Skip to main content

2012 | OriginalPaper | Buchkapitel

3. Photoelectrochemical Measurements

verfasst von : Roel van de Krol

Erschienen in: Photoelectrochemical Hydrogen Production

Verlag: Springer US

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This chapter presents an overview of several photoelectrochemical characterization techniques and the equipment needed to carry out these measurements. It starts with a detailed description of the photoelectrochemical cell and its components. A few selected cell designs are shown and discussed, and several considerations for choosing suitable photoelectrode substrates, electrolyte solutions, and counter and reference electrodes are given. This is followed by a description of two experimental setups for photocurrent measurements, one for measurements under simulated sunlight and one for wavelength-dependent (monochromatic) measurements. The components of these setups are described, with special emphasis given to the inner workings of the potentiostat and the various types and specifications of solar simulators. The information that can be obtained from photocurrent measurements, such as photocurrent onset potentials, performance limiting factors, and quantum efficiencies is described next. The final section reviews the principles, equipment, and practical considerations for Mott–Schottky measurements. Common pitfalls of impedance measurements are outlined, and several strategies and precautions to avoid or minimize measurement errors are given.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Fußnoten
1
Examples of optimization parameters for photoelectrode synthesis are deposition temperature, substrate cleaning method, additives used to optimize the boiling point, surface tension, water content or viscosity of a solution, postdeposition heat treatments to improve the crystallinity, dipping as-prepared samples in a precursor solution to improve interparticle contacts, etc.
 
2
Most photoelectrochemical cells used in PEC research are designed to study the properties of a single photoelectrode. PEC cells in which more than one electrode is illuminated at once (e.g., tandem cells) are somewhat more complicated and will not be considered here.
 
3
Except for a small dip around ~1400 nm, depending on the purity grade.
 
4
A 50 mm, 3 mm thick window of UV-grade fused silica costs ~40 EUR (in 2010). Note that fused silica is often incorrectly referred to as “quartz,” which is the crystalline form of SiO2 that shows slightly better transmission than fused silica at a much higher price.
 
5
Factors that may contribute to the total overpotential include slow charge transfer across the Helmholtz layer, slow reaction kinetics due to preceding or subsequent reaction steps, mass transport limitations (diffusion, convection, migration), and removal of the solvation sheet of water molecules (dipoles) surrounding each ion.
 
6
Each ion is surrounded by a solvation sheath of water molecules (see Sect. 2.6.2). The size and charge of the central ion determine the configuration of the surrounding molecules, and this in turn determines the interaction strength of the ion with neighboring ions in the solution.
 
7
For a more detailed description of the working principle of the differential amplifiers, buffers, and power amplifiers shown in Fig. 3.6, the reader is referred to the excellent classic text on electronics by Horowitz and Hill [23].
 
8
The modulation input is used for, e.g., impedance measurements, which will be discussed later.
 
9
Most proprietary software packages include support for several types of frequency response analyzers, sometimes even for models made by other manufacturers.
 
10
The AM1.5D spectrum only contains the direct contributions over a 5° field of view, and has an integrated intensity of 768 W/m2.
 
11
In exceptional cases, ignition of a high-power gas discharge lamp can even destroy electronic equipment. This has happened once in the author’s laboratory to a Solartron 1286 potentiostat after switching on an older type 450 W Xe lamp.
 
12
Monochromators have both entrance and exit slits. It is recommended to use the same width for both slits.
 
13
The situation is a bit complicated in a three-electrode system since the potential of the counter electrode is not known. One can argue that for a counter-electrode with a low overpotential for H2 evolution, the potential of the counter electrode should be close to that of the reversible hydrogen potential – provided that the concentration of dissolved hydrogen is high enough. This can be easily verified by a separate measurement of V WE –V CE during a three-electrode linear sweep voltammogram. One particular test in the author’s laboratory showed that at a current density >0.5 mA/cm2, the potential of a coiled Pt wire electrode approached that of the reversible hydrogen electrode to within ~0.1 V. At lower current densities, however, deviations as large as 1 V were observed.
 
14
In contrast to photocurrent measurements, discontinuities in the ICPE spectrum can be easily avoided by using the same combination of wavelength range and long pass filters while measuring the light intensity with the calibrated photodiode.
 
