Skip to main content
Erschienen in: Journal of Materials Science: Materials in Electronics 12/2017

04.03.2017

Physical and mechanical properties of SiC-CNTs nano-composites produced by a rapid microwave process

verfasst von: Mohammad Hajiaboutalebi, Masoud Rajabi, Omid Khanali

Erschienen in: Journal of Materials Science: Materials in Electronics | Ausgabe 12/2017

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this paper, synthesis of SiC-CNTs nano-composites at low temperature by a microwave process is reported. The physical and mechanical properties of SiC based nano-composites reinforced with different amounts of carbon nanotubes (CNTs) (0, 0.5, 2, 5 and 10 vol%) were studied. The characterization of the nano-composites was carried out by means of FE-SEM, XRD, hardness, bending strength, electrical and thermal conductivity tests. The fracture toughness was tested using a Palmquist method. Results show that the hardness of nano-composite sample in 0.5 vol% of CNTs increases of about 24% compared to pure SiC sample. Also three-point bending strength and fracture toughness of the SiC-CNTs nano-composites using 0.5 vol% of CNTs increase of about 10% compared to the pure SiC sample which was produced under the same process. The electrical conductivity of the SiC-CNTs nano-composites had a tendency to decline with increasing volume fraction of the reinforcing material due to the CNT clusters and larger grain-boundary per unit volume, resulting in lower carrier mobility.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat R.R. Naslain, SiC-matrix composites: nonbrittle ceramics for thermo-structural application. Int. J. Appl. Ceram. Technol. 2(2), 75–84 (2005)CrossRef R.R. Naslain, SiC-matrix composites: nonbrittle ceramics for thermo-structural application. Int. J. Appl. Ceram. Technol. 2(2), 75–84 (2005)CrossRef
2.
Zurück zum Zitat W.-J. Kim, D. Kim, J.Y. Park, Fabrication and material issues for the application of SiC composites to LWR fuel cladding. Nuclear Eng. Technol. 45(4), 565–572 (2013)CrossRef W.-J. Kim, D. Kim, J.Y. Park, Fabrication and material issues for the application of SiC composites to LWR fuel cladding. Nuclear Eng. Technol. 45(4), 565–572 (2013)CrossRef
3.
Zurück zum Zitat J. Fan, P.K.-H. Chu, Silicon Carbide Nanostructures: Fabrication, Structure. (Springer, New York, 2014)CrossRef J. Fan, P.K.-H. Chu, Silicon Carbide Nanostructures: Fabrication, Structure. (Springer, New York, 2014)CrossRef
4.
Zurück zum Zitat B. Wang, Y. Wang, Y. Lei, N. Wu, Y. Gou, C. Han, D. Fang, Hierarchically porous SiC ultrathin fibers mat with enhanced mass transport, amphipathic property and high-temperature erosion resistance. J. Mater. Chem. A 2(48), 20873–20881 (2014)CrossRef B. Wang, Y. Wang, Y. Lei, N. Wu, Y. Gou, C. Han, D. Fang, Hierarchically porous SiC ultrathin fibers mat with enhanced mass transport, amphipathic property and high-temperature erosion resistance. J. Mater. Chem. A 2(48), 20873–20881 (2014)CrossRef
5.
Zurück zum Zitat R. Wu, K. Zhou, C.Y. Yue, J. Wei, Y. Pan, Recent progress in synthesis, properties and potential applications of SiC nanomaterials. Prog. Mater. Sci. 72, 1–60 (2015)CrossRef R. Wu, K. Zhou, C.Y. Yue, J. Wei, Y. Pan, Recent progress in synthesis, properties and potential applications of SiC nanomaterials. Prog. Mater. Sci. 72, 1–60 (2015)CrossRef
6.
Zurück zum Zitat S. Ghadami, H. Baharvandi, F. Ghadami, Influence of the vol% SiC on properties of pressureless Al2 O3/SiC nanocomposites. J. Compos. Mater. 50(10), 1367–1375 (2016) CrossRef S. Ghadami, H. Baharvandi, F. Ghadami, Influence of the vol% SiC on properties of pressureless Al2 O3/SiC nanocomposites. J. Compos. Mater. 50(10), 1367–1375 (2016) CrossRef
7.
