Skip to main content
Erschienen in: Biomass Conversion and Biorefinery 4/2024

08.08.2022 | Original Article

Pineapple peel as alternative substrate for bacterial nanocellulose production

verfasst von: Adriana Connie Lee, Madihah Md Salleh, Mohamad Faizal Ibrahim, Ezyana Kamal Bahrin, Mohd Azwan Jenol, Suraini Abd-Aziz

Erschienen in: Biomass Conversion and Biorefinery | Ausgabe 4/2024

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Due to its flexible properties, bacterial nanocellulose (BNC) has been attracting tremendous attention. In this study, BNC was produced by Acetobacter xylinum ATCC2376 and a local isolate, namely, Bacillus cereus MMS1. The production of BNC was done by utilising pineapple peel extract (PPE) (wastes discarded after cutting the fruit) as the alternative carbon source substituting the commercial D-glucose (control) in Hestrin–Schramm (HS) medium under agitated conditions. This research is aimed to investigate the synthesis of BNC by an isolated bacterial strain from termite’s gut using an agro-industrial waste which is the pineapple peel extract. Six bacterial strains, namely, F8, F5, M1, M6, H7 and H11, were screened and identified for potential BNC producer. The selected bacterial strain was identified as Bacillus cereus MMS1 using 16S rRNA nucleotide sequences. Then, the production of BNC was done by B. cereus MMS1 using pineapple peel extract, while A. xylinum ATCC2376 acted as a control. The BNC production in this study was attained at 2% (w/v) glucose concentration, 12 days of incubation period and 150 rpm agitation speed which was 5.83 g/L by A. xylinum ATCC2376 in HS medium using commercial glucose as carbon source. Meanwhile, 4.42 g/L and 2 g/L of BNC were produced by B. cereus MMS1 after 12 days of incubation with an initial concentration of 2% (w/v) using commercial glucose and pineapple peel extract, respectively.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Jozala AF, Pértile RAN, dos Santos CA, de Carvalho Santos-Ebinuma V, Seckler MM, Gama FM, Pessoa A (2014) Bacterial cellulose production by Gluconacetobacter xylinus by employing alternative culture media. Appl Microbiol Biotechnol 99(3):1181–1190CrossRef Jozala AF, Pértile RAN, dos Santos CA, de Carvalho Santos-Ebinuma V, Seckler MM, Gama FM, Pessoa A (2014) Bacterial cellulose production by Gluconacetobacter xylinus by employing alternative culture media. Appl Microbiol Biotechnol 99(3):1181–1190CrossRef
2.
Zurück zum Zitat Gao M, Li J, Bao Z, Hu M, Nian R, Feng D, Zhang H (2019) A natural in situ fabrication method of functional bacterial cellulose using a microorganism. Nat Commun 10(1):1–10CrossRef Gao M, Li J, Bao Z, Hu M, Nian R, Feng D, Zhang H (2019) A natural in situ fabrication method of functional bacterial cellulose using a microorganism. Nat Commun 10(1):1–10CrossRef
3.
Zurück zum Zitat Shoseyov O, Kam D, Ben Shalom T, Shtein Z, Vinkler S, Posen Y (2019) Nanocellulose composite biomaterials in industry and medicine. Biol-Inspired Syst 12:693–784 Shoseyov O, Kam D, Ben Shalom T, Shtein Z, Vinkler S, Posen Y (2019) Nanocellulose composite biomaterials in industry and medicine. Biol-Inspired Syst 12:693–784
4.
Zurück zum Zitat Jozala AF, de Lencastre-Novaes LC, Lopes AM, de Carvalho Santos-Ebinuma V, Mazzola PG, Pessoa-Jr A, Chaud MV (2016) Bacterial nanocellulose production and application: a 10-year overview. Appl Microbiol Biotechnol 100(5):2063–2072CrossRef Jozala AF, de Lencastre-Novaes LC, Lopes AM, de Carvalho Santos-Ebinuma V, Mazzola PG, Pessoa-Jr A, Chaud MV (2016) Bacterial nanocellulose production and application: a 10-year overview. Appl Microbiol Biotechnol 100(5):2063–2072CrossRef
5.