15
There are several other, more complicated elements available to describe the various processes that can occur in a photoelectrochemical cell, such as the Warburg element (to model diffusion), the Constant Phase Element (CPE, used to describe processes that have a distribution of time constants or activation energies), and transmission lines (to model porous electrodes [47]). Porous electrodes and CPE elements that represent nonideal capacitive elements are briefly discussed below. For more detailed information, the reader is referred to the literature [48, 49].
 
16
Preconditioning steps are, e.g., removal of the dc component of the signal by passing it through a high pass filter (a capacitor), or amplification/attenuation of the signal by a certain fixed factor. These steps are often necessary to ensure that the signal falls within the range that the FRA can handle internally. These steps do not (and should not) influence the final measurement results.
 
17
When writing one’s own measurement software, it should be realized that the FRA simply divides the voltage signals at both input channels – it does not know what these signals represent. Since the (voltage) signal that represents the current is given by I monitor × R i (Fig. 3.6), the FRA reports the impedance as V/(I × R i) – it does not “know” the value of the range resistor R i. The software should therefore multiply the reported value by R i to obtain the actual impedance.
 
18
The value of kT/e at room temperature is ~25 mV.
 
19
This membrane forms the junction between the internal solution of the reference electrode and the electrolyte of the PEC cell.
 
20
The donors/acceptors are then no longer shallow, but deep.
 
21
Note that a semicircle in the Z′ vs. Z″ (Nyquist) plot is only observed in the presence of a resistive element in parallel to the space charge capacitance.
 
22
CPE elements are usually indicated by the letter Q, analogous to the letters R and C used for resistive and capacitive elements, respectively.
 
23
A bulk or surface state with a single, discrete energy level is probably better described by a single additional RC component instead of a CPE element.
 
