Skip to main content
Erschienen in: Journal of Materials Science 9/2018

01.02.2018 | Computation

Planar impacts on nanocrystalline SiC: a comparison of different potentials

verfasst von: Wanghui Li, Xiaohu Yao, Xiaoqing Zhang

Erschienen in: Journal of Materials Science | Ausgabe 9/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Silicon carbide ceramics under shock loading is an important aspect in studying their physical and mechanical properties. Molecular dynamics simulations have been carried out using Tersoff-1989, Tersoff-1994, Tersoff-2005 and Vashishta potentials, respectively. The Hugoniot states including compression stress, shear stress, temperature and shock wave velocity are calculated, as well as shock-induced plasticity and the shock wave fronts. A comprehensive comparison among different potentials, as well as comparison to current available experiments, has been made. Tersoff-1989, Tersoff-1994 and Tersoff-2005 potentials are easily to overestimate the shock stress, shear stress and temperature, as well as shock wave velocity, while Vashishta potential shows excellent agreement with experimental data. The Hugoniot elastic limit is ~ 14.5 GPa and the maximum shear stress is ~ 6 GPa using Vashishta potential which are in good agreement with experiments, while Tersoff-like potentials yield much higher values. Due to differences in radial distribution function among these potentials, Vashishta potential is prone to produce plasticity and structural phase transformation basing on the statistics of the coordination numbers of atoms. Besides, the shock wave fronts show little difference among these potentials under elastic shock compression at low particle velocity. However, when it comes to high shock intensity resulting in plasticity or phase transition, the Tersoff-1989 and Tersoff-1994 produce the widest shock wave fronts, followed by Tersoff-2005, while Vashishta potential has the narrowest wave front. By comprehensive comparisons, the Vashishta potential is demonstrated to be the most suitable one to describe the silicon carbides ceramics under shock loadings. Our work provides useful information to select a suitable potential to study the shock response of silicon carbides ceramics using molecular dynamics simulations.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Hsu SM, Shen M (2004) Wear prediction of ceramics. Wear 256:867 Hsu SM, Shen M (2004) Wear prediction of ceramics. Wear 256:867
2.
Zurück zum Zitat Weitzel CE, Palmour JW, Carter CH, Moore K, Nordquist KJ, Allen S, Thero C, Bhatnagar M (1996) Silicon carbide high-power devices. IEEE Trans Electron Devices 43:10 Weitzel CE, Palmour JW, Carter CH, Moore K, Nordquist KJ, Allen S, Thero C, Bhatnagar M (1996) Silicon carbide high-power devices. IEEE Trans Electron Devices 43:10
3.
Zurück zum Zitat Gooh WA (2001) In: McCauley JW et al (eds) Ceramic armor materials. The American Ceramic Society, Weaterivlle, pp 3–21 Gooh WA (2001) In: McCauley JW et al (eds) Ceramic armor materials. The American Ceramic Society, Weaterivlle, pp 3–21
4.
Zurück zum Zitat Hogg PJ (2006) Composites in armor. Science 314:1100 Hogg PJ (2006) Composites in armor. Science 314:1100
5.
Zurück zum Zitat Drolshagen G (2008) Impact effects from small size meteoroids and space debris. Adv Space Res 41:1123–1131 Drolshagen G (2008) Impact effects from small size meteoroids and space debris. Adv Space Res 41:1123–1131
6.
Zurück zum Zitat Mcbride N, McDonnell JAM (1999) Meteoroid impacts on spacecraft: sporadics, streams, and the 1999 Leonids. Planet Space Sci 47:1005–1013 Mcbride N, McDonnell JAM (1999) Meteoroid impacts on spacecraft: sporadics, streams, and the 1999 Leonids. Planet Space Sci 47:1005–1013
7.
Zurück zum Zitat Christiansen EL, Hyde JL, Bernhard RP (2004) Space shuttle debris and meteoroid impacts. Adv Space Res 34:1097–1103 Christiansen EL, Hyde JL, Bernhard RP (2004) Space shuttle debris and meteoroid impacts. Adv Space Res 34:1097–1103
8.