Zurück zum Zitat K.A. Terrani, J. Kiggans, C.M. Silva, C. Shih, Y. Katoh, L.L. Snead, Progress on matrix SiC processing and properties for fully ceramic microencapsulated fuel form. J. Nucl. Mater. 457, 9–17 (2015)CrossRef K.A. Terrani, J. Kiggans, C.M. Silva, C. Shih, Y. Katoh, L.L. Snead, Progress on matrix SiC processing and properties for fully ceramic microencapsulated fuel form. J. Nucl. Mater. 457, 9–17 (2015)CrossRef
8.
Zurück zum Zitat Y. Liu, F. Luo, J. Su, W. Zhou, D. Zhu, Z. Li, Enhanced mechanical, dielectric and microwave absorption properties of cordierite based ceramics by adding Ti3SiC2 powders. J. Alloys Compd. 619, 854–860 (2015)CrossRef Y. Liu, F. Luo, J. Su, W. Zhou, D. Zhu, Z. Li, Enhanced mechanical, dielectric and microwave absorption properties of cordierite based ceramics by adding Ti3SiC2 powders. J. Alloys Compd. 619, 854–860 (2015)CrossRef
9.
Zurück zum Zitat A. Agarwal, S.R. Bakshi, D. Lahiri, Carbon Nanotubes: Reinforced Metal Matrix Composites. (CRC Press, Boca Raton, 2016) A. Agarwal, S.R. Bakshi, D. Lahiri, Carbon Nanotubes: Reinforced Metal Matrix Composites. (CRC Press, Boca Raton, 2016)
10.
Zurück zum Zitat H. Sun, X. You, J. Deng, X. Chen, Z. Yang, J. Ren, H. Peng, Novel graphene/carbon nanotube composite fibers for efficient wire-shaped miniature energy devices. Adv. Mater. 26(18), 2868–2873 (2014)CrossRef H. Sun, X. You, J. Deng, X. Chen, Z. Yang, J. Ren, H. Peng, Novel graphene/carbon nanotube composite fibers for efficient wire-shaped miniature energy devices. Adv. Mater. 26(18), 2868–2873 (2014)CrossRef
11.
Zurück zum Zitat Y. Yan, J. Miao, Z. Yang, F.-X. Xiao, H.B. Yang, B. Liu, Y. Yang, Carbon nanotube catalysts: recent advances in synthesis, characterization and applications. Chem. Soc. Rev. 44(10), 3295–3346 (2015)CrossRef Y. Yan, J. Miao, Z. Yang, F.-X. Xiao, H.B. Yang, B. Liu, Y. Yang, Carbon nanotube catalysts: recent advances in synthesis, characterization and applications. Chem. Soc. Rev. 44(10), 3295–3346 (2015)CrossRef
12.
Zurück zum Zitat Q. Wang, B. Arash, A review on applications of carbon nanotubes and graphenes as nano-resonator sensors. Comput. Mater. Sci. 82, 350–360 (2014)CrossRef Q. Wang, B. Arash, A review on applications of carbon nanotubes and graphenes as nano-resonator sensors. Comput. Mater. Sci. 82, 350–360 (2014)CrossRef
13.
Zurück zum Zitat S. Zhao, X. Zhou, J. Yu, P. Mummery, SiC/SiC composite fabricated with carbon nanotube interface layer and a novel precursor LPVCS. Fusion Eng. Des. 89(2), 131–136 (2014)CrossRef S. Zhao, X. Zhou, J. Yu, P. Mummery, SiC/SiC composite fabricated with carbon nanotube interface layer and a novel precursor LPVCS. Fusion Eng. Des. 89(2), 131–136 (2014)CrossRef
14.
Zurück zum Zitat Q. Li, X. Yin, L. Zhang, L. Cheng, Effects of SiC fibers on microwave absorption and electromagnetic interference shielding properties of SiC f/SiCN composites. Ceram. Int. 42(16), 19237–19244 (2016) CrossRef Q. Li, X. Yin, L. Zhang, L. Cheng, Effects of SiC fibers on microwave absorption and electromagnetic interference shielding properties of SiC f/SiCN composites. Ceram. Int. 42(16), 19237–19244 (2016)  CrossRef
16.
Zurück zum Zitat W. Duan, X. Yin, Q. Li, X. Liu, L. Cheng, L. Zhang, Synthesis and microwave absorption properties of SiC nanowires reinforced SiOC ceramic. J. Eur. Ceram. Soc. 34(2), 257–266 (2014)CrossRef W. Duan, X. Yin, Q. Li, X. Liu, L. Cheng, L. Zhang, Synthesis and microwave absorption properties of SiC nanowires reinforced SiOC ceramic. J. Eur. Ceram. Soc. 34(2), 257–266 (2014)CrossRef
17.
Zurück zum Zitat M. Li, X. Yin, G. Zheng, M. Chen, M. Tao, L. Cheng, L. Zhang, High-temperature dielectric and microwave absorption properties of Si3 N4–SiC/SiO2 composite ceramics. J. Mater. Sci. 50(3), 1478–1487 (2015)CrossRef M. Li, X. Yin, G. Zheng, M. Chen, M. Tao, L. Cheng, L. Zhang, High-temperature dielectric and microwave absorption properties of Si3 N4–SiC/SiO2 composite ceramics. J. Mater. Sci. 50(3), 1478–1487 (2015)CrossRef
18.
Zurück zum Zitat A.D. Akinwekomi, W.-C. Law, C.-Y. Tang, L. Chen, C.-P. Tsui, Rapid microwave sintering of carbon nanotube-filled AZ61 magnesium alloy composites. Compos. Part B Eng. 93, 302–309 (2016)CrossRef A.D. Akinwekomi, W.-C. Law, C.-Y. Tang, L. Chen, C.-P. Tsui, Rapid microwave sintering of carbon nanotube-filled AZ61 magnesium alloy composites. Compos. Part B Eng. 93, 302–309 (2016)CrossRef
19.
Zurück zum Zitat R. Wu, Z. Yang, M. Fu, K. Zhou, In situ growth of SiC nanowire arrays on carbon fibers and their microwave absorption properties. J. Alloys Compd. 687, 833–838 (2016)CrossRef R. Wu, Z. Yang, M. Fu, K. Zhou, In situ growth of SiC nanowire arrays on carbon fibers and their microwave absorption properties. J. Alloys Compd. 687, 833–838 (2016)CrossRef
20.
Zurück zum Zitat H. Mei, H. Wang, N. Zhang, H. Ding, Y. Wang, Q. Bai, Carbon nanotubes introduced in different phases of C/PyC/SiC composites: effect on microstructure and properties of the materials. Compos. Sci. Technol. 115, 28–33 (2015)CrossRef H. Mei, H. Wang, N. Zhang, H. Ding, Y. Wang, Q. Bai, Carbon nanotubes introduced in different phases of C/PyC/SiC composites: effect on microstructure and properties of the materials. Compos. Sci. Technol. 115, 28–33 (2015)CrossRef
21.
Zurück zum Zitat C.-H. Peng, P.S. Chen, C.-C. Chang, High-temperature microwave bilayer absorber based on lithium aluminum silicate/lithium aluminum silicate-SiC composite. Ceram. Int. 40(1), 47–55 (2014) C.-H. Peng, P.S. Chen, C.-C. Chang, High-temperature microwave bilayer absorber based on lithium aluminum silicate/lithium aluminum silicate-SiC composite. Ceram. Int. 40(1), 47–55 (2014)  
22.
Zurück zum Zitat S. Han, R. Rosa, V. Casalegno, M. Salvo, P. Veronesi, M. Ferraris, C. Leonelli, Microwave assisted self-propagating high-temperature synthesis for joining SiC ceramics and SiC/SiC composites by Ni–Al system. Appl. Mech. Mater. 727–728, 213–218 (2014) S. Han, R. Rosa, V. Casalegno, M. Salvo, P. Veronesi, M. Ferraris, C. Leonelli, Microwave assisted self-propagating high-temperature synthesis for joining SiC ceramics and SiC/SiC composites by Ni–Al system. Appl. Mech. Mater. 727–728, 213–218 (2014)
23.
Zurück zum Zitat J. Xu, F. Chen, F. Tan, In situ preparation of SiC–MoSi2 composite by microwave reaction sintering. Ceram. Int. 38(8), 6895–6898 (2012)CrossRef J. Xu, F. Chen, F. Tan, In situ preparation of SiC–MoSi2 composite by microwave reaction sintering. Ceram. Int. 38(8), 6895–6898 (2012)CrossRef
24.
Zurück zum Zitat F. Chen, J. Xu, Z. Hou, In situ pressureless sintering of SiC/MoSi2 composites. Ceram. Int. 38(4), 2767–2772 (2012)CrossRef F. Chen, J. Xu, Z. Hou, In situ pressureless sintering of SiC/MoSi2 composites. Ceram. Int. 38(4), 2767–2772 (2012)CrossRef
25.
Zurück zum Zitat I. Ganesh, R. Johnson, G. Rao, Y. Mahajan, S. Madavendra, B. Reddy, Microwave-assisted combustion synthesis of nanocrystalline MgAl2O4 spinel powder. Ceram. Int. 31(1), 67–74 (2005)CrossRef I. Ganesh, R. Johnson, G. Rao, Y. Mahajan, S. Madavendra, B. Reddy, Microwave-assisted combustion synthesis of nanocrystalline MgAl2O4 spinel powder. Ceram. Int. 31(1), 67–74 (2005)CrossRef
26.
Zurück zum Zitat M. Rajabi, M.M. Khodai, N. Askari, Microwave-assisted sintering of Al–ZrO2 nano-composites, J. Mater. Sci. Mater. Electron. 25, 4577–4584 (2014)CrossRef M. Rajabi, M.M. Khodai, N. Askari, Microwave-assisted sintering of Al–ZrO2 nano-composites, J. Mater. Sci. Mater. Electron. 25, 4577–4584 (2014)CrossRef
27.
Zurück zum Zitat Z. Asadipanah, M. Rajabi, Production of Al–ZrB2 nano-composites by microwave sintering process. J. Mater. Sci. Mater. Electron. 26(no. 8), 6148–6156 (2015)CrossRef Z. Asadipanah, M. Rajabi, Production of Al–ZrB2 nano-composites by microwave sintering process. J. Mater. Sci. Mater. Electron. 26(no. 8), 6148–6156 (2015)CrossRef
28.
Zurück zum Zitat A. yarahmadi, M.T. Noghani, M. Rajabi, Effect of carbon nanotube (CNT) content and double-pressing double-sintering (DPDS) method on the tensile strength and bending strength behavior of CNT-reinforced aluminum composites. J. Mater. Res. 31(24), 3860–3868 (2016) A. yarahmadi, M.T. Noghani, M. Rajabi, Effect of carbon nanotube (CNT) content and double-pressing double-sintering (DPDS) method on the tensile strength and bending strength behavior of CNT-reinforced aluminum composites. J. Mater. Res. 31(24), 3860–3868 (2016)
29.
Zurück zum Zitat S. Palmquist, Energy causing cracks at corners of vickers indentations as measure of toughness of hard materials. Archiv fuer das Eisenhuettenwes 33, 629–634 (1962)CrossRef S. Palmquist, Energy causing cracks at corners of vickers indentations as measure of toughness of hard materials. Archiv fuer das Eisenhuettenwes 33, 629–634 (1962)CrossRef
30.
Zurück zum Zitat V.M. Candelario, R. Moreno, Z. Shen, A.L. Ortiz, Aqueous colloidal processing of nano-SiC and its nano-Y3 Al5 O12 liquid-phase sintering additives with carbon nanotubes. J. Eur. Ceram. Soc. 35(13), 3363–3368 (2015)CrossRef V.M. Candelario, R. Moreno, Z. Shen, A.L. Ortiz, Aqueous colloidal processing of nano-SiC and its nano-Y3 Al5 O12 liquid-phase sintering additives with carbon nanotubes. J. Eur. Ceram. Soc. 35(13), 3363–3368 (2015)CrossRef
31.
Zurück zum Zitat T.A. Carlson, Processing, Microstructure, and Properties of Carbon Nanotube and Silicon Carbide Composites. (University of Illinois, Champaign, 2013) T.A. Carlson, Processing, Microstructure, and Properties of Carbon Nanotube and Silicon Carbide Composites. (University of Illinois, Champaign, 2013)
32.
Zurück zum Zitat N. Song, H. Liu, J. Fang, Fabrication and mechanical properties of multi-walled carbon nanotube reinforced reaction bonded silicon carbide composites. Ceram. Int. 42(1), 351–356 (2016)CrossRef N. Song, H. Liu, J. Fang, Fabrication and mechanical properties of multi-walled carbon nanotube reinforced reaction bonded silicon carbide composites. Ceram. Int. 42(1), 351–356 (2016)CrossRef
33.
Zurück zum Zitat B. Yazdani, Y. Xia, I. Ahmad, Y. Zhu, Graphene and carbon nanotube (GNT)-reinforced alumina nanocomposites. J. Eur. Ceram. Soc. 35(1), 179–186 (2015)CrossRef B. Yazdani, Y. Xia, I. Ahmad, Y. Zhu, Graphene and carbon nanotube (GNT)-reinforced alumina nanocomposites. J. Eur. Ceram. Soc. 35(1), 179–186 (2015)CrossRef
34.
Zurück zum Zitat K. Ahmad, W. Pan, Microstructure-toughening relation in alumina based multiwall carbon nanotube ceramic composites. J. Eur. Ceram. Soc. 35(2), 663–671 (2015)CrossRef K. Ahmad, W. Pan, Microstructure-toughening relation in alumina based multiwall carbon nanotube ceramic composites. J. Eur. Ceram. Soc. 35(2), 663–671 (2015)CrossRef
35.
Zurück zum Zitat M.S. Asl, I. Farahbakhsh, B. Nayebi, Characteristics of multi-walled carbon nanotube toughened ZrB2–SiC ceramic composite prepared by hot pressing. Ceram. Int. 42(1), 1950–1958 (2016)CrossRef M.S. Asl, I. Farahbakhsh, B. Nayebi, Characteristics of multi-walled carbon nanotube toughened ZrB2–SiC ceramic composite prepared by hot pressing. Ceram. Int. 42(1), 1950–1958 (2016)CrossRef
36.
Zurück zum Zitat S. Li, Y. Zhang, J. Han, Y. Zhou, Effect of carbon particle and carbon fiber on the microstructure and mechanical properties of short fiber reinforced reaction bonded silicon carbide composite. J. Eur. Ceram. Soc. 33(4), 887–896 (2013)CrossRef S. Li, Y. Zhang, J. Han, Y. Zhou, Effect of carbon particle and carbon fiber on the microstructure and mechanical properties of short fiber reinforced reaction bonded silicon carbide composite. J. Eur. Ceram. Soc. 33(4), 887–896 (2013)CrossRef
37.
Zurück zum Zitat S. Pasupuleti, R. Peddetti, S. Santhanam, K.-P. Jen, Z.N. Wing, M. Hecht, J.P. Halloran, Toughening behavior in a carbon nanotube reinforced silicon nitride composite. Mater. Sci. Eng. A 491(1), 224–229 (2008)CrossRef S. Pasupuleti, R. Peddetti, S. Santhanam, K.-P. Jen, Z.N. Wing, M. Hecht, J.P. Halloran, Toughening behavior in a carbon nanotube reinforced silicon nitride composite. Mater. Sci. Eng. A 491(1), 224–229 (2008)CrossRef
38.
Zurück zum Zitat J. Lee, S. Lee, K. Cho, J. Byun, D. Bae, Characterization of SiC f/SiC and CNT/SiC composite materials produced by liquid phase sintering. J. Nucl. Mater. 417(1), 371–374 (2011)CrossRef J. Lee, S. Lee, K. Cho, J. Byun, D. Bae, Characterization of SiC f/SiC and CNT/SiC composite materials produced by liquid phase sintering. J. Nucl. Mater. 417(1), 371–374 (2011)CrossRef
39.
Zurück zum Zitat B. Román-Manso, E. Domingues, F.M. Figueiredo, M. Belmonte, P. Miranzo, Enhanced electrical conductivity of silicon carbide ceramics by addition of graphene nanoplatelets. J. Eur. Ceram. Soc. 35(10), 2723–2731 (2015)CrossRef B. Román-Manso, E. Domingues, F.M. Figueiredo, M. Belmonte, P. Miranzo, Enhanced electrical conductivity of silicon carbide ceramics by addition of graphene nanoplatelets. J. Eur. Ceram. Soc. 35(10), 2723–2731 (2015)CrossRef
40.
Zurück zum Zitat Y. Pan, P. Zhu, X. Wang, S. Li, Preparation and characterization of one-dimensional SiC-CNT composite nanotubes. Diamond Relat. Mater. 20(3), 310–313 (2011)CrossRef Y. Pan, P. Zhu, X. Wang, S. Li, Preparation and characterization of one-dimensional SiC-CNT composite nanotubes. Diamond Relat. Mater. 20(3), 310–313 (2011)CrossRef
41.
Zurück zum Zitat Z. Hu, S. Dong, J. Hu, B. Lu, Fabrication and properties analysis of C f-CNT/SiC composite. Ceram. Int. 39(2), 2147–2152 (2013)CrossRef Z. Hu, S. Dong, J. Hu, B. Lu, Fabrication and properties analysis of C f-CNT/SiC composite. Ceram. Int. 39(2), 2147–2152 (2013)CrossRef
42.
Zurück zum Zitat K. Rajkumar, S. Aravindan, Tribological studies on microwave sintered copper–carbon nanotube composites. Wear 270(9), 613–621 (2011)CrossRef K. Rajkumar, S. Aravindan, Tribological studies on microwave sintered copper–carbon nanotube composites. Wear 270(9), 613–621 (2011)CrossRef
43.
Zurück zum Zitat Y. Wang, Z. Iqbal, S. Mitra, Rapid, low temperature microwave synthesis of novel carbon nanotube–silicon carbide composite. Carbon 44(13), 2804–2808 (2006)CrossRef Y. Wang, Z. Iqbal, S. Mitra, Rapid, low temperature microwave synthesis of novel carbon nanotube–silicon carbide composite. Carbon 44(13), 2804–2808 (2006)CrossRef
44.
Zurück zum Zitat S. Bi, L. Ma, B. Mei, Q. Tian, C. Liu, C. Zhong, Y. Xiao, Silicon carbide/carbon nanotube heterostructures: controllable synthesis, dielectric properties and microwave absorption. Adv. Powder Technol. 25(4), 1273–1279 (2014)CrossRef S. Bi, L. Ma, B. Mei, Q. Tian, C. Liu, C. Zhong, Y. Xiao, Silicon carbide/carbon nanotube heterostructures: controllable synthesis, dielectric properties and microwave absorption. Adv. Powder Technol. 25(4), 1273–1279 (2014)CrossRef
Metadaten
Titel
Physical and mechanical properties of SiC-CNTs nano-composites produced by a rapid microwave process
verfasst von
Mohammad Hajiaboutalebi
Masoud Rajabi
Omid Khanali
Publikationsdatum
04.03.2017
Verlag
Springer US
Erschienen in
Journal of Materials Science: Materials in Electronics / Ausgabe 12/2017
Print ISSN: 0957-4522
Elektronische ISSN: 1573-482X
DOI
https://doi.org/10.1007/s10854-017-6629-8

Weitere Artikel der Ausgabe 12/2017

Journal of Materials Science: Materials in Electronics 12/2017 Zur Ausgabe

Neuer Inhalt