Zurück zum Zitat Thomas P, Duolikun T, Rumjit NP, Moosavi S, Lai CW, Johan MRB, Fen LB (2020) Comprehensive review on nanocellulose: recent developments, challenges and future prospects. J Mech Behav Biomed Mater 110:103884CrossRef Thomas P, Duolikun T, Rumjit NP, Moosavi S, Lai CW, Johan MRB, Fen LB (2020) Comprehensive review on nanocellulose: recent developments, challenges and future prospects. J Mech Behav Biomed Mater 110:103884CrossRef
6.
Zurück zum Zitat Revin V, Liyaskina E, Nazarkina M, Bogatyreva A, Shchankin M (2018) Cost-effective production of bacterial cellulose using acidic food industry by-products. Braz J Microbiol 49:151–159CrossRef Revin V, Liyaskina E, Nazarkina M, Bogatyreva A, Shchankin M (2018) Cost-effective production of bacterial cellulose using acidic food industry by-products. Braz J Microbiol 49:151–159CrossRef
7.
Zurück zum Zitat Yu X, Atalla RH (1996) Production of cellulose II by Acetobacter xylinum in the presence of 2, 6-dichlorobenzonitrile. Int J Biol Macromol 19(2):145–146CrossRef Yu X, Atalla RH (1996) Production of cellulose II by Acetobacter xylinum in the presence of 2, 6-dichlorobenzonitrile. Int J Biol Macromol 19(2):145–146CrossRef
8.
Zurück zum Zitat Hidayah N, Abdul F (2019) Profitability of pineapple production (Ananas comosus) among smallholders in Malaysia. Int J Recent Technol Eng 8(4):4202–4207 Hidayah N, Abdul F (2019) Profitability of pineapple production (Ananas comosus) among smallholders in Malaysia. Int J Recent Technol Eng 8(4):4202–4207
9.
Zurück zum Zitat Sukruansuwan V, Napathorn SC (2018) Use of agro-industrial residue from the canned pineapple industry for polyhydroxybutyrate production by Cupriavidus necator strain A-04. Biotechnol Biofuels 11(1):1–15CrossRef Sukruansuwan V, Napathorn SC (2018) Use of agro-industrial residue from the canned pineapple industry for polyhydroxybutyrate production by Cupriavidus necator strain A-04. Biotechnol Biofuels 11(1):1–15CrossRef
10.
Zurück zum Zitat Ruslan NA, Aris NFM, Othman N, Saili AR, Muhamad MZ, Aziz NNH (2017) A preliminary study on sustainable management of pineapple waste: perspective of smallholders. Int J Acad Res Bus Soc Sci 7(6):1–7 Ruslan NA, Aris NFM, Othman N, Saili AR, Muhamad MZ, Aziz NNH (2017) A preliminary study on sustainable management of pineapple waste: perspective of smallholders. Int J Acad Res Bus Soc Sci 7(6):1–7
11.
Zurück zum Zitat Ketnawa S, Chaiwut P, Rawdkuen S (2012) Pineapple wastes: a potential source for bromelain extraction. Food Bioprod Process 90(3):385–391CrossRef Ketnawa S, Chaiwut P, Rawdkuen S (2012) Pineapple wastes: a potential source for bromelain extraction. Food Bioprod Process 90(3):385–391CrossRef
12.
Zurück zum Zitat Santoso SP, Lin SP, Wang TY, Ting Y, Hsieh CW, Yu RC, Cheng KC (2021) Atmospheric cold plasma-assisted pineapple peel waste hydrolysate detoxification for the production of bacterial cellulose. Int J Biol Macromol 175:526–534CrossRef Santoso SP, Lin SP, Wang TY, Ting Y, Hsieh CW, Yu RC, Cheng KC (2021) Atmospheric cold plasma-assisted pineapple peel waste hydrolysate detoxification for the production of bacterial cellulose. Int J Biol Macromol 175:526–534CrossRef
13.
Zurück zum Zitat Hussain Z, Sajjad W, Khan T, Wahid F (2019) Production of bacterial cellulose from industrial wastes: a review. Cellulose 26(5):2895–2911CrossRef Hussain Z, Sajjad W, Khan T, Wahid F (2019) Production of bacterial cellulose from industrial wastes: a review. Cellulose 26(5):2895–2911CrossRef
14.
Zurück zum Zitat Castro C, Zuluaga R, Putaux JL, Caro G, Mondragon I, Gañán P (2011) Structural characterization of bacterial cellulose produced by Gluconacetobacter swingsii sp. from Colombian agroindustrial wastes. Carbohydr Polym 84(1):96–102CrossRef Castro C, Zuluaga R, Putaux JL, Caro G, Mondragon I, Gañán P (2011) Structural characterization of bacterial cellulose produced by Gluconacetobacter swingsii sp. from Colombian agroindustrial wastes. Carbohydr Polym 84(1):96–102CrossRef
15.
Zurück zum Zitat Kumbhar JV, Rajwade JM, Paknikar KM (2015) Fruit peels support higher yield and superior quality bacterial cellulose production. Appl Microbiol Biotechnol 99(16):6677–6691CrossRef Kumbhar JV, Rajwade JM, Paknikar KM (2015) Fruit peels support higher yield and superior quality bacterial cellulose production. Appl Microbiol Biotechnol 99(16):6677–6691CrossRef
16.
Zurück zum Zitat Anwar B, Bundjali B, Sunarya Y, Arcana I (2021) Properties of bacterial cellulose and its nanocrystalline obtained from pineapple peel waste juice. Fibers Polym 22(5):1228–1236CrossRef Anwar B, Bundjali B, Sunarya Y, Arcana I (2021) Properties of bacterial cellulose and its nanocrystalline obtained from pineapple peel waste juice. Fibers Polym 22(5):1228–1236CrossRef
17.
Zurück zum Zitat Voon WWY, Muhialdin BJ, Yusof NL, Rukayadi Y, Hussin AM (2019) Bio-cellulose production by Beijerinckia fluminensis WAUPM53 and Gluconacetobacter xylinus 0416 in sago by-product medium. Appl Biochem Biotechnol 187(1):211–220CrossRef Voon WWY, Muhialdin BJ, Yusof NL, Rukayadi Y, Hussin AM (2019) Bio-cellulose production by Beijerinckia fluminensis WAUPM53 and Gluconacetobacter xylinus 0416 in sago by-product medium. Appl Biochem Biotechnol 187(1):211–220CrossRef
18.
Zurück zum Zitat Hong F, Wei B, Chen L (2015) Preliminary study on biosynthesis of bacterial nanocellulose tubes in a novel double-silicone-tube bioreactor for potential vascular prosthesis. Biomed Res Int 2015:1–9 Hong F, Wei B, Chen L (2015) Preliminary study on biosynthesis of bacterial nanocellulose tubes in a novel double-silicone-tube bioreactor for potential vascular prosthesis. Biomed Res Int 2015:1–9
19.
Zurück zum Zitat Jain A, Jain R, Jain S (2020) Determination of blood creatinine. Basic Tech Biochem, Microbiol Mol Biol, 201–203. Jain A, Jain R, Jain S (2020) Determination of blood creatinine. Basic Tech Biochem, Microbiol Mol Biol, 201–203.
20.
Zurück zum Zitat Budaeva VV, Gismatulina YA, Mironova GF, Skiba EA, Gladysheva EK, Kashcheyeva EI, Sakovich GV (2019) Bacterial nanocellulose nitrates. Nanomater 9(12):1–12CrossRef Budaeva VV, Gismatulina YA, Mironova GF, Skiba EA, Gladysheva EK, Kashcheyeva EI, Sakovich GV (2019) Bacterial nanocellulose nitrates. Nanomater 9(12):1–12CrossRef
21.
Zurück zum Zitat Chandrasekaran PT, Bari NK, Sinha S (2017) Enhanced bacterial cellulose production from Gluconobacter xylinus using super optimal broth. Cellulose 24(10):4367–4381CrossRef Chandrasekaran PT, Bari NK, Sinha S (2017) Enhanced bacterial cellulose production from Gluconobacter xylinus using super optimal broth. Cellulose 24(10):4367–4381CrossRef
22.
Zurück zum Zitat Hestrin S, Schramm M (1954) Synthesis of cellulose by Acetobacter xylinum II: preparation of freeze-dried cells capable of polymerizing glucose to cellulose. Biochem J 58(2):345–352CrossRef Hestrin S, Schramm M (1954) Synthesis of cellulose by Acetobacter xylinum II: preparation of freeze-dried cells capable of polymerizing glucose to cellulose. Biochem J 58(2):345–352CrossRef
23.
Zurück zum Zitat Lestari P, Elfrida N, Suryani A, Suryadi Y (2014) Study on the production of bacterial cellulose from Acetobacter xylinum using agro-waste. Jordan J Biol Sci 147(1570):1–6 Lestari P, Elfrida N, Suryani A, Suryadi Y (2014) Study on the production of bacterial cellulose from Acetobacter xylinum using agro-waste. Jordan J Biol Sci 147(1570):1–6
24.
Zurück zum Zitat Rangaswamy BE, Vanitha KP, Hungund BS (2015) Microbial cellulose production from bacteria isolated from rotten fruit. Int J Polym Sci 2015:8CrossRef Rangaswamy BE, Vanitha KP, Hungund BS (2015) Microbial cellulose production from bacteria isolated from rotten fruit. Int J Polym Sci 2015:8CrossRef
25.
Zurück zum Zitat Sari AM, Budianto FA, Nursiwi A, Sanjaya AP, Utami R, Zaman MZ (2021) Study of Acetobacter xylinum FNCC 0001 fermentation kinetics using artificial media containing various carbon and nitrogen concentrations. IOP Conf Ser: Earth Environ Sci 828(1):012004CrossRef Sari AM, Budianto FA, Nursiwi A, Sanjaya AP, Utami R, Zaman MZ (2021) Study of Acetobacter xylinum FNCC 0001 fermentation kinetics using artificial media containing various carbon and nitrogen concentrations. IOP Conf Ser: Earth Environ Sci 828(1):012004CrossRef
26.
Zurück zum Zitat Rolfe MD, Rice CJ, Lucchini S, Pin C, Thompson A, Cameron AD, Hinton JC (2012) Lag phase is a distinct growth phase that prepares bacteria for exponential growth and involves transient metal accumulation. J Bacteriol 194(3):686–701CrossRef Rolfe MD, Rice CJ, Lucchini S, Pin C, Thompson A, Cameron AD, Hinton JC (2012) Lag phase is a distinct growth phase that prepares bacteria for exponential growth and involves transient metal accumulation. J Bacteriol 194(3):686–701CrossRef
27.
Zurück zum Zitat Costa AF, Almeida FC, Vinhas GM, Sarubbo LA (2017) Production of bacterial cellulose by Gluconacetobacter hansenii using corn steep liquor as nutrient sources. Front Microbiol 8:2027CrossRef Costa AF, Almeida FC, Vinhas GM, Sarubbo LA (2017) Production of bacterial cellulose by Gluconacetobacter hansenii using corn steep liquor as nutrient sources. Front Microbiol 8:2027CrossRef
28.