Zurück zum Zitat Feng R, Raiser GF, Gupta YM (1996) Shock response of polycrystalline silicon carbide undergoing inelastic deformation. J Appl Phys 79(3):1378–1387 Feng R, Raiser GF, Gupta YM (1996) Shock response of polycrystalline silicon carbide undergoing inelastic deformation. J Appl Phys 79(3):1378–1387
9.
Zurück zum Zitat Feng R, Raiser GF, Gupta YM (1998) Material strength and inelastic deformation of silicon carbide under shock wave compression. J Appl Phys 83(1):79–86 Feng R, Raiser GF, Gupta YM (1998) Material strength and inelastic deformation of silicon carbide under shock wave compression. J Appl Phys 83(1):79–86
10.
Zurück zum Zitat Yuan G, Feng R, Gupta YM (2001) Compression and shear wave measurements to characterize the shocked state in silicon carbide. J Appl Phys 89(10):5372–5380 Yuan G, Feng R, Gupta YM (2001) Compression and shear wave measurements to characterize the shocked state in silicon carbide. J Appl Phys 89(10):5372–5380
11.
Zurück zum Zitat Grady DE (1998) Shock-wave compression of brittle solids. Mech Mater 29:181–203 Grady DE (1998) Shock-wave compression of brittle solids. Mech Mater 29:181–203
12.
Zurück zum Zitat Shih CJ, Meyers MA, Nesterenko VF (1998) High-strain-rate deformation of granular silicon carbide. Acta Mater 46(11):4037–4065 Shih CJ, Meyers MA, Nesterenko VF (1998) High-strain-rate deformation of granular silicon carbide. Acta Mater 46(11):4037–4065
13.
Zurück zum Zitat Sarva S, Nemat-Nasser S (2001) Dynamic compressive strength of silicon carbide under uniaxial compression. Mater Sci Eng A 317:140–144 Sarva S, Nemat-Nasser S (2001) Dynamic compressive strength of silicon carbide under uniaxial compression. Mater Sci Eng A 317:140–144
14.
Zurück zum Zitat Wang H, Ramesh KT (2004) Dynamic strength and fragmentation of hot-pressed silicon carbide under uniaxial compression. Acta Mater 52(2):355–367 Wang H, Ramesh KT (2004) Dynamic strength and fragmentation of hot-pressed silicon carbide under uniaxial compression. Acta Mater 52(2):355–367
15.
Zurück zum Zitat Vogler TJ, Reinhart WD, Chhabildas LC, Dandekar DP (2006) Hugoniot and strength behavior of silicon carbide. J Appl Phys 99(2):023512 Vogler TJ, Reinhart WD, Chhabildas LC, Dandekar DP (2006) Hugoniot and strength behavior of silicon carbide. J Appl Phys 99(2):023512
16.
Zurück zum Zitat Millett JCF, Bourne NK, Dandekar DP (2005) Delayed failure in a shock-loaded silicon carbide. J Appl Phys 97(11):113513 Millett JCF, Bourne NK, Dandekar DP (2005) Delayed failure in a shock-loaded silicon carbide. J Appl Phys 97(11):113513
17.
Zurück zum Zitat Paris V, Frage N, Dariel MP, Zaretsky E (2010) The spall strength of silicon carbide and boron carbide ceramics processed by spark plasma sintering. Int J Impact Eng 37(11):1092–1099 Paris V, Frage N, Dariel MP, Zaretsky E (2010) The spall strength of silicon carbide and boron carbide ceramics processed by spark plasma sintering. Int J Impact Eng 37(11):1092–1099
18.
Zurück zum Zitat Anderson CE, Behner T, Holmquist TJ, Orphal DL (2011) Penetration response of silicon carbide as a function of impact velocity. Int J Impact Eng 38(11):892–899 Anderson CE, Behner T, Holmquist TJ, Orphal DL (2011) Penetration response of silicon carbide as a function of impact velocity. Int J Impact Eng 38(11):892–899
19.
