D. Basak, Investigation on Sub-band Gap Defects Aided UV to NIR Broad-Band Low-Intensity Photodetection by SnO2 Thin Film. Sens. Actuator A Phys. 312, 112168 (2020).CrossRef A. Mahapatra, and D. Basak, Investigation on Sub-band Gap Defects Aided UV to NIR Broad-Band Low-Intensity Photodetection by SnO2 Thin Film. Sens. Actuator A Phys. 312, 112168 (2020).CrossRef
12.
Zurück zum Zitat Y.S. Lee, J. Heo, S.C. Siah, J.P. Mailoa, R.E. Brandt, S.B. Kim, R.G. Gordon, and T. Buonassisi, Ultrathin Amorphous Zinc-Tin-Oxide Buffer Layer for Enhancing Heterojunction Interface Quality in Metal-Oxide Solar Cells. Energy Environ. Sci. 6, 2112 (2013).CrossRef Y.S. Lee, J. Heo, S.C. Siah, J.P. Mailoa, R.E. Brandt, S.B. Kim, R.G. Gordon, and T. Buonassisi, Ultrathin Amorphous Zinc-Tin-Oxide Buffer Layer for Enhancing Heterojunction Interface Quality in Metal-Oxide Solar Cells. Energy Environ. Sci. 6, 2112 (2013).CrossRef
13.
Zurück zum Zitat Y. Zhang, J. Wang, H. Zhu, L. Jiang, C. Shu, W. Hu, and C. Wang, High Performance Ultraviolet Photodetectors Based on an Individual Zn2SnO4 Single Crystalline Nanowire. J. Mater. Chem. 20, 9858 (2010).CrossRef Y. Zhang, J. Wang, H. Zhu, L. Jiang, C. Shu, W. Hu, and C. Wang, High Performance Ultraviolet Photodetectors Based on an Individual Zn2SnO4 Single Crystalline Nanowire. J. Mater. Chem. 20, 9858 (2010).CrossRef
14.
Zurück zum Zitat S.H. Choi, I.S. Hwang, J.H. Lee, S.G. Oh, and I.D. Kim, Microstructural Control and Selective C2H5OH Sensing Properties of Zn2SnO4 Nanofibers Prepared by Electrospinning. Chem. Commun. 47, 9315 (2011).CrossRef S.H. Choi, I.S. Hwang, J.H. Lee, S.G. Oh, and I.D. Kim, Microstructural Control and Selective C2H5OH Sensing Properties of Zn2SnO4 Nanofibers Prepared by Electrospinning. Chem. Commun. 47, 9315 (2011).CrossRef
15.
Zurück zum Zitat C. Liu, A. Piyadasa, M. Piech, S. Dardona, Z. Ren, and P.X. Gao, Tunable UV Response and High Performance of Zinc Stannate Nanoparticle Film Photodetectors. J. Mater. Chem. C 4, 6176 (2016).CrossRef C. Liu, A. Piyadasa, M. Piech, S. Dardona, Z. Ren, and P.X. Gao, Tunable UV Response and High Performance of Zinc Stannate Nanoparticle Film Photodetectors. J. Mater. Chem. C 4, 6176 (2016).CrossRef
16.
Zurück zum Zitat S. Sarkar, and D. Basak, Defect Controlled Ultra High Ultraviolet Photocurrent Gain in Cu-Doped ZnO Nanorod Arrays: De-trapping Yield. Appl. Phys. Lett. 103, 041112 (2013).CrossRef S. Sarkar, and D. Basak, Defect Controlled Ultra High Ultraviolet Photocurrent Gain in Cu-Doped ZnO Nanorod Arrays: De-trapping Yield. Appl. Phys. Lett. 103, 041112 (2013).CrossRef
17.
