Skip to main content

2023 | OriginalPaper | Buchkapitel

Physiological Polyphosphate: A New Molecular Paradigm in Biomedical and Biocomputational Applications for Human Therapy

verfasst von : Werner E. G. Müller, Shunfeng Wang, Meik Neufurth, Heinz C. Schröder, Xiaohong Wang

Erschienen in: Bioinformatics and Biomedical Engineering

Verlag: Springer Nature Switzerland

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Inorganic polyphosphates (polyP) consist of linear chains of orthophosphate units linked together by high-energy phosphoanhydride bonds. The family of polyP molecules are evolutionarily old biopolymers and found from bacteria to man. PolyP is exceptional, no other molecule concentrates as much (bio)chemically usable energy as polyP in animals, including humans. Before this discovery, we found that the long-neglected polymer provides orthophosphate units required for bone (hydroxyapatite) synthesis. Hence, polyP is a cornerstone for bone synthesis and repair, especially in higher animals. Besides its importance for regenerative medicine, especially for the reconstitution of osteoarticular impairments/defects, a further imperative property could be attributed the polyP. This polymer is the only extracellular generator of metabolic energy in the form of ATP. While the mitochondria synthesize ATP in large amounts intracellularly, it is polyP, which functions as the storage for extracellular ATP. After enzymatic hydrolysis of polyP by alkaline phosphatase (ALP) the released free energy is partially stored in ADP (formed from AMP), which in the second step is up-phosphorylated to ATP by adenylate kinase (ADK). In turn, the two enzymes ALP and ADK are the biocatalytic proteins that conserve the released free energy and store it in ATP, especially in the extracellular space. In a proof-of-concept, we could demonstrate that polyP is an essential component for human regeneration processes, especially in those regions, which are poorly vascularised, like in bone, cartilage and wounds (including chronic wounds).

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Müller, W.E.G., Schröder, H.C., Wang, X.H.: Inorganic polyphosphates as storage for and generator of metabolic energy in the extracellular matrix. Chem. Rev. 119, 12337–12374 (2019)CrossRefPubMedPubMedCentral Müller, W.E.G., Schröder, H.C., Wang, X.H.: Inorganic polyphosphates as storage for and generator of metabolic energy in the extracellular matrix. Chem. Rev. 119, 12337–12374 (2019)CrossRefPubMedPubMedCentral
2.
Zurück zum Zitat Wang, X.H., Schröder, H.C., Müller, W.E.G.: Amorphous polyphosphate, a smart bioinspired nano-/bio-material for bone and cartilage regeneration: towards a new paradigm in tissue engineering. J. Mat. Chem. B 6, 2385–2412 (2018)CrossRef Wang, X.H., Schröder, H.C., Müller, W.E.G.: Amorphous polyphosphate, a smart bioinspired nano-/bio-material for bone and cartilage regeneration: towards a new paradigm in tissue engineering. J. Mat. Chem. B 6, 2385–2412 (2018)CrossRef
3.
Zurück zum Zitat Langen, P.: Research on inorganic polyphosphates: the beginning. In: Schröder, H.C., Müller, W.E.G. (eds) Inorganic Polyphosphates - Biochemistry, Biology, Biotechnology. Prog. Mol. Subcell. Biol. 23, pp. 19–26. Springer, Berlin (1999) Langen, P.: Research on inorganic polyphosphates: the beginning. In: Schröder, H.C., Müller, W.E.G. (eds) Inorganic Polyphosphates - Biochemistry, Biology, Biotechnology. Prog. Mol. Subcell. Biol. 23, pp. 19–26. Springer, Berlin (1999)
4.
Zurück zum Zitat Leyhausen, G., et al.: Inorganic polyphosphate in human osteoblast-like cells. J. Bone Miner. Res. 13, 803–812 (1998)CrossRefPubMed Leyhausen, G., et al.: Inorganic polyphosphate in human osteoblast-like cells. J. Bone Miner. Res. 13, 803–812 (1998)CrossRefPubMed
5.
Zurück zum Zitat Krasko, A., Lorenz, B., Batel, R., Schröder, H.C., Müller, I.M., Müller, W.E.G.: Expression of silicatein and collagen genes in the marine sponge Suberites domuncula is controlled by silicate and myotrophin. Europ. J. Biochem. 267, 4878–4887 (2000)CrossRefPubMed Krasko, A., Lorenz, B., Batel, R., Schröder, H.C., Müller, I.M., Müller, W.E.G.: Expression of silicatein and collagen genes in the marine sponge Suberites domuncula is controlled by silicate and myotrophin. Europ. J. Biochem. 267, 4878–4887 (2000)CrossRefPubMed
6.