Literatur
1.
Zurück zum Zitat Chen, Z.B., Jaramillo, T.F., Deutsch, T.G., Kleiman-Shwarsctein, A., Forman, A.J., Gaillard, N., Garland, R., Takanabe, K., Heske, C., Sunkara, M., McFarland, E.W., Domen, K., Miller, E.L., Turner, J.A., Dinh, H.N.: Accelerating materials development for photoelectrochemical hydrogen production: Standards for methods, definitions, and reporting protocols. J. Mater. Res. 25, 3–16 (2010)CrossRef Chen, Z.B., Jaramillo, T.F., Deutsch, T.G., Kleiman-Shwarsctein, A., Forman, A.J., Gaillard, N., Garland, R., Takanabe, K., Heske, C., Sunkara, M., McFarland, E.W., Domen, K., Miller, E.L., Turner, J.A., Dinh, H.N.: Accelerating materials development for photoelectrochemical hydrogen production: Standards for methods, definitions, and reporting protocols. J. Mater. Res. 25, 3–16 (2010)CrossRef
2.
Zurück zum Zitat Gordon, R.G.: Criteria for choosing transparent conductors. MRS Bull. 25, 52–57 (2000)CrossRef Gordon, R.G.: Criteria for choosing transparent conductors. MRS Bull. 25, 52–57 (2000)CrossRef
3.
Zurück zum Zitat Sze, S.M.: Physics of Semiconductor Devices. Wiley, New York (1981) Sze, S.M.: Physics of Semiconductor Devices. Wiley, New York (1981)
4.
Zurück zum Zitat De Jongh, P.E., Vanmaekelbergh, D., Kelly, J.J.: Photoelectrochemistry of electrodeposited Cu2O. J. Electrochem. Soc. 147, 486–489 (2000)CrossRef De Jongh, P.E., Vanmaekelbergh, D., Kelly, J.J.: Photoelectrochemistry of electrodeposited Cu2O. J. Electrochem. Soc. 147, 486–489 (2000)CrossRef
5.
Zurück zum Zitat Minami, T.: New n-type transparent conducting oxides. MRS Bull. 25, 38–44 (2000)CrossRef Minami, T.: New n-type transparent conducting oxides. MRS Bull. 25, 38–44 (2000)CrossRef
6.
Zurück zum Zitat Ferekides, C.S., Mamazza, R., Balasubramanian, U., Morel, D.L.: Transparent conductors and buffer layers for CdTe solar cells. Thin Solid Films 480, 224–229 (2005)CrossRef Ferekides, C.S., Mamazza, R., Balasubramanian, U., Morel, D.L.: Transparent conductors and buffer layers for CdTe solar cells. Thin Solid Films 480, 224–229 (2005)CrossRef
7.
Zurück zum Zitat Fortunato, E., Ginley, D., Hosono, H., Paine, D.C.: Transparent conducting oxides for photovoltaics. MRS Bull. 32, 242–247 (2007)CrossRef Fortunato, E., Ginley, D., Hosono, H., Paine, D.C.: Transparent conducting oxides for photovoltaics. MRS Bull. 32, 242–247 (2007)CrossRef
8.
Zurück zum Zitat Minami, T., Miyata, T., Yamamoto, T.: Stability of transparent conducting oxide films for use at high temperatures. J. Vac. Sci. Technol. A 17, 1822–1826 (1999)CrossRef Minami, T., Miyata, T., Yamamoto, T.: Stability of transparent conducting oxide films for use at high temperatures. J. Vac. Sci. Technol. A 17, 1822–1826 (1999)CrossRef
9.
Zurück zum Zitat Abe, R., Higashi, M., Domen, K.: Facile fabrication of an efficient oxynitride TaON photoanode for overall water splitting into H2 and O2 under visible light irradiation. J. Am. Chem. Soc. 132, 11828–11829 (2010)CrossRef Abe, R., Higashi, M., Domen, K.: Facile fabrication of an efficient oxynitride TaON photoanode for overall water splitting into H2 and O2 under visible light irradiation. J. Am. Chem. Soc. 132, 11828–11829 (2010)CrossRef
10.
Zurück zum Zitat Goto, K., Kawashima, T., Tanabe, N.: Heat-resisting TCO films for PV cells. Solar Energy Mater. Solar Cells 90, 3251–3260 (2006)CrossRef Goto, K., Kawashima, T., Tanabe, N.: Heat-resisting TCO films for PV cells. Solar Energy Mater. Solar Cells 90, 3251–3260 (2006)CrossRef
12.
Zurück zum Zitat Sawyer, D.T., Sobkowiak, A., Roberts, J.L.: Electrochemistry for Chemists. Wiley-Interscience, New York (2010) Sawyer, D.T., Sobkowiak, A., Roberts, J.L.: Electrochemistry for Chemists. Wiley-Interscience, New York (2010)
14.