Zurück zum Zitat Zhu HY, Ma YZ, Yang HB, Selvi E, Hou DB, Ji C (2008) Synthesis and compression of nanocrystalline silicon carbide. J Appl Phys 104(12):123516 Zhu HY, Ma YZ, Yang HB, Selvi E, Hou DB, Ji C (2008) Synthesis and compression of nanocrystalline silicon carbide. J Appl Phys 104(12):123516
20.
Zurück zum Zitat Zou JH, Ye ZQ, Cao BY (2016) Phonon thermal properties of graphene from molecular dynamics using different potentials. J Chem Phys 145(13):134705 Zou JH, Ye ZQ, Cao BY (2016) Phonon thermal properties of graphene from molecular dynamics using different potentials. J Chem Phys 145(13):134705
21.
Zurück zum Zitat de Tomas C, Suarez-Martinez I, Marks NA (2016) Graphitization of amorphous carbons: a comparative study of interatomic potentials. Carbon 109:681–693 de Tomas C, Suarez-Martinez I, Marks NA (2016) Graphitization of amorphous carbons: a comparative study of interatomic potentials. Carbon 109:681–693
22.
Zurück zum Zitat Dziedzic J, Winczewski S, Rybicki J (2016) Structure and properties of liquid Al–Cu alloys: empirical potentials compared. Comput Mater Sci 114:219–232 Dziedzic J, Winczewski S, Rybicki J (2016) Structure and properties of liquid Al–Cu alloys: empirical potentials compared. Comput Mater Sci 114:219–232
23.
Zurück zum Zitat Hao JN, Shu XL, Jin S, Zhang XS, Zhang Y, Lu GH (2017) A comparison of interatomic potentials for modeling tungsten nanocluster structures. Nucl Instrum Methods Phys Res Sect B Beam Interact Mater Atoms 393:180–185 Hao JN, Shu XL, Jin S, Zhang XS, Zhang Y, Lu GH (2017) A comparison of interatomic potentials for modeling tungsten nanocluster structures. Nucl Instrum Methods Phys Res Sect B Beam Interact Mater Atoms 393:180–185
24.
Zurück zum Zitat Kanski M, Maciazek D, Golumski M, Postawa Z (2017) Sputtering of octatetraene by 15 keV C60 projectiles: comparison of reactive interatomic potentials. Nucl Instrum Methods Phys Res Sect B Beam Interact Mater Atoms 393:29–33 Kanski M, Maciazek D, Golumski M, Postawa Z (2017) Sputtering of octatetraene by 15 keV C60 projectiles: comparison of reactive interatomic potentials. Nucl Instrum Methods Phys Res Sect B Beam Interact Mater Atoms 393:29–33
25.
Zurück zum Zitat Tersoff J (1989) Modeling solid-state chemistry: interatomic potentials for multicomponent systems. Phys Rev B 39(8):5566 Tersoff J (1989) Modeling solid-state chemistry: interatomic potentials for multicomponent systems. Phys Rev B 39(8):5566
26.
Zurück zum Zitat Tersoff J (1990) Carbon defects and defect reactions in silicon. Phys Rev Lett 64(15):1757 Tersoff J (1990) Carbon defects and defect reactions in silicon. Phys Rev Lett 64(15):1757
27.
Zurück zum Zitat Tersoff J (1994) Chemical order in amorphous silicon carbide. Phys Rev B 49(23):16349 Tersoff J (1994) Chemical order in amorphous silicon carbide. Phys Rev B 49(23):16349
28.
Zurück zum Zitat Makeev Maxim A, Srivastava Deepak (2006) Silicon carbide nanowires under external loads: an atomistic simulation study. Phys Rev B 74:165303 Makeev Maxim A, Srivastava Deepak (2006) Silicon carbide nanowires under external loads: an atomistic simulation study. Phys Rev B 74:165303
29.
Zurück zum Zitat Makeev Maxim A, Sundaresh Suman, Srivastava Deepak (2009) Shock-wave propagation through pristine a-SiC and carbon-nanotube-reinforced a-SiC matrix composites. J Appl Phys 106:014311 Makeev Maxim A, Sundaresh Suman, Srivastava Deepak (2009) Shock-wave propagation through pristine a-SiC and carbon-nanotube-reinforced a-SