Skip to main content

2022 | OriginalPaper | Buchkapitel

6. Physik der Windparks

verfasst von : Stefan Emeis

Erschienen in: Windenergie Meteorologie

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Zusammenfassung

Die Beurteilung der meteorologischen Bedingungen in Windparks bedarf einer besonderen Behandlung, da hier die Anströmung der meisten Anlagen im Parkinneren nicht mehr ungestört ist. Die von den windaufwärts stehenden Turbinen erzeugten Wirbel können die windabwärts stehenden Turbinen massiv beeinflussen. Eine spezielle räumliche Anordnung der Turbinen in kleineren Windparks in Bezug auf die mittlere Windrichtung kann dazu beitragen, die Nachlauf-Turbinen-Interaktionen zu minimieren. Bei größeren Windparks sind jedoch Nachlauf-Turbinen-Interaktionen im Parkinneren unvermeidlich, und das Verhältnis zwischen mittlerem Turbinenabstand und Rotordurchmesser wird zum Hauptparameter, der die Parkeffizienz bestimmt.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Fußnoten
1
Der Schubkoeffizient ist das Verhältnis zwischen der Widerstandskraft T und der dynamischen Kraft 0,5u20 D (Rotorfläche D). Die Widerstandskraft einer idealen Turbine ist gegeben durch T = 0,5u0 2A[4r(1 – r)] mit r = (u0u*h)/u0. u*h ist der Mittelwert von uh und u0. Wir haben u*h = u0 (1 – r). Somit ist CT = [4r(1 – r)]. Für uh = 0 ergibt sich u*h = 0,5u0, r = 0,5 und CT = 1. Für uh = u0 folgt u*h = u0, r = 0 und CT = 0. Der Ertrag ist P = Tu*h = 0,5u03 A[4r(1 – r)2 ] und der Ertragskoeffizient ist CP = [4r(1 – r)2 ]. Für die optimale Ausbeute an der Betz’schen Grenze ist r = 1/3 (berechnet aus ∂CP (r)/∂r = 0) und CT = 8/9 (Manwell et al. 2010)
 
Literatur
Zurück zum Zitat Barthelmie R.J., L.E. Jensen: Evaluation of wind farm efficiency and wind turbine wakes at the Nysted offshore wind farm. Wind Energy 13, 573–586 (2010)CrossRef Barthelmie R.J., L.E. Jensen: Evaluation of wind farm efficiency and wind turbine wakes at the Nysted offshore wind farm. Wind Energy 13, 573–586 (2010)CrossRef
Zurück zum Zitat Barthelmie, R.J., L. Folkerts, F.T. Ormel, P. Sanderhoff, P.J. Eecen, O. Stobbe, N.M. Nielsen: Offshore Wind Turbine Wakes Measured by Sodar. J. Atmos. Oceanogr. Technol. 20, 466–477 (2003)CrossRef Barthelmie, R.J., L. Folkerts, F.T. Ormel, P. Sanderhoff, P.J. Eecen, O. Stobbe, N.M. Nielsen: Offshore Wind Turbine Wakes Measured by Sodar. J. Atmos. Oceanogr. Technol. 20, 466–477 (2003)CrossRef
Zurück zum Zitat Barthelmie, R., Hansen O.F., Enevoldsen K., Højstrup J., Frandsen S., Pryor S., Larsen S.E., Motta M., and Sanderhoff P.: Ten Years of Meteorological Measurements for Offshore Wind Farms. J. Sol. Energy Eng. 127, 170–176 (2005)CrossRef Barthelmie, R., Hansen O.F., Enevoldsen K., Højstrup J., Frandsen S., Pryor S., Larsen S.E., Motta M., and Sanderhoff P.: Ten Years of Meteorological Measurements for Offshore Wind Farms. J. Sol. Energy Eng. 127, 170–176 (2005)CrossRef
Zurück zum Zitat Barthelmie, R., Frandsen, S.T., Rethore, P.E., Jensen, L.: Analysis of atmospheric impacts on the development of wind turbine wakes at the Nysted wind farm. Proc. Eur. Offshore Wind Conf. 2007, Berlin 4.-6.12.2007 (2007) Barthelmie, R., Frandsen, S.T., Rethore, P.E., Jensen, L.: Analysis of atmospheric impacts on the development of wind turbine wakes at the Nysted wind farm. Proc. Eur. Offshore Wind Conf. 2007, Berlin 4.-6.12.2007 (2007)
Zurück zum Zitat BDEW: Analyse und Bewertung von Möglichkeiten zur Weiterentwicklung des Regelenergiemarktes Strom. Grobkonzept – final. BDEW, Berlin (2015) BDEW: Analyse und Bewertung von Möglichkeiten zur Weiterentwicklung des Regelenergiemarktes Strom. Grobkonzept – final. BDEW, Berlin (2015)
Zurück zum Zitat Boettcher, M., P. Hoffmann, H.-J. Lenhart, K.H. Schlünzen, R. Schoetter: Influence of large offshore wind farms on North German climate. Meteorol. Z., 24, 465–480 (2015)CrossRef Boettcher, M., P. Hoffmann, H.-J. Lenhart, K.H. Schlünzen, R. Schoetter: Influence of large offshore wind farms on North German climate. Meteorol. Z., 24, 465–480 (2015)CrossRef
Zurück zum Zitat Bossanyi, E.A., Maclean C., Whittle G.E., Dunn P.D., Lipman N.H., Musgrove P.J.: The Efficiency of Wind Turbine Clusters. Proc. Third Intern. Symp. Wind Energy Systems, Lyngby (DK), August 26–29, 1980, 401–416 (1980) Bossanyi, E.A., Maclean C., Whittle G.E., Dunn P.D., Lipman N.H., Musgrove P.J.: The Efficiency of Wind Turbine Clusters. Proc. Third Intern. Symp. Wind Energy Systems, Lyngby (DK), August 26–29, 1980, 401–416 (1980)
Zurück zum Zitat Christiansen, M.B., Hasager, C.B.: Wake effects of large offshore wind farms identified from satellite SAR. Rem. Sens. Environ. 98, 251–268 (2005)CrossRef Christiansen, M.B., Hasager, C.B.: Wake effects of large offshore wind farms identified from satellite SAR. Rem. Sens. Environ. 98, 251–268 (2005)CrossRef
Zurück zum Zitat Crespo, A., Hernandez, J., Frandsen, S.: Survey of Modelling Methods for Wind Turbine Wakes and Wind Farms. Wind Energy 2, 1–24 (1999)CrossRef Crespo, A., Hernandez, J., Frandsen, S.: Survey of Modelling Methods for Wind Turbine Wakes and Wind Farms. Wind Energy 2, 1–24 (1999)CrossRef
Zurück zum Zitat Cutler, N., M. Kay, K. Jacka, T.S. Nielsen: Detecting, Categorizing and Forecasting Large Ramps in Wind Farm Power Output Using Meteorological Observations and WPPT. Wind Energy, 10, 453–470 (2007)CrossRef Cutler, N., M. Kay, K. Jacka, T.S. Nielsen: Detecting, Categorizing and Forecasting Large Ramps in Wind Farm Power Output Using Meteorological Observations and WPPT. Wind Energy, 10, 453–470 (2007)CrossRef
Zurück zum Zitat Dotzek, N., S. Emeis, C. Lefebvre, J. Gerpott: Waterspouts over the North and Baltic Seas: Observations and climatology, prediction and reporting. Meteorol. Z. 19, 115–129 (2010)CrossRef Dotzek, N., S. Emeis, C. Lefebvre, J. Gerpott: Waterspouts over the North and Baltic Seas: Observations and climatology, prediction and reporting. Meteorol. Z. 19, 115–129 (2010)CrossRef
Zurück zum Zitat Dotzek, N.: An updated estimate of tornado occurrence in Europe. – Atmos. Res. 67–68, 153–161 (2003) Dotzek, N.: An updated estimate of tornado occurrence in Europe. – Atmos. Res. 67–68, 153–161 (2003)
Zurück zum Zitat DuPont, B., Cagan, J., & Moriarty, P. An advanced modeling system for optimization of wind farm layout and wind turbine sizing using a multi-level extended pattern search algorithm. Energy, 106, 802–814 (2016) DuPont, B., Cagan, J., & Moriarty, P. An advanced modeling system for optimization of wind farm layout and wind turbine sizing using a multi-level extended pattern search algorithm. Energy, 106, 802–814 (2016)
Zurück zum Zitat Elliot, D.L., J.C. Barnard: Observations of Wind Turbine Wakes and Surface Roughness Effects on Wind Flow Variability. Solar Energy, 45, 265–283 (1990)CrossRef Elliot, D.L., J.C. Barnard: Observations of Wind Turbine Wakes and Surface Roughness Effects on Wind Flow Variability. Solar Energy, 45, 265–283 (1990)CrossRef
Zurück zum Zitat Emeis, S.: A simple analytical wind park model considering atmospheric stability. Wind Energy 13, 459–469 (2010)CrossRef Emeis, S.: A simple analytical wind park model considering atmospheric stability. Wind Energy 13, 459–469 (2010)CrossRef
Zurück zum Zitat Emeis, S., S. Frandsen: Reduction of Horizontal Wind Speed in a Boundary Layer with Obstacles. Bound.-Lay. Meteorol. 64, 297–305 (1993)CrossRef Emeis, S., S. Frandsen: Reduction of Horizontal Wind Speed in a Boundary Layer with Obstacles. Bound.-Lay. Meteorol. 64, 297–305 (1993)CrossRef
Zurück zum Zitat Emeis, S., S. Siedersleben, A. Lampert, A. Platis, J. Bange, B. Djath, J. Schulz-Stellenfleth, T. Neumann: Exploring the wakes of large offshore wind farms. Journal of Physics: Conference Series, 753, 092014 (11 pp.) (2016) Emeis, S., S. Siedersleben, A. Lampert, A. Platis, J. Bange, B. Djath, J. Schulz-Stellenfleth, T. Neumann: Exploring the wakes of large offshore wind farms. Journal of Physics: Conference Series, 753, 092014 (11 pp.) (2016)
Zurück zum Zitat Fitch, A. C., J. B. Olson, J. K. Lundquist, J. Dudhia, A. K. Gupta, J. Michalakes, and I. Barstad: Local and Mesoscale Impacts of Wind Farms as Parameterized in a Mesoscale NWP Model. Mon. Wea. Rev., 140, 3017–3038 (2012)CrossRef Fitch, A. C., J. B. Olson, J. K. Lundquist, J. Dudhia, A. K. Gupta, J. Michalakes, and I. Barstad: Local and Mesoscale Impacts of Wind Farms as Parameterized in a Mesoscale NWP Model. Mon. Wea. Rev., 140, 3017–3038 (2012)CrossRef
Zurück zum Zitat Frandsen, S.: On the Wind Speed Reduction in the Center of Large Cluster of Wind Turbines. J. Wind Eng. Ind. Aerodyn. 39, 251–265 (1992)CrossRef Frandsen, S.: On the Wind Speed Reduction in the Center of Large Cluster of Wind Turbines. J. Wind Eng. Ind. Aerodyn. 39, 251–265 (1992)CrossRef
Zurück zum Zitat Frandsen, S.: Turbulence and turbulence generated structural loading in wind turbine clusters. Risø-R-1188(EN), 130 pp. (2007) Frandsen, S.: Turbulence and turbulence generated structural loading in wind turbine clusters. Risø-R-1188(EN), 130 pp. (2007)
Zurück zum Zitat Frandsen, S.T., Barthelmie, R.J., Pryor, S.C., Rathmann, O., Larsen, S., Højstrup, J., Thøgersen, M.: Analytical modelling of wind speed deficit in large offshore wind farms. Wind Energy 9, 39–53 (2006)CrossRef Frandsen, S.T., Barthelmie, R.J., Pryor, S.C., Rathmann, O., Larsen, S., Højstrup, J., Thøgersen, M.: Analytical modelling of wind speed deficit in large offshore wind farms. Wind Energy 9, 39–53 (2006)CrossRef
Zurück zum Zitat Frandsen, S., Jørgensen, H.E., Barthelmie, R., Rathmann, O., Badger, J., Hansen, K., Ott, S., Rethore, P.E., Larsen, S.E., Jensen, L.E.: The making of a second-generation wind farm efficiency model-complex. Wind Energy 12, 431–444 (2009)CrossRef Frandsen, S., Jørgensen, H.E., Barthelmie, R., Rathmann, O., Badger, J., Hansen, K., Ott, S., Rethore, P.E., Larsen, S.E., Jensen, L.E.: The making of a second-generation wind farm efficiency model-complex. Wind Energy 12, 431–444 (2009)CrossRef
Zurück zum Zitat Göçmen, T., P. van der Laan, P.-E. Réthoré, A. Peña Diaz, G.Chr. Larsen, S. Ott: Wind turbine wake models developed at the Technical University of Denmark: A review. Renewable and Sustainable Energy Reviews. 60, 752–769 (2016)CrossRef Göçmen, T., P. van der Laan, P.-E. Réthoré, A. Peña Diaz, G.Chr. Larsen, S. Ott: Wind turbine wake models developed at the Technical University of Denmark: A review. Renewable and Sustainable Energy Reviews. 60, 752–769 (2016)CrossRef
Zurück zum Zitat Koschmieder, H.: Über Böen und Tromben (On straight-line winds and tornadoes). Die Naturwiss. 34, 203–211, 235–238 (1946) [In German] Koschmieder, H.: Über Böen und Tromben (On straight-line winds and tornadoes). Die Naturwiss. 34, 203–211, 235–238 (1946) [In German]
Zurück zum Zitat Lissaman, P.B.S.: Energy Effectiveness of arbitrary arrays of wind turbines. AIAA paper 79–0114 (1979) Lissaman, P.B.S.: Energy Effectiveness of arbitrary arrays of wind turbines. AIAA paper 79–0114 (1979)
Zurück zum Zitat Magnusson, M.: Near-wake behaviour of wind turbines. J. Wind Eng. Ind. Aerodyn. 80, 147–167 (1999)CrossRef Magnusson, M.: Near-wake behaviour of wind turbines. J. Wind Eng. Ind. Aerodyn. 80, 147–167 (1999)CrossRef
Zurück zum Zitat Manwell, J.F., J.G. McGowan, A.L. Rogers: Wind Energy Explained: Theory, Design and Application. 2nd edition. John Wiley & Sons, Chichester. 689 pp. (2010) Manwell, J.F., J.G. McGowan, A.L. Rogers: Wind Energy Explained: Theory, Design and Application. 2nd edition. John Wiley & Sons, Chichester. 689 pp. (2010)
Zurück zum Zitat Newman, B.G.: The spacing of wind turbines in large arrays. J. Energy Conversion 16, 169–171 (1977)CrossRef Newman, B.G.: The spacing of wind turbines in large arrays. J. Energy Conversion 16, 169–171 (1977)CrossRef
Zurück zum Zitat Nygaard, N.G.: Wakes in very large wind farms and the effect of neighbouring wind farms. J. Phys. Conf. Ser., 524, 012162 (2014) Nygaard, N.G.: Wakes in very large wind farms and the effect of neighbouring wind farms. J. Phys. Conf. Ser., 524, 012162 (2014)
Zurück zum Zitat Peña, A., O. Rathmann: Atmospheric stability-dependent infinite wind-farm models and the wake-decay coefficient. Wind Energ. 17, 1269–1285 (2014)CrossRef Peña, A., O. Rathmann: Atmospheric stability-dependent infinite wind-farm models and the wake-decay coefficient. Wind Energ. 17, 1269–1285 (2014)CrossRef
Zurück zum Zitat Platis, A., S.K. Siedersleben, J. Bange, A. Lampert,, K. Bärfuss,, R. Hankers, B. Canadillas, R. Foreman, J. Schulz-Stellenfleth, B. Djath, T. Neumann, S. Emeis: First in situ evidence of wakes in the far field behind offshore wind farms. Scientific Reports, 8, 2163 (2018) Platis, A., S.K. Siedersleben, J. Bange, A. Lampert,, K. Bärfuss,, R. Hankers, B. Canadillas, R. Foreman, J. Schulz-Stellenfleth, B. Djath, T. Neumann, S. Emeis: First in situ evidence of wakes in the far field behind offshore wind farms. Scientific Reports, 8, 2163 (2018)
Zurück zum Zitat Quarton, D.C.: Characterization of wind turbine wake turbulence and its implications on wind farm spacing. Final Report ETSU WN 5096, Department of Energy of the UK. Garrad-Hassan Contract (1989) Quarton, D.C.: Characterization of wind turbine wake turbulence and its implications on wind farm spacing. Final Report ETSU WN 5096, Department of Energy of the UK. Garrad-Hassan Contract (1989)
Zurück zum Zitat Rodrigues, S., P. Bauer, P.A.N. Bosman: Multi-objective optimization of wind farm layouts – Complexity, constraint handling and scalability. Renew. Sust. Energ. Rev., 65, 587–609 (2016)CrossRef Rodrigues, S., P. Bauer, P.A.N. Bosman: Multi-objective optimization of wind farm layouts – Complexity, constraint handling and scalability. Renew. Sust. Energ. Rev., 65, 587–609 (2016)CrossRef
Zurück zum Zitat Siedersleben, S.K., A. Platis, J.K. Lundquist, A. Lampert, K. Bärfuss, B. Canadillas, B. Djath, J. Schulz-Stellenfleth, T. Neumann, J. Bange, S. Emeis: Evaluation of a Wind Farm Parametrization for Mesoscale Atmospheric 2 Flow Models with Aircraft Measurements. Meteorol. Z., submitted (2018) Siedersleben, S.K., A. Platis, J.K. Lundquist, A. Lampert, K. Bärfuss, B. Canadillas, B. Djath, J. Schulz-Stellenfleth, T. Neumann, J. Bange, S. Emeis: Evaluation of a Wind Farm Parametrization for Mesoscale Atmospheric 2 Flow Models with Aircraft Measurements. Meteorol. Z., submitted (2018)
Zurück zum Zitat Smith, R.B.: Gravity wave effects on wind farm efficiency. Wind Energy, 13, 449–458 (2010)CrossRef Smith, R.B.: Gravity wave effects on wind farm efficiency. Wind Energy, 13, 449–458 (2010)CrossRef
Zurück zum Zitat Steinfeld, G., Tambke, J., Peinke, J., Heinemann, D.: Application of a large-eddy simulation model to the analysis of flow conditions in offshore wind farms. Geophys. Res. Abstr. 12, EGU2010-8320 (2010) Steinfeld, G., Tambke, J., Peinke, J., Heinemann, D.: Application of a large-eddy simulation model to the analysis of flow conditions in offshore wind farms. Geophys. Res. Abstr. 12, EGU2010-8320 (2010)
Zurück zum Zitat Stevens, R. J., Martínez-Tossas, L. A., Meneveau, C. : Comparison of wind farm large eddy simulations using actuator disk and actuator line models with wind tunnel experiments. Renewable Energy, 116, 470–478 (2018)CrossRef Stevens, R. J., Martínez-Tossas, L. A., Meneveau, C. : Comparison of wind farm large eddy simulations using actuator disk and actuator line models with wind tunnel experiments. Renewable Energy, 116, 470–478 (2018)CrossRef
Zurück zum Zitat Thom, H.C.S.: Tornado probabilities. – Mon. Wea. Rev. 91, 730–736 (1963)CrossRef Thom, H.C.S.: Tornado probabilities. – Mon. Wea. Rev. 91, 730–736 (1963)CrossRef
Zurück zum Zitat Thomsen, K., P. Sørensen: Fatigue loads for wind turbines operating in wakes. Journal of Wind Engineering and Industrial Aerodynamics, 80, 121–136 (1999)CrossRef Thomsen, K., P. Sørensen: Fatigue loads for wind turbines operating in wakes. Journal of Wind Engineering and Industrial Aerodynamics, 80, 121–136 (1999)CrossRef
Zurück zum Zitat Troen, I., E.L. Petersen: European Wind Atlas. Risø National Laboratory, Roskilde, Denmark. 656 pp. (1989) Troen, I., E.L. Petersen: European Wind Atlas. Risø National Laboratory, Roskilde, Denmark. 656 pp. (1989)
Zurück zum Zitat Troldborg, N., J.N. Sørensen, R. Mikkelsen: Numerical simulations of wake characteristics of a wind turbine in uniform inflow. Wind Energy 13, 86–99 (2010)CrossRef Troldborg, N., J.N. Sørensen, R. Mikkelsen: Numerical simulations of wake characteristics of a wind turbine in uniform inflow. Wind Energy 13, 86–99 (2010)CrossRef
Zurück zum Zitat Vermeer, L.J., J.N. Sørensen, A. Crespo: Wind turbine wake aerodynamics. Progr. Aerospace Sci. 39, 467–510 (2003)CrossRef Vermeer, L.J., J.N. Sørensen, A. Crespo: Wind turbine wake aerodynamics. Progr. Aerospace Sci. 39, 467–510 (2003)CrossRef
Zurück zum Zitat Wu, Y.T., F. Porté-Agel: Simulation of turbulent flow inside and above wind farms: model validation and layout effects. Bound-Lay. Meteorol., 146, 181–205 (2013) Wu, Y.T., F. Porté-Agel: Simulation of turbulent flow inside and above wind farms: model validation and layout effects. Bound-Lay. Meteorol., 146, 181–205 (2013)
Zurück zum Zitat Xia G., L. Zhou: Detecting Wind Farm Impacts on Local Vegetation Growth in Texas and Illinois Using MODIS Vegetation Greenness Measurements. Rem. Sens., 9, 698 (16 pp.) (2017) Xia G., L. Zhou: Detecting Wind Farm Impacts on Local Vegetation Growth in Texas and Illinois Using MODIS Vegetation Greenness Measurements. Rem. Sens., 9, 698 (16 pp.) (2017)
Zurück zum Zitat Xia G., L. Zhou, J.M. Freedman, S.B. Roy, R.A. Harris, M.C. Cervarich: A case study of effects of atmospheric boundary layer turbulence, wind speed, and stability on wind farm induced temperature changes using observations from a field campaign. Climate Dyn, 1–18 (2015) Xia G., L. Zhou, J.M. Freedman, S.B. Roy, R.A. Harris, M.C. Cervarich: A case study of effects of atmospheric boundary layer turbulence, wind speed, and stability on wind farm induced temperature changes using observations from a field campaign. Climate Dyn, 1–18 (2015)
Zurück zum Zitat Zhou L., Y. Tian, R.S. Baidya, C. Thorncroft, L.F. Bosart, Y. Hu: Impacts of wind farms on land surface temperature. Nat. Clim. Change, 2, 539–543 (2012)CrossRef Zhou L., Y. Tian, R.S. Baidya, C. Thorncroft, L.F. Bosart, Y. Hu: Impacts of wind farms on land surface temperature. Nat. Clim. Change, 2, 539–543 (2012)CrossRef
Metadaten
Titel
Physik der Windparks
verfasst von
Stefan Emeis
Copyright-Jahr
2022
DOI
https://doi.org/10.1007/978-3-031-22446-1_6