Zurück zum Zitat Compton, R.G., Sanders, G.H.W.: Electrode Potentials. Oxford University Press, Oxford (1996) Compton, R.G., Sanders, G.H.W.: Electrode Potentials. Oxford University Press, Oxford (1996)
15.
Zurück zum Zitat Compton, R.G., Banks, C.E.: Understanding Voltammetry. World Scientific Publishing, Oxford (2007) Compton, R.G., Banks, C.E.: Understanding Voltammetry. World Scientific Publishing, Oxford (2007)
16.
Zurück zum Zitat Hamann, C.H., Hamnett, A., Vielstich, W.: Electrochemistry. Wiley-VCH, Weinheim (2007) Hamann, C.H., Hamnett, A., Vielstich, W.: Electrochemistry. Wiley-VCH, Weinheim (2007)
17.
Zurück zum Zitat Gilliam, R.J., Graydon, J.W., Kirk, D.W., Thorpe, S.J.: A review of specific conductivities of potassium hydroxide solutions for various concentrations and temperatures. Int. J. Hydrogen Energy 32, 359–364 (2007)CrossRef Gilliam, R.J., Graydon, J.W., Kirk, D.W., Thorpe, S.J.: A review of specific conductivities of potassium hydroxide solutions for various concentrations and temperatures. Int. J. Hydrogen Energy 32, 359–364 (2007)CrossRef
19.
Zurück zum Zitat Santato, C., Odziemkowski, M., Ulmann, M., Augustynski, J.: Crystallographically oriented mesoporous WO3 films: synthesis, characterization, and applications. J. Am. Chem. Soc. 123, 10639–10649 (2001)CrossRef Santato, C., Odziemkowski, M., Ulmann, M., Augustynski, J.: Crystallographically oriented mesoporous WO3 films: synthesis, characterization, and applications. J. Am. Chem. Soc. 123, 10639–10649 (2001)CrossRef
20.
Zurück zum Zitat Alexander, B.D., Kulesza, P.J., Rutkowska, L., Solarska, R., Augustynski, J.: Metal oxide photoanodes for solar hydrogen production. J. Mater. Chem. 18, 2298–2303 (2008)CrossRef Alexander, B.D., Kulesza, P.J., Rutkowska, L., Solarska, R., Augustynski, J.: Metal oxide photoanodes for solar hydrogen production. J. Mater. Chem. 18, 2298–2303 (2008)CrossRef
21.
Zurück zum Zitat Kay, A., Cesar, I., Grätzel, M.: New benchmark for water photooxidation by nanostructured alpha-Fe2O3 films. J. Am. Chem. Soc. 128, 15714–15721 (2006)CrossRef Kay, A., Cesar, I., Grätzel, M.: New benchmark for water photooxidation by nanostructured alpha-Fe2O3 films. J. Am. Chem. Soc. 128, 15714–15721 (2006)CrossRef
22.
Zurück zum Zitat Sayama, K., Nomura, A., Arai, T., Sugita, T., Abe, R., Yanagida, M., Oi, T., Iwasaki, Y., Abe, Y., Sugihara, H.: Photoelectrochemical decomposition of water into H2 and O2 on porous BiVO4 thin-film electrodes under visible light and significant effect of Ag ion treatment. J. Phys. Chem. B 110, 11352–11360 (2006)CrossRef Sayama, K., Nomura, A., Arai, T., Sugita, T., Abe, R., Yanagida, M., Oi, T., Iwasaki, Y., Abe, Y., Sugihara, H.: Photoelectrochemical decomposition of water into H2 and O2 on porous BiVO4 thin-film electrodes under visible light and significant effect of Ag ion treatment. J. Phys. Chem. B 110, 11352–11360 (2006)CrossRef
23.
Zurück zum Zitat Horowitz, P., Hill, W.: The Art of Electronics. Cambridge University Press, Cambridge (1989) Horowitz, P., Hill, W.: The Art of Electronics. Cambridge University Press, Cambridge (1989)
25.
Zurück zum Zitat Murphy, A.B., Barnes, P.R.F., Randeniya, L.K., Plumb, I.C., Grey, I.E., Horne, M.D., Glasscock, J.A.: Efficiency of solar water splitting using semiconductor electrodes. Int. J. Hydrogen Energy 31, 1999–2017 (2006)CrossRef Murphy, A.B., Barnes, P.R.F., Randeniya, L.K., Plumb, I.C., Grey, I.E., Horne, M.D., Glasscock, J.A.: Efficiency of solar water splitting using semiconductor electrodes. Int. J. Hydrogen Energy 31, 1999–2017 (2006)CrossRef
26.
Zurück zum Zitat Jenkins, F.A., White, H.E.: Fundamentals of Optics. McGraw-Hill, New York (1981) Jenkins, F.A., White, H.E.: Fundamentals of Optics. McGraw-Hill, New York (1981)
27.
Zurück zum Zitat Hobbs, P.C.D.: Building Electro-Optical Systems – Making It All Work. Wiley, New York (2000)CrossRef Hobbs, P.C.D.: Building Electro-Optical Systems – Making It All Work. Wiley, New York (2000)CrossRef