Zurück zum Zitat N. Kouklin, Cu-Doped ZnO Nanowires for Efficient and Multispectral Photodetection Applications. Adv. Mater. 20, 2190 (2008).CrossRef N. Kouklin, Cu-Doped ZnO Nanowires for Efficient and Multispectral Photodetection Applications. Adv. Mater. 20, 2190 (2008).CrossRef
18.
Zurück zum Zitat W. Hume-Rothery, Atomic Theory for Students of Metallurgy, 3rd ed., (London: Institute of Metals, 1955), p. 342. W. Hume-Rothery, Atomic Theory for Students of Metallurgy, 3rd ed., (London: Institute of Metals, 1955), p. 342.
19.
Zurück zum Zitat J. Wang, J. Han, X. Chen, and X. Wang, Design Strategies for Two-Dimensional Material Photodetectors to Enhance Device Performance. Infomat 1, 33 (2019).CrossRef J. Wang, J. Han, X. Chen, and X. Wang, Design Strategies for Two-Dimensional Material Photodetectors to Enhance Device Performance. Infomat 1, 33 (2019).CrossRef
20.
Zurück zum Zitat C.H. Lee, G.H. Lee, AMvd Zande, W. Chen, Y. Li, M. Han, X. Cui, G. Arefe, C. Nuckolls, T.F. Heinz, J. Guo, J. Hone, and P. Kim, Atomically Thin p–n Junctions with van der Waals Heterointerfaces. Nat. Nanotechnol. 9, 676 (2014).CrossRef C.H. Lee, G.H. Lee, AMvd Zande, W. Chen, Y. Li, M. Han, X. Cui, G. Arefe, C. Nuckolls, T.F. Heinz, J. Guo, J. Hone, and P. Kim, Atomically Thin p–n Junctions with van der Waals Heterointerfaces. Nat. Nanotechnol. 9, 676 (2014).CrossRef
21.
Zurück zum Zitat F.T.L. Muniz, M.A.R. Miranda, CMd. Santos, and J.M. Sasaki, The Scherrer Equation and the Dynamical Theory of X-ray Diffraction. Acta Cryst. A 72, 385 (2016).CrossRef F.T.L. Muniz, M.A.R. Miranda, CMd. Santos, and J.M. Sasaki, The Scherrer Equation and the Dynamical Theory of X-ray Diffraction. Acta Cryst. A 72, 385 (2016).CrossRef
22.
Zurück zum Zitat L. Han, L. Wu, C. Lui, and J. Zhang, Doping-Enchanced Visible-Light Absorption of CH3NH3PbBr3 by the Bi3+-Induced Impurity Band without Sacrificing a Band Gap. J. Phys. Chem. C 14, 8578 (2019).CrossRef L. Han, L. Wu, C. Lui, and J. Zhang, Doping-Enchanced Visible-Light Absorption of CH3NH3PbBr3 by the Bi3+-Induced Impurity Band without Sacrificing a Band Gap. J. Phys. Chem. C 14, 8578 (2019).CrossRef
23.
Zurück zum Zitat A.S. Hassanien, K.A. Aly, and A.A. Akl, Study of Optical Properties of Thermally Evaporated ZnSe Thin Films Annealed at Different Pulsed Laser Powers. J. Alloys Compd. 685, 733 (2016).CrossRef A.S. Hassanien, K.A. Aly, and A.A. Akl, Study of Optical Properties of Thermally Evaporated ZnSe Thin Films Annealed at Different Pulsed Laser Powers. J. Alloys Compd. 685, 733 (2016).CrossRef
24.
Zurück zum Zitat N. Ghobadi, Band gap determination using absorption spectrum fitting procedure. Int. Nano Lett. 3, 2 (2013).CrossRef N. Ghobadi, Band gap determination using absorption spectrum fitting procedure. Int. Nano Lett. 3, 2 (2013).CrossRef
25.
Zurück zum Zitat U.J. Jung, S. Kim, D. Kim, D.S. Shin, Z. Xian, and J. Park, Metal–Semiconductor–Metal UV Detectors Using Transferrable Amorphous and Crystalline Zinc-Tin-Oxide Microsphere Monolayers. ACS Sustainable Chem. Eng. 8, 60 (2020).CrossRef U.J. Jung, S. Kim, D. Kim, D.S. Shin, Z. Xian, and J. Park, Metal–Semiconductor–Metal UV Detectors Using Transferrable Amorphous and Crystalline Zinc-Tin-Oxide Microsphere Monolayers. ACS Sustainable Chem. Eng. 8, 60 (2020).CrossRef
26.
Zurück zum Zitat Z. Zhong, K. Li, J. Zhang, L. Ying, R. Xie, G. Yu, F. Huang, and Y. Cao, High-Performance All-Polymer Photodetectors via a Thick Photoactive Layer Strategy. ACS Appl. Mater. Interfaces 11, 14208 (2019).CrossRef Z. Zhong, K. Li, J. Zhang, L. Ying, R. Xie, G. Yu, F. Huang, and Y. Cao, High-Performance All-Polymer Photodetectors via a Thick Photoactive Layer Strategy. ACS Appl. Mater. Interfaces 11, 14208 (2019).CrossRef
27.
Zurück zum Zitat K.M. Niang, J. Cho, S. Heffernan, W.I. Milne, and A.J. Flewitt, Optimisation of Amorphous Zinc Tin Oxide Thin Film Transistors by Remote-Plasma Reactive Sputtering. J. Appl. Phys. 120, 085312 (2016).CrossRef K.M. Niang, J. Cho, S. Heffernan, W.I. Milne, and A.J. Flewitt, Optimisation of Amorphous Zinc Tin Oxide Thin Film Transistors by Remote-Plasma Reactive Sputtering. J. Appl. Phys. 120, 085312 (2016).CrossRef
28.
Zurück zum Zitat H.Q. Chiang, and J.F. Wager, High Mobility Transparent Thin-Film Transistors with Amorphous Zinc Tin Oxide Channel Layer. Appl. Phys. Lett. 86, 013503 (2005).CrossRef H.Q. Chiang, and J.F. Wager, High Mobility Transparent Thin-Film Transistors with Amorphous Zinc Tin Oxide Channel Layer. Appl. Phys. Lett. 86, 013503 (2005).CrossRef
29.
Zurück zum Zitat N. Laegreid, and G.K. Wehner, Sputtering Yields of Metals for Ar+ and Ne+ Ions with Energies from 50 to 600 eV. J. Appl. Phys. 32, 365 (1961).CrossRef N. Laegreid, and G.K. Wehner, Sputtering Yields of Metals for Ar+ and Ne+ Ions with Energies from 50 to 600 eV. J. Appl. Phys. 32, 365 (1961).CrossRef
30.
Zurück zum Zitat R.A. Wibowo, W.S. Kim, E.S. Lee, B. Munir, and K.H. Kim, Single Step Preparation of Quaternary Cu2ZnSnSe4 Thin Films by RF Magnetron Sputtering from Binary Chalcogenide Targets. J. Phys. Chem. Solids 68, 1908 (2007).CrossRef R.A. Wibowo, W.S. Kim, E.S. Lee, B. Munir, and K.H. Kim, Single Step Preparation of Quaternary Cu2ZnSnSe4 Thin Films by RF Magnetron Sputtering from Binary Chalcogenide Targets. J. Phys. Chem. Solids 68, 1908 (2007).CrossRef
31.
Zurück zum Zitat A.A. Ahmed, M. Devarajan, and N. Afzal, Fabrication and Characterization of High Performance MSM UV Photodetector Based on NiO Film. Sens. Actuators A 262, 78 (2017).CrossRef A.A. Ahmed, M. Devarajan, and N. Afzal, Fabrication and Characterization of High Performance MSM UV Photodetector Based on NiO Film. Sens. Actuators A 262, 78 (2017).CrossRef
32.
Zurück zum Zitat M. Shkir, M.T. Khan, I.M. Ashraf, A. Almohammedi, E. Dieguez, and S. AlFaify, High-performance Visible Light Photodetectors Based on Inorganic CZT and InCZT Single Crystals. Sci. Rep. 9, 12436 (2019).CrossRef M. Shkir, M.T. Khan, I.M. Ashraf, A. Almohammedi, E. Dieguez, and S. AlFaify, High-performance Visible Light Photodetectors Based on Inorganic CZT and InCZT Single Crystals. Sci. Rep. 9, 12436 (2019).CrossRef
33.
Zurück zum Zitat J. Wang, H. Fang, X. Wang, X. Chen, W. Lu, and W. Hu, Recent Progress on Localized Field Enhanced Two-Dimensional Material Photodetectors from Ultraviolet—Visible to Infrared. Small 13, 1700894 (2017).CrossRef J. Wang, H. Fang, X. Wang, X. Chen, W. Lu, and W. Hu, Recent Progress on Localized Field Enhanced Two-Dimensional Material Photodetectors from Ultraviolet—Visible to Infrared. Small 13, 1700894 (2017).CrossRef
34.
Zurück zum Zitat G. Wu, X. Tan, G. Li, and C. Hu, Effect of Preparation Method on the Physical and Catalytic Property of Nanocrystalline Fe2O3. J Alloys Compd. 504, 371 (2010).CrossRef G. Wu, X. Tan, G. Li, and C. Hu, Effect of Preparation Method on the Physical and Catalytic Property of Nanocrystalline Fe2O3. J Alloys Compd. 504, 371 (2010).CrossRef
35.
Zurück zum Zitat X. Lu, Y. Zeng, M. Yu, T. Zhai, C. Liang, X. Shilei, M.S. Balogun, and Y. Tong, Oxygen-Deficient Hematite Nanorods as High-Performance and Novel Negative Electrodes for Flexible Asymmetric Supercapacitors. Adv. Mater. 26, 3148 (2014).CrossRef X. Lu, Y. Zeng, M. Yu, T. Zhai, C. Liang, X. Shilei, M.S. Balogun, and Y. Tong, Oxygen-Deficient Hematite Nanorods as High-Performance and Novel Negative Electrodes for Flexible Asymmetric Supercapacitors. Adv. Mater. 26, 3148 (2014).CrossRef
36.
Zurück zum Zitat J. Gan, X. Lu, J. Wu, S. Xie, T. Zhai, M. Yu, Z. Zhang, Y. Mao, S.C.I. Wang, Y. Shen, and Y. Tong, Oxygen Vacancies Promoting Photoelectrochemical Performance of In2O3 Nanocubes. Sci. Rep. 3, 1021 (2013).CrossRef J. Gan, X. Lu, J. Wu, S. Xie, T. Zhai, M. Yu, Z. Zhang, Y. Mao, S.C.I. Wang, Y. Shen, and Y. Tong, Oxygen Vacancies Promoting Photoelectrochemical Performance of In2O3 Nanocubes. Sci. Rep. 3, 1021 (2013).CrossRef
37.
Zurück zum Zitat S. Jain, J. Shah, N.S. Negi, C. Sharma, and R.K. Kotnala, Significance of Interface Barrier at Electrode of Hematite Hydroelectric Cell for Generating Ecopower by Water Splitting. Int. J. Energy Res. 43, 4743 (2019).CrossRef S. Jain, J. Shah, N.S. Negi, C. Sharma, and R.K. Kotnala, Significance of Interface Barrier at Electrode of Hematite Hydroelectric Cell for Generating Ecopower by Water Splitting. Int. J. Energy Res. 43, 4743 (2019).CrossRef
38.
Zurück zum Zitat W. Zhang, Y. Shen, J. Zhang, H. Bi, S. Zhao, P. Zhou, C. Han, D. Wei, and N. Cheng, Low-Temperature H2S Sensing Performance of Cu-Doped ZnFe2O4 Nanoparticles with Spinel Structure. Appl. Surf. Sci. 470, 581 (2019).CrossRef W. Zhang, Y. Shen, J. Zhang, H. Bi, S. Zhao, P. Zhou, C. Han, D. Wei, and N. Cheng, Low-Temperature H2S Sensing Performance of Cu-Doped ZnFe2O4 Nanoparticles with Spinel Structure. Appl. Surf. Sci. 470, 581 (2019).CrossRef
39.
Zurück zum Zitat R.B. Kale, and C.D. Lokhande, Influence of Air Annealing on the Structural, Optical and Electrical Properties of Chemically Deposited CdSe Nano-crystallites. Appl. Surf. Sci. 223, 343 (2004).CrossRef R.B. Kale, and C.D. Lokhande, Influence of Air Annealing on the Structural, Optical and Electrical Properties of Chemically Deposited CdSe Nano-crystallites. Appl. Surf. Sci. 223, 343 (2004).CrossRef
40.
Zurück zum Zitat J. Wang, Z. Wang, B. Huang, Y. Ma, Y. Liu, X. Qin, X. Zhang, and Y. Dai, Oxygen Vacancy Induced Band-Gap Narrowing and Enhanced Visible Light Photocatalytic Activity of ZnO. ACS Appl. Mater. Interfaces 4, 4024 (2012).CrossRef J. Wang, Z. Wang, B. Huang, Y. Ma, Y. Liu, X. Qin, X. Zhang, and Y. Dai, Oxygen Vacancy Induced Band-Gap Narrowing and Enhanced Visible Light Photocatalytic Activity of ZnO. ACS Appl. Mater. Interfaces 4, 4024 (2012).CrossRef
41.
Zurück zum Zitat X. Liu, L. Gu, Q. Zhang, J. Wu, Y. Long, and Z. Fan, All-Printable Band-Edge Modulated ZnO Nanowire Photodetectors with Ultra-High Detectivity. Nat. Commun. 5, 4007 (2014).CrossRef X. Liu, L. Gu, Q. Zhang, J. Wu, Y. Long, and Z. Fan, All-Printable Band-Edge Modulated ZnO Nanowire Photodetectors with Ultra-High Detectivity. Nat. Commun. 5, 4007 (2014).CrossRef
42.
Zurück zum Zitat D.M. Fleetwood, P.S. Winokur, R.A. Reber Jr., T.L. Meisenheimer, J.R. Schwank, M.R. Shaneyfelt, and L.C. Riewe, Effects of Oxide Traps, Interface Traps, and ‘“Border Traps”’ on Metal-Oxide-Semiconductor Devices. J. Appl. Phys. 73, 5058 (1993).CrossRef D.M. Fleetwood, P.S. Winokur, R.A. Reber Jr., T.L. Meisenheimer, J.R. Schwank, M.R. Shaneyfelt, and L.C. Riewe, Effects of Oxide Traps, Interface Traps, and ‘“Border Traps”’ on Metal-Oxide-Semiconductor Devices. J. Appl. Phys. 73, 5058 (1993).CrossRef
43.
Zurück zum Zitat P. Nagpal, and V.I. Klimov, Role of Mid-gap States in Charge Transport and Photoconductivity in Semiconductor Nanocrystal Films. Nat. Commun. 2, 486 (2011).CrossRef P. Nagpal, and V.I. Klimov, Role of Mid-gap States in Charge Transport and Photoconductivity in Semiconductor Nanocrystal Films. Nat. Commun. 2, 486 (2011).CrossRef
44.
Zurück zum Zitat T.E. Murphy, K. Moazzami, and J.D. Phillips, Trap-Related Photoconductivity in ZnO Epilayers. J. Electr. Mater. 35, 543 (2006).CrossRef T.E. Murphy, K. Moazzami, and J.D. Phillips, Trap-Related Photoconductivity in ZnO Epilayers. J. Electr. Mater. 35, 543 (2006).CrossRef
45.
Zurück zum Zitat K. Moazzami, T.E. Murphy, J.D. Phillips, M.C.K. Cheung, and A.N. Cartwright, Sub-bandgap Photoconductivity in ZnO Epilayers and Extraction of Trap Density Spectra. Semicond. Sci. Technol. 21, 717 (2006).CrossRef K. Moazzami, T.E. Murphy, J.D. Phillips, M.C.K. Cheung, and A.N. Cartwright, Sub-bandgap Photoconductivity in ZnO Epilayers and Extraction of Trap Density Spectra. Semicond. Sci. Technol. 21, 717 (2006).CrossRef
46.
Zurück zum Zitat R.K. Chowdhury, R. Maiti, A. Ghorai, A. Midya, and S.K. Ray, Novel Silicon Compatible p-WS2 2D/3D Heterojunction Devices Exhibiting Broadband Photoresponse and Superior Detectivity. Nanoscale 8, 13429 (2016).CrossRef R.K. Chowdhury, R. Maiti, A. Ghorai, A. Midya, and S.K. Ray, Novel Silicon Compatible p-WS2 2D/3D Heterojunction Devices Exhibiting Broadband Photoresponse and Superior Detectivity. Nanoscale 8, 13429 (2016).CrossRef
47.
Zurück zum Zitat J.J. Lin, and Z.Q. Li, Electronic Conduction Properties of Indium Tin Oxide: Single-Particle and Many-Body Transport. J. Phys. Condens. Matter 26, 324301 (2014). J.J. Lin, and Z.Q. Li, Electronic Conduction Properties of Indium Tin Oxide: Single-Particle and Many-Body Transport. J. Phys. Condens. Matter 26, 324301 (2014).
48.
Zurück zum Zitat A. Klein, C. Körber, A. Wachau, F. Säuberlich, Y. Gassenbauer, S.P. Harvey, D.E. Proffit, and T.O. Mason, Transparent Conducting Oxides for Photovoltaics: Manipulation of Fermi Level, Work Function and Energy Band Alignment. Materials 3, 4892 (2010).CrossRef A. Klein, C. Körber, A. Wachau, F. Säuberlich, Y. Gassenbauer, S.P. Harvey, D.E. Proffit, and T.O. Mason, Transparent Conducting Oxides for Photovoltaics: Manipulation of Fermi Level, Work Function and Energy Band Alignment. Materials 3, 4892 (2010).CrossRef
49.
Zurück zum Zitat D.A. Neamen, Semiconductor Physics and Devices: Basic Principles, 4th ed., (New York: McGraw-Hill, 2012). D.A. Neamen, Semiconductor Physics and Devices: Basic Principles, 4th ed., (New York: McGraw-Hill, 2012).
50.
Zurück zum Zitat F.J. Himpsel, G. Hollinger, and R.A. Pollak, Determination of the Fermi-Level Pinning Position at Si(111) Surfaces. Phys. Rev. B 28, 7014 (1983).CrossRef F.J. Himpsel, G. Hollinger, and R.A. Pollak, Determination of the Fermi-Level Pinning Position at Si(111) Surfaces. Phys. Rev. B 28, 7014 (1983).CrossRef
51.
Zurück zum Zitat S. Han, Z. Zhang, J. Zhang, L. Wang, J. Zheng, H. Zhao, Y. Zhang, M. Jiang, S. Wang, D. Zhao, C.X. Shan, B. Li, and D. Shen, Photoconductive Gain in Solar-Blind Ultraviolet Photodetector Based on Mg0.52Zn0.48O thin film. Appl. Phys. Lett. 99, 242105 (2011).CrossRef S. Han, Z. Zhang, J. Zhang, L. Wang, J. Zheng, H. Zhao, Y. Zhang, M. Jiang, S. Wang, D. Zhao, C.X. Shan, B. Li, and D. Shen, Photoconductive Gain in Solar-Blind Ultraviolet Photodetector Based on Mg0.52Zn0.48O thin film. Appl. Phys. Lett. 99, 242105 (2011).CrossRef
52.
Zurück zum Zitat C.T. Kuo, Y.Y. Chu, H.Y. Chen, and T.R. Yew, Tin-Manganese-Nickel Oxide Thin Films Prepared by Thermal Evaporation for Photosensor Applications. Mater. Sci. Eng. B 268, 115126 (2021).CrossRef C.T. Kuo, Y.Y. Chu, H.Y. Chen, and T.R. Yew, Tin-Manganese-Nickel Oxide Thin Films Prepared by Thermal Evaporation for Photosensor Applications. Mater. Sci. Eng. B 268, 115126 (2021).CrossRef
53.
Zurück zum Zitat K.W. Lan, Y.J. Hong, P. Chang, and T.R. Yew, Cobalt Tungsten Oxide Thin Films Prepared by RF-Sputter for Photosensor. Adv. Mater. Interfaces 4, 1601165 (2017).CrossRef K.W. Lan, Y.J. Hong, P. Chang, and T.R. Yew, Cobalt Tungsten Oxide Thin Films Prepared by RF-Sputter for Photosensor. Adv. Mater. Interfaces 4, 1601165 (2017).CrossRef
54.
Zurück zum Zitat H.S. Kim, K.R. Chauhan, J. Kim, and E.H. Choi, Flexible Vanadium Oxide Film for Broadband Transparent Photodetector. Appl. Phys. Lett. 110, 191907 (2017). H.S. Kim, K.R. Chauhan, J. Kim, and E.H. Choi, Flexible Vanadium Oxide Film for Broadband Transparent Photodetector. Appl. Phys. Lett. 110, 191907 (2017).
55.
Zurück zum Zitat T.H. Wang, C.T. Kuo, P.H. Chung, C.I. Liu, Y.Y. Lu, Y.T. Lee, and T.R. Yew, Novel Cu-Mg-Ni-Zn-Mn Oxide Thin Film Electrodes for NIR Photodetector Applications. J. Mater. Chem. C 9, 4961 (2021).CrossRef T.H. Wang, C.T. Kuo, P.H. Chung, C.I. Liu, Y.Y. Lu, Y.T. Lee, and T.R. Yew, Novel Cu-Mg-Ni-Zn-Mn Oxide Thin Film Electrodes for NIR Photodetector Applications. J. Mater. Chem. C 9, 4961 (2021).CrossRef
56.
Zurück zum Zitat P.V. Raghavendra, J.S. Bhat, and N.G. Deshpande, Visible Light Sensitive Cupric Oxide Metal-Semiconductor-Metal Photodetectors. Superlattices Microstruct. 113, 754 (2018).CrossRef P.V. Raghavendra, J.S. Bhat, and N.G. Deshpande, Visible Light Sensitive Cupric Oxide Metal-Semiconductor-Metal Photodetectors. Superlattices Microstruct. 113, 754 (2018).CrossRef
Metadaten
Titel
Photoactive Copper-Doped Zinc Stannate Thin Films for Ultraviolet–Visible Light Photodetector
verfasst von
Ching-Tai Fu
Chia-Tung Kuo
Chong-Chi Chi
Lu-Cheng Hou
Chao-I Liu
Shu-Chih Chang
Yuan-Mau Lee
Yu-Hsuan Chuang
Tri-Rung Yew
Publikationsdatum
12.06.2022
Verlag
Springer US
Erschienen in
Journal of Electronic Materials / Ausgabe 9/2022
Print ISSN: 0361-5235
Elektronische ISSN: 1543-186X
DOI
https://doi.org/10.1007/s11664-022-09709-1

Weitere Artikel der Ausgabe 9/2022

Journal of Electronic Materials 9/2022 Zur Ausgabe