Zurück zum Zitat Ogrizek L, Lamovšek J, Čuš F, Leskovšek M, Gorjanc M (2021) Properties of bacterial cellulose produced using white and red grape bagasse as a nutrient source. Processes 9(7):1088CrossRef Ogrizek L, Lamovšek J, Čuš F, Leskovšek M, Gorjanc M (2021) Properties of bacterial cellulose produced using white and red grape bagasse as a nutrient source. Processes 9(7):1088CrossRef
29.
Zurück zum Zitat Casabar JT, Unpaprom Y, Ramaraj R (2019) Fermentation of pineapple fruit peel wastes for bioethanol production. Biomass Convers Biorefinery 9(4):761–765CrossRef Casabar JT, Unpaprom Y, Ramaraj R (2019) Fermentation of pineapple fruit peel wastes for bioethanol production. Biomass Convers Biorefinery 9(4):761–765CrossRef
30.
Zurück zum Zitat Hajar N, Zainal S, Nadzirah KZ, Roha AS, Atikah O, Elida TT (2012) Physicochemical properties analysis of three indexes pineapple (Ananas Comosus) peel extract variety N36. APCBEE Proc 4:115–121CrossRef Hajar N, Zainal S, Nadzirah KZ, Roha AS, Atikah O, Elida TT (2012) Physicochemical properties analysis of three indexes pineapple (Ananas Comosus) peel extract variety N36. APCBEE Proc 4:115–121CrossRef
31.
Zurück zum Zitat Ban-Koffi L, Han YW (1990) Alcohol production from pineapple waste. World J Microbiol Biotechnol 6(3):281–284CrossRef Ban-Koffi L, Han YW (1990) Alcohol production from pineapple waste. World J Microbiol Biotechnol 6(3):281–284CrossRef
32.
Zurück zum Zitat Nurtjahtja K (2020) The effect of Acetobacter xylinum starter in waste liquid pineapple peel on the properties of nata de pina. Int J Ecophysiol 2(02):86–91CrossRef Nurtjahtja K (2020) The effect of Acetobacter xylinum starter in waste liquid pineapple peel on the properties of nata de pina. Int J Ecophysiol 2(02):86–91CrossRef
33.
Zurück zum Zitat Matsutani M, Ito K, Azuma Y, Ogino H, Shirai M, Yakushi T, Matsushita K (2015) Adaptive mutation related to cellulose producibility in Komagataeibacter medellinensis (Gluconacetobacter xylinus) NBRC 3288. Appl Microbiol Biotechnol 99(17):7229–7240CrossRef Matsutani M, Ito K, Azuma Y, Ogino H, Shirai M, Yakushi T, Matsushita K (2015) Adaptive mutation related to cellulose producibility in Komagataeibacter medellinensis (Gluconacetobacter xylinus) NBRC 3288. Appl Microbiol Biotechnol 99(17):7229–7240CrossRef
34.
Zurück zum Zitat Ross P, Mayer R, Benziman M (1991) Cellulose biosynthesis and function in bacteria. Microbiol Rev 55(1):35–58CrossRef Ross P, Mayer R, Benziman M (1991) Cellulose biosynthesis and function in bacteria. Microbiol Rev 55(1):35–58CrossRef
35.
Zurück zum Zitat Wang J, Tavakoli J, Tang Y (2019) Bacterial cellulose production, properties and applications with different culture methods – a review. Carbohyd Polym 219:63–76CrossRef Wang J, Tavakoli J, Tang Y (2019) Bacterial cellulose production, properties and applications with different culture methods – a review. Carbohyd Polym 219:63–76CrossRef
36.
Zurück zum Zitat Jacek P, Ryngajłło M, Bielecki S (2019) Structural changes of bacterial nanocellulose pellicles induced by genetic modification of Komagataeibacter hansenii ATCC 23769. Appl Microbiol Biotechnol 103(13):5339–5353CrossRef Jacek P, Ryngajłło M, Bielecki S (2019) Structural changes of bacterial nanocellulose pellicles induced by genetic modification of Komagataeibacter hansenii ATCC 23769. Appl Microbiol Biotechnol 103(13):5339–5353CrossRef
37.
Zurück zum Zitat Kouda T, Yano H, Yoshinaga F, Kaminoyama M, Kamiwano M (1996) Characterization of non-Newtonian behavior during mixing of bacterial cellulose in a bioreactor. J Ferment Bioeng 82(4):382–386CrossRef Kouda T, Yano H, Yoshinaga F, Kaminoyama M, Kamiwano M (1996) Characterization of non-Newtonian behavior during mixing of bacterial cellulose in a bioreactor. J Ferment Bioeng 82(4):382–386CrossRef
38.
Zurück zum Zitat Saichana N, Matsushita K, Adachi O, Frébort I, Frebortova J (2015) Acetic acid bacteria: a group of bacteria with versatile biotechnological applications. Biotechnol Adv 33(6):1260–1271CrossRef Saichana N, Matsushita K, Adachi O, Frébort I, Frebortova J (2015) Acetic acid bacteria: a group of bacteria with versatile biotechnological applications. Biotechnol Adv 33(6):1260–1271CrossRef
39.
Zurück zum Zitat El-Saied H, Basta AH, Gobran RH (2004) Research progress in friendly environmental technology for the production of cellulose products (bacterial cellulose and its application). Polym-Plast Technol Eng 43(3):797–820CrossRef El-Saied H, Basta AH, Gobran RH (2004) Research progress in friendly environmental technology for the production of cellulose products (bacterial cellulose and its application). Polym-Plast Technol Eng 43(3):797–820CrossRef
40.
Zurück zum Zitat Rani MU, Appaiah A (2011) Optimization of culture conditions for bacterial cellulose production from Gluconacetobacterhansenii UAC09. Ann Microbiol 61(4):781–787CrossRef Rani MU, Appaiah A (2011) Optimization of culture conditions for bacterial cellulose production from Gluconacetobacterhansenii UAC09. Ann Microbiol 61(4):781–787CrossRef
41.
Zurück zum Zitat Molina-Ramírez C, Castro M, Osorio M, Torres-Taborda M, Gómez B, Zuluaga R, Castro C (2017) Effect of different carbon sources on bacterial nanocellulose production and structure using the low pH resistant strain Komagataeibactermedellinensis. Mater 10(6):639CrossRef Molina-Ramírez C, Castro M, Osorio M, Torres-Taborda M, Gómez B, Zuluaga R, Castro C (2017) Effect of different carbon sources on bacterial nanocellulose production and structure using the low pH resistant strain Komagataeibactermedellinensis. Mater 10(6):639CrossRef
42.
Zurück zum Zitat Lin SP, Kuo TC, Wang HT, Ting Y, Hsieh CW, Chen YK, Cheng KC (2020) Enhanced bioethanol production using atmospheric cold plasma-assisted detoxification of sugarcane bagasse hydrolysate. Biores Technol 313:123704CrossRef Lin SP, Kuo TC, Wang HT, Ting Y, Hsieh CW, Chen YK, Cheng KC (2020) Enhanced bioethanol production using atmospheric cold plasma-assisted detoxification of sugarcane bagasse hydrolysate. Biores Technol 313:123704CrossRef
Metadaten
Titel
Pineapple peel as alternative substrate for bacterial nanocellulose production
verfasst von
Adriana Connie Lee
Madihah Md Salleh
Mohamad Faizal Ibrahim
Ezyana Kamal Bahrin
Mohd Azwan Jenol
Suraini Abd-Aziz
Publikationsdatum
08.08.2022
Verlag
Springer Berlin Heidelberg
Erschienen in
Biomass Conversion and Biorefinery / Ausgabe 4/2024
Print ISSN: 2190-6815
Elektronische ISSN: 2190-6823
DOI
https://doi.org/10.1007/s13399-022-03169-7

Weitere Artikel der Ausgabe 4/2024

Biomass Conversion and Biorefinery 4/2024 Zur Ausgabe