Zurück zum Zitat Müller, W.E.G., Schröder, H.C., Schlossmacher, U., Grebenjuk, V.A., Ushijima, H., Wang, X.H.: Induction of carbonic anhydrase in SaOS-2 cells, exposed to bicarbonate and consequences for calcium phosphate crystal formation. Biomaterials 34, 8671–8680 (2013)CrossRefPubMed Müller, W.E.G., Schröder, H.C., Schlossmacher, U., Grebenjuk, V.A., Ushijima, H., Wang, X.H.: Induction of carbonic anhydrase in SaOS-2 cells, exposed to bicarbonate and consequences for calcium phosphate crystal formation. Biomaterials 34, 8671–8680 (2013)CrossRefPubMed
7.
Zurück zum Zitat Du, T., et al.: Orthophosphate and alkaline phosphatase induced the formation of apatite with different multilayered structures and mineralization balance. Nanoscale 14, 1814–1825 (2022)CrossRefPubMed Du, T., et al.: Orthophosphate and alkaline phosphatase induced the formation of apatite with different multilayered structures and mineralization balance. Nanoscale 14, 1814–1825 (2022)CrossRefPubMed
8.
Zurück zum Zitat Suess, P.M., Smith, S.A., Morrissey, J.H.: Platelet polyphosphate induces fibroblast chemotaxis and myofibroblast differentiation. J Thromb Haemost. 18, 3043–3052 (2020)CrossRefPubMedPubMedCentral Suess, P.M., Smith, S.A., Morrissey, J.H.: Platelet polyphosphate induces fibroblast chemotaxis and myofibroblast differentiation. J Thromb Haemost. 18, 3043–3052 (2020)CrossRefPubMedPubMedCentral
9.
Zurück zum Zitat Kulaev, I.S., Vagabov, V., Kulakovskaya, T.: The Biochemistry of Inorganic Polyphosphates, 2nd edn. John Wiley, Chichester (2004)CrossRef Kulaev, I.S., Vagabov, V., Kulakovskaya, T.: The Biochemistry of Inorganic Polyphosphates, 2nd edn. John Wiley, Chichester (2004)CrossRef
10.
Zurück zum Zitat Docampo, R., Ulrich, P., Moreno, S.N.: Evolution of acidocalcisomes and their role in polyphosphate storage and osmoregulation in eukaryotic microbes. Philos. Trans. R. Soc. Lond. Ser. B Biol. Sci. 365, 775–784 (2010) Docampo, R., Ulrich, P., Moreno, S.N.: Evolution of acidocalcisomes and their role in polyphosphate storage and osmoregulation in eukaryotic microbes. Philos. Trans. R. Soc. Lond. Ser. B Biol. Sci. 365, 775–784 (2010)
11.
Zurück zum Zitat Morrissey, J.H., Choi, S.H., Smith, S.A.: Polyphosphate: an ancient molecule that links platelets, coagulation, and inflammation. Blood 119, 5972–5979 (2012)CrossRefPubMedPubMedCentral Morrissey, J.H., Choi, S.H., Smith, S.A.: Polyphosphate: an ancient molecule that links platelets, coagulation, and inflammation. Blood 119, 5972–5979 (2012)CrossRefPubMedPubMedCentral
12.
Zurück zum Zitat Müller, W.E.G., et al.: Amorphous Ca2+ polyphosphate nanoparticles regulate the ATP level in bone-like SaOS-2 cells. J. Cell Sci. 128, 2202–2207 (2015)CrossRefPubMed Müller, W.E.G., et al.: Amorphous Ca2+ polyphosphate nanoparticles regulate the ATP level in bone-like SaOS-2 cells. J. Cell Sci. 128, 2202–2207 (2015)CrossRefPubMed
13.
Zurück zum Zitat Müller, W.E.G., et al.: A new polyphosphate calcium material with morphogenetic activity. Mater. Lett. 148, 163–166 (2015)CrossRef Müller, W.E.G., et al.: A new polyphosphate calcium material with morphogenetic activity. Mater. Lett. 148, 163–166 (2015)CrossRef
14.
Zurück zum Zitat Müller, W.E.G., Schröder, H.C., Suess, P., Wang, X.H. (eds) Inorganic polyphosphates - from basic research to medical application. In: Progress Molecular Subcellular Biology, Springer, Cham, vol. 61; p. 189 (2022) Müller, W.E.G., Schröder, H.C., Suess, P., Wang, X.H. (eds) Inorganic polyphosphates - from basic research to medical application. In: Progress Molecular Subcellular Biology, Springer, Cham, vol. 61; p. 189 (2022)
15.
Zurück zum Zitat Müller, W.E.G., et al.: Role of ATP during the initiation of microvascularization. Acceleration of an autocrine sensing mechanism facilitating chemotaxis by inorganic polyphosphate. Biochemist. J. 475, 3255–3273 (2018) Müller, W.E.G., et al.: Role of ATP during the initiation of microvascularization. Acceleration of an autocrine sensing mechanism facilitating chemotaxis by inorganic polyphosphate. Biochemist. J. 475, 3255–3273 (2018)
16.
Zurück zum Zitat Müller, W.E.G., Neufurth, M., Lieberwirth, I., Wang, S.F., Schröder, H.C., Wang, X.H.: Functional importance of coacervation to convert calcium polyphosphate nanoparticles into the physiologically active state. Mater. Today Bio. 16, 100404 (2022)CrossRefPubMedPubMedCentral Müller, W.E.G., Neufurth, M., Lieberwirth, I., Wang, S.F., Schröder, H.C., Wang, X.H.: Functional importance of coacervation to convert calcium polyphosphate nanoparticles into the physiologically active state. Mater. Today Bio. 16, 100404 (2022)CrossRefPubMedPubMedCentral
17.
Zurück zum Zitat Müller, W.E.G., et al.: Rebalancing β-amyloid-induced decrease of ATP level by amorphous nano/micro polyphosphate: suppression of the neurotoxic effect of amyloid β-protein fragment 25–35. Int. J. Mol. Sci. 18, 2154 (2017)CrossRefPubMedPubMedCentral Müller, W.E.G., et al.: Rebalancing β-amyloid-induced decrease of ATP level by amorphous nano/micro polyphosphate: suppression of the neurotoxic effect of amyloid β-protein fragment 25–35. Int. J. Mol. Sci. 18, 2154 (2017)CrossRefPubMedPubMedCentral
18.
Zurück zum Zitat Schepler, H., et al.: Acceleration of chronic wound healing by bio-inorganic polyphosphate: In vitro studies and first clinical applications. Theranostics 12, 18–34 (2022) Schepler, H., et al.: Acceleration of chronic wound healing by bio-inorganic polyphosphate: In vitro studies and first clinical applications. Theranostics 12, 18–34 (2022)
19.
Zurück zum Zitat Müller, W.E.G., et al.: The physiological polyphosphate as a healing biomaterial for chronic wounds: Crucial roles of its antibacterial and unique metabolic energy supplying properties. J. Mater. Sci. Technol. 135, 170–185 (2023) Müller, W.E.G., et al.: The physiological polyphosphate as a healing biomaterial for chronic wounds: Crucial roles of its antibacterial and unique metabolic energy supplying properties. J. Mater. Sci. Technol. 135, 170–185 (2023)
20.
Zurück zum Zitat Müller, W.E.G., et al.: Bifunctional dentifrice: Amorphous polyphosphate a regeneratively active sealant with potent anti-Streptococcus mutans activity. Dent. Mater. 33, 753–764 (2017) Müller, W.E.G., et al.: Bifunctional dentifrice: Amorphous polyphosphate a regeneratively active sealant with potent anti-Streptococcus mutans activity. Dent. Mater. 33, 753–764 (2017)
21.
Zurück zum Zitat Biovia, D.S.: Discovery Studio Modeling Environment. Dassault Syst. Release, San Diego (2015) Biovia, D.S.: Discovery Studio Modeling Environment. Dassault Syst. Release, San Diego (2015)
22.
Zurück zum Zitat Müller, W.E.G., et al.: Transformation of amorphous polyphosphate nanoparticles into coacervate complexes: an approach for the encapsulation of mesenchymal stem cells. Small 14, e1801170 (2018) Müller, W.E.G., et al.: Transformation of amorphous polyphosphate nanoparticles into coacervate complexes: an approach for the encapsulation of mesenchymal stem cells. Small 14, e1801170 (2018)
23.
Zurück zum Zitat Müller, W.E.G., et al.: Triple-target stimuli-responsive anti-COVID-19 face mask with physiological virus-inactivating agents. Biomater. Sci. 9, 6052–6063 (2021) Müller, W.E.G., et al.: Triple-target stimuli-responsive anti-COVID-19 face mask with physiological virus-inactivating agents. Biomater. Sci. 9, 6052–6063 (2021)
24.
Zurück zum Zitat Müller, W.E.G., Schröder, H.C., Neufurth, M., Wang, X.H.: An unexpected biomaterial against SARS-CoV-2: bio-polyphosphate blocks binding of the viral spike to the cell receptor. Mater. Today 51, 504–524 (2021)CrossRef Müller, W.E.G., Schröder, H.C., Neufurth, M., Wang, X.H.: An unexpected biomaterial against SARS-CoV-2: bio-polyphosphate blocks binding of the viral spike to the cell receptor. Mater. Today 51, 504–524 (2021)CrossRef
25.
Zurück zum Zitat Müller, W.E.G., et al.: A biomimetic approach to ameliorate dental hypersensitivity by amorphous polyphosphate microparticles. Dent. Mater. 32, 775–783 (2016)CrossRefPubMed Müller, W.E.G., et al.: A biomimetic approach to ameliorate dental hypersensitivity by amorphous polyphosphate microparticles. Dent. Mater. 32, 775–783 (2016)CrossRefPubMed
26.
Zurück zum Zitat Müller, W.E.G., et al.: Molecular and biochemical approach for understanding the transition of amorphous to crystalline calcium phosphate deposits in human teeth. Dental Mater. 38, 2014–2029 (2023)CrossRef Müller, W.E.G., et al.: Molecular and biochemical approach for understanding the transition of amorphous to crystalline calcium phosphate deposits in human teeth. Dental Mater. 38, 2014–2029 (2023)CrossRef
27.
Zurück zum Zitat Neufurth, M., et al.: The inorganic polymer, polyphosphate, blocks binding of SARS-CoV-2 spike protein to ACE2 receptor at physiological concentrations. Biochem. Pharmacol. 182, 114215 (2020)CrossRefPubMedPubMedCentral Neufurth, M., et al.: The inorganic polymer, polyphosphate, blocks binding of SARS-CoV-2 spike protein to ACE2 receptor at physiological concentrations. Biochem. Pharmacol. 182, 114215 (2020)CrossRefPubMedPubMedCentral
28.
Zurück zum Zitat Schepler, H., Wang, X.H., Neufurth, M., Wang, S.F., Schröder, H.C., Müller, W.E.G.: The therapeutic potential of inorganic polyphosphate: a versatile physiological polymer to control coronavirus disease (COVID-19). Theranostics 11, 6193–6213 (2021)CrossRefPubMedPubMedCentral Schepler, H., Wang, X.H., Neufurth, M., Wang, S.F., Schröder, H.C., Müller, W.E.G.: The therapeutic potential of inorganic polyphosphate: a versatile physiological polymer to control coronavirus disease (COVID-19). Theranostics 11, 6193–6213 (2021)CrossRefPubMedPubMedCentral
29.
Zurück zum Zitat Im, M.J., Hoopes, J.E.: Energy metabolism in healing skin wounds. J. Surg. Res. 10, 459–464 (1970)CrossRefPubMed Im, M.J., Hoopes, J.E.: Energy metabolism in healing skin wounds. J. Surg. Res. 10, 459–464 (1970)CrossRefPubMed
30.
Zurück zum Zitat Müller, W.E.G., et al.: Fabrication of amorphous strontium polyphosphate microparticles that induce mineralization of bone cells in vitro and in vivo. Acta Biomater. 50, 89–101 (2017) Müller, W.E.G., et al.: Fabrication of amorphous strontium polyphosphate microparticles that induce mineralization of bone cells in vitro and in vivo. Acta Biomater. 50, 89–101 (2017)
31.
Zurück zum Zitat Wang, X.H., Schröder, H.C., Müller, W.E.G.: Polyphosphate as a metabolic fuel in Metazoa: a foundational breakthrough invention for biomedical applications. Biotechnol. J. 11, 11–30 (2016)CrossRefPubMed Wang, X.H., Schröder, H.C., Müller, W.E.G.: Polyphosphate as a metabolic fuel in Metazoa: a foundational breakthrough invention for biomedical applications. Biotechnol. J. 11, 11–30 (2016)CrossRefPubMed
33.
Zurück zum Zitat Nurden, A.T.: The biology of the platelet with special reference to inflammation, wound healing and immunity. Front. Biosci. (Landmark Ed.) 23, 726–751 (2018)CrossRefPubMed Nurden, A.T.: The biology of the platelet with special reference to inflammation, wound healing and immunity. Front. Biosci. (Landmark Ed.) 23, 726–751 (2018)CrossRefPubMed
34.
Zurück zum Zitat Müller, W.E.G., et al.: Fabrication of a new physiological macroporous hybrid biomaterial/bioscaffold material based on polyphosphate and collagen by freeze-extraction. J. Mat. Chem. B 5, 3823–3835 (2017)CrossRef Müller, W.E.G., et al.: Fabrication of a new physiological macroporous hybrid biomaterial/bioscaffold material based on polyphosphate and collagen by freeze-extraction. J. Mat. Chem. B 5, 3823–3835 (2017)CrossRef
35.
Zurück zum Zitat Sarojini, H., et al.: Rapid tissue regeneration induced by intracellular ATP delivery-a preliminary mechanistic study. PLoS One 12, e0174899 (2017) Sarojini, H., et al.: Rapid tissue regeneration induced by intracellular ATP delivery-a preliminary mechanistic study. PLoS One 12, e0174899 (2017)
36.
Zurück zum Zitat Lanigan, R.S.: Final report on the safety assessment of sodium metaphosphate, sodium trimetaphosphate, and sodium hexametaphosphate. Int. J. Toxicol. 20(Suppl. 3), 75–89 (2001)PubMed Lanigan, R.S.: Final report on the safety assessment of sodium metaphosphate, sodium trimetaphosphate, and sodium hexametaphosphate. Int. J. Toxicol. 20(Suppl. 3), 75–89 (2001)PubMed
37.
Zurück zum Zitat Food and Drug Administration (FDA): Phosphates; proposed affirmation of and deletion from GRAS status as direct and human food ingredients. Fed. Regist. 44(244), 74845–74857 (1979) Food and Drug Administration (FDA): Phosphates; proposed affirmation of and deletion from GRAS status as direct and human food ingredients. Fed. Regist. 44(244), 74845–74857 (1979)
38.
Zurück zum Zitat Wang, S.F., et al.: Acceleration of wound healing through amorphous calcium carbonate, stabilized with high-energy polyphosphate. Pharmaceutics 15, 494 (2023)CrossRefPubMedPubMedCentral Wang, S.F., et al.: Acceleration of wound healing through amorphous calcium carbonate, stabilized with high-energy polyphosphate. Pharmaceutics 15, 494 (2023)CrossRefPubMedPubMedCentral
39.
Zurück zum Zitat World Health Organization (WHO): Evaluation of certain food additives and contaminants. In: Fifty-Seventh Report of the Joint FAO/WHO Expert Committee on Food (2002) World Health Organization (WHO): Evaluation of certain food additives and contaminants. In: Fifty-Seventh Report of the Joint FAO/WHO Expert Committee on Food (2002)
40.
Zurück zum Zitat European Food Safety: Authority assessment of one published review on health risks associated with phosphate additives in food. EFSA J. 11, 3444 (2013) European Food Safety: Authority assessment of one published review on health risks associated with phosphate additives in food. EFSA J. 11, 3444 (2013)
41.
Zurück zum Zitat Joint FAO/WHO Expert Committee on Food Additives (JECFA): Evaluation of certain food additives and contaminants (Twenty-sixth report of the Joint FAO/WHO Expert Committee on Food Additives). WHO Tech. Rep. Ser. 683 (1982) Joint FAO/WHO Expert Committee on Food Additives (JECFA): Evaluation of certain food additives and contaminants (Twenty-sixth report of the Joint FAO/WHO Expert Committee on Food Additives). WHO Tech. Rep. Ser. 683 (1982)
42.
Zurück zum Zitat International Program on Chemical Safety (IPCS): Toxicological evaluation of certain food additives. World Health Organization (WHO) Food Addit. Ser. 17, 1–22 (1982) International Program on Chemical Safety (IPCS): Toxicological evaluation of certain food additives. World Health Organization (WHO) Food Addit. Ser. 17, 1–22 (1982)
43.
Zurück zum Zitat Wang, X.H., et al.: Amorphous polyphosphate/amorphous calcium carbonate implant material with enhanced bone healing efficacy in a critical-size defect in rats. Biomed. Mater. 11, 035005 (2016)CrossRefPubMed Wang, X.H., et al.: Amorphous polyphosphate/amorphous calcium carbonate implant material with enhanced bone healing efficacy in a critical-size defect in rats. Biomed. Mater. 11, 035005 (2016)CrossRefPubMed
44.
Zurück zum Zitat Schröder, H.C., et al.: Inorganic polymeric materials for injured tissue repair: biocatalytic formation and exploitation. Biomedicines 10, 658 (2022) Schröder, H.C., et al.: Inorganic polymeric materials for injured tissue repair: biocatalytic formation and exploitation. Biomedicines 10, 658 (2022)
Metadaten
Titel
Physiological Polyphosphate: A New Molecular Paradigm in Biomedical and Biocomputational Applications for Human Therapy
verfasst von
Werner E. G. Müller
Shunfeng Wang
Meik Neufurth
Heinz C. Schröder
Xiaohong Wang
Copyright-Jahr
2023
DOI
https://doi.org/10.1007/978-3-031-34953-9_42

Premium Partner