28.
Zurück zum Zitat Hecht, E.: Optics. Addison-Wesley, Reading (2001) Hecht, E.: Optics. Addison-Wesley, Reading (2001)
33.
Zurück zum Zitat Liang, Y.Q., Enache, C.S., van de Krol, R.: Photoelectrochemical characterization of sprayed alpha-Fe2O3 thin films: influence of Si doping and SnO2 interfacial layer. Int. J. Photoenergy (2008). doi:10.1155/2008/739864 Liang, Y.Q., Enache, C.S., van de Krol, R.: Photoelectrochemical characterization of sprayed alpha-Fe2O3 thin films: influence of Si doping and SnO2 interfacial layer. Int. J. Photoenergy (2008). doi:10.​1155/​2008/​739864
34.
Zurück zum Zitat Kennedy, J.H., Frese Jr., K.W.: Flatband potentials and donor densities of polycrystalline alpha-Fe2O3 determined from Mott–Schottky plots. J. Electrochem. Soc. 125, 723–726 (1978)CrossRef Kennedy, J.H., Frese Jr., K.W.: Flatband potentials and donor densities of polycrystalline alpha-Fe2O3 determined from Mott–Schottky plots. J. Electrochem. Soc. 125, 723–726 (1978)CrossRef
35.
Zurück zum Zitat Sanchez, C., Hendewerk, M., Sieber, K.D., Somorjai, G.A.: Synthesis, bulk, and surface characterization of niobium-doped Fe2O3 single crystals. J. Solid State Chem. 61, 47–55 (1986)CrossRef Sanchez, C., Hendewerk, M., Sieber, K.D., Somorjai, G.A.: Synthesis, bulk, and surface characterization of niobium-doped Fe2O3 single crystals. J. Solid State Chem. 61, 47–55 (1986)CrossRef
36.
Zurück zum Zitat Tilley, S.D., Cornuz, M., Sivula, K., Gratzel, M.: Light-induced water splitting with hematite: improved nanostructure and iridium oxide catalysis. Angew. Chem. Int. Ed. 49, 6405–6408 (2010)CrossRef Tilley, S.D., Cornuz, M., Sivula, K., Gratzel, M.: Light-induced water splitting with hematite: improved nanostructure and iridium oxide catalysis. Angew. Chem. Int. Ed. 49, 6405–6408 (2010)CrossRef
37.
Zurück zum Zitat Grätzel, M.: Photoelectrochemical cells. Nature 414, 338–344 (2001)CrossRef Grätzel, M.: Photoelectrochemical cells. Nature 414, 338–344 (2001)CrossRef
38.
Zurück zum Zitat Grätzel, M.: Mesoscopic solar cells for electricity and hydrogen production from sunlight. Chem. Lett. 34, 8–13 (2005)CrossRef Grätzel, M.: Mesoscopic solar cells for electricity and hydrogen production from sunlight. Chem. Lett. 34, 8–13 (2005)CrossRef
39.
Zurück zum Zitat Brillet, J., Cornuz, M., Le Formal, F., Yum, J.H., Grätzel, M., Sivula, K.: Examining architectures of photoanode-photovoltaic tandem cells for solar water splitting. J. Mater. Res. 25, 17–24 (2010)CrossRef Brillet, J., Cornuz, M., Le Formal, F., Yum, J.H., Grätzel, M., Sivula, K.: Examining architectures of photoanode-photovoltaic tandem cells for solar water splitting. J. Mater. Res. 25, 17–24 (2010)CrossRef
40.
Zurück zum Zitat Lindquist, S.E., Finnstrom, B., Tegner, L.: Photoelectrochemical properties of polycrystalline TiO2 thin film electrodes on quartz substrates. J. Electrochem. Soc. 130, 351–358 (1983)CrossRef Lindquist, S.E., Finnstrom, B., Tegner, L.: Photoelectrochemical properties of polycrystalline TiO2 thin film electrodes on quartz substrates. J. Electrochem. Soc. 130, 351–358 (1983)CrossRef
41.
Zurück zum Zitat Inoue, Y., Asai, Y., Sato, K.: Photocatalysts with tunnel structures for decomposition of water. 1. BaTi4O9, a pentagonal prism tunnel structure, and its combination with various promoters. J. Chem. Soc. Faraday Trans. 90, 797–802 (1994)CrossRef Inoue, Y., Asai, Y., Sato, K.: Photocatalysts with tunnel structures for decomposition of water. 1. BaTi4O9, a pentagonal prism tunnel structure, and its combination with various promoters. J. Chem. Soc. Faraday Trans. 90, 797–802 (1994)CrossRef
42.
Zurück zum Zitat Sato, J., Saito, N., Yamada, Y., Maeda, K., Takata, T., Kondo, J.N., Hara, M., Kobayashi, H., Domen, K., Inoue, Y.: RuO2-loaded beta-Ge3N4 as a non-oxide photocatalyst for overall water splitting. J. Am. Chem. Soc. 127, 4150–4151 (2005)CrossRef Sato, J., Saito, N., Yamada, Y., Maeda, K., Takata, T., Kondo, J.N., Hara, M., Kobayashi, H., Domen, K., Inoue, Y.: RuO2-loaded beta-Ge3N4 as a non-oxide photocatalyst for overall water splitting. J. Am. Chem. Soc. 127, 4150–4151 (2005)CrossRef
43.
Zurück zum Zitat Kanan, M.W., Nocera, D.G.: In situ formation of an oxygen-evolving catalyst in neutral water containing phosphate and Co2+. Science 321, 1072–1075 (2008)CrossRef Kanan, M.W., Nocera, D.G.: In situ formation of an oxygen-evolving catalyst in neutral water containing phosphate and Co2+. Science 321, 1072–1075 (2008)CrossRef
44.
Zurück zum Zitat Peter, L.M., Li, J., Peat, R.: Surface recombination at semiconductor electrodes. 1. Transient and steady-state photocurrents. J. Electroanal. Chem. 165, 29–40 (1984)CrossRef Peter, L.M., Li, J., Peat, R.: Surface recombination at semiconductor electrodes. 1. Transient and steady-state photocurrents. J. Electroanal. Chem. 165, 29–40 (1984)CrossRef
45.
Zurück zum Zitat Salvador, P., Gutierrez, C.: Analysis of the transient photocurrent time behavior of a sintered n-SrTiO3 electrode in water photoelectrolysis. J. Electroanal. Chem. 160, 117–130 (1984)CrossRef Salvador, P., Gutierrez, C.: Analysis of the transient photocurrent time behavior of a sintered n-SrTiO3 electrode in water photoelectrolysis. J. Electroanal. Chem. 160, 117–130 (1984)CrossRef
46.
Zurück zum Zitat Abdi, F.F., van de Krol, R.: Efficient cobalt phosphate-catalyzed BiVO4 photoanodes for photoelectrochemical water splitting (Submitted) Abdi, F.F., van de Krol, R.: Efficient cobalt phosphate-catalyzed BiVO4 photoanodes for photoelectrochemical water splitting (Submitted)
47.
Zurück zum Zitat Bisquert, J., Garcia-Belmonte, G., Fabregat-Santiago, F., Ferriols, N.S., Bogdanoff, P., Pereira, E.C.: Doubling exponent models for the analysis of porous film electrodes by impedance. Relaxation of TiO2 nanoporous in aqueous solution. J. Phys. Chem. B 104, 2287–2298 (2000) Bisquert, J., Garcia-Belmonte, G., Fabregat-Santiago, F., Ferriols, N.S., Bogdanoff, P., Pereira, E.C.: Doubling exponent models for the analysis of porous film electrodes by impedance. Relaxation of TiO2 nanoporous in aqueous solution. J. Phys. Chem. B 104, 2287–2298 (2000)
48.
Zurück zum Zitat MacDonald, J.R.: Impedance Spectroscopy: Emphasizing Solid Materials and Systems. Wiley-Interscience, New York (1987) MacDonald, J.R.: Impedance Spectroscopy: Emphasizing Solid Materials and Systems. Wiley-Interscience, New York (1987)
49.
Zurück zum Zitat Orazem, M., Tribollet, B.: Electrochemical Impedance Spectroscopy. Wiley-Interscience, New York (2008)CrossRef Orazem, M., Tribollet, B.: Electrochemical Impedance Spectroscopy. Wiley-Interscience, New York (2008)CrossRef
50.
Zurück zum Zitat Van de Krol, R., Goossens, A., Schoonman, J.: Mott–Schottky analysis of nanometer-scale thin-film anatase TiO2. J. Electrochem. Soc. 144, 1723–1727 (1997)CrossRef Van de Krol, R., Goossens, A., Schoonman, J.: Mott–Schottky analysis of nanometer-scale thin-film anatase TiO2. J. Electrochem. Soc. 144, 1723–1727 (1997)CrossRef
51.
Zurück zum Zitat Van de Krol, R., Goossens, A., Schoonman, J.: Mott–Schottky analysis of nanometer-scale thin-film anatase TiO2 (Erratum vol. 144, pg 1723, 1997). J. Electrochem. Soc. 145, 3697–3697 (1998)CrossRef Van de Krol, R., Goossens, A., Schoonman, J.: Mott–Schottky analysis of nanometer-scale thin-film anatase TiO2 (Erratum vol. 144, pg 1723, 1997). J. Electrochem. Soc. 145, 3697–3697 (1998)CrossRef
52.
Zurück zum Zitat Gomes, W.P., Cardon, F.: Electron-energy levels in semiconductor electrochemistry. Prog. Surf. Sci. 12, 155–215 (1982)CrossRef Gomes, W.P., Cardon, F.: Electron-energy levels in semiconductor electrochemistry. Prog. Surf. Sci. 12, 155–215 (1982)CrossRef
53.
Zurück zum Zitat Morrison, S.R.: Electrochemistry of Semiconductor and Oxidized Metal Electrodes. Plenum, New York (1980)CrossRef Morrison, S.R.: Electrochemistry of Semiconductor and Oxidized Metal Electrodes. Plenum, New York (1980)CrossRef
54.
Zurück zum Zitat Goossens, A., Schoonman, J.: The impedance of surface recombination at illuminated semiconductor electrodes – a nonequilibrium approach. J. Electroanal. Chem. 289, 11–27 (1990)CrossRef Goossens, A., Schoonman, J.: The impedance of surface recombination at illuminated semiconductor electrodes – a nonequilibrium approach. J. Electroanal. Chem. 289, 11–27 (1990)CrossRef
55.
Zurück zum Zitat Enache, C.S., Lloyd, D., Damen, M.R., Schoonman, J., Van de Krol, R.: Photo-electrochemical properties of thin-film InVO4 photoanodes: the role of deep donor states. J. Phys. Chem. C 113, 19351–19360 (2009)CrossRef Enache, C.S., Lloyd, D., Damen, M.R., Schoonman, J., Van de Krol, R.: Photo-electrochemical properties of thin-film InVO4 photoanodes: the role of deep donor states. J. Phys. Chem. C 113, 19351–19360 (2009)CrossRef
56.
Zurück zum Zitat Bisquert, J., Grätzel, M., Wang, Q., Fabregat-Santiago, F.: Three-channel transmission line impedance model for mesoscopic oxide electrodes functionalized with a conductive coating. J. Phys. Chem. B 110, 11284–11290 (2006)CrossRef Bisquert, J., Grätzel, M., Wang, Q., Fabregat-Santiago, F.: Three-channel transmission line impedance model for mesoscopic oxide electrodes functionalized with a conductive coating. J. Phys. Chem. B 110, 11284–11290 (2006)CrossRef
57.
Zurück zum Zitat Cesar, I., Sivula, K., Kay, A., Zboril, R., Grätzel, M.: Influence of feature size, film thickness, and silicon doping on the performance of nanostructured hematite photoanodes for solar water splitting. J. Phys. Chem. C 113, 772–782 (2009)CrossRef Cesar, I., Sivula, K., Kay, A., Zboril, R., Grätzel, M.: Influence of feature size, film thickness, and silicon doping on the performance of nanostructured hematite photoanodes for solar water splitting. J. Phys. Chem. C 113, 772–782 (2009)CrossRef
58.
Zurück zum Zitat Schoonman, J., Vos, K., Blasse, G.: Donor densities in TiO2 photoelectrodes. J. Electrochem. Soc. 128, 1154–1157 (1981)CrossRef Schoonman, J., Vos, K., Blasse, G.: Donor densities in TiO2 photoelectrodes. J. Electrochem. Soc. 128, 1154–1157 (1981)CrossRef
59.
Zurück zum Zitat Hsu, C.H., Mansfeld, F.: Technical note: concerning the conversion of the constant phase element parameter Y0 into a capacitance. Corrosion 57, 747–748 (2001)CrossRef Hsu, C.H., Mansfeld, F.: Technical note: concerning the conversion of the constant phase element parameter Y0 into a capacitance. Corrosion 57, 747–748 (2001)CrossRef
60.
Zurück zum Zitat Dutoit, E.C., VanMeirhaeghe, R.L., Cardon, F., Gomes, W.P.: Investigation on frequency-dependence of impedance of nearly ideally polarizable semiconductor electrodes CdSe, CdS and TiO2. Ber. Bunsenges. Phys. Chem. 79, 1206–1213 (1975) Dutoit, E.C., VanMeirhaeghe, R.L., Cardon, F., Gomes, W.P.: Investigation on frequency-dependence of impedance of nearly ideally polarizable semiconductor electrodes CdSe, CdS and TiO2. Ber. Bunsenges. Phys. Chem. 79, 1206–1213 (1975)
61.
Zurück zum Zitat Oskam, G., Vanmaekelbergh, D., Kelly, J.J.: A reappraisal of the frequency-dependence of the impedance of semiconductor electrodes. J. Electroanal. Chem. 315, 65–85 (1991)CrossRef Oskam, G., Vanmaekelbergh, D., Kelly, J.J.: A reappraisal of the frequency-dependence of the impedance of semiconductor electrodes. J. Electroanal. Chem. 315, 65–85 (1991)CrossRef
Metadaten
Titel
Photoelectrochemical Measurements
verfasst von
Roel van de Krol
Copyright-Jahr
2012
Verlag
Springer US
DOI
https://doi.org/10.1007/978-1-4614-1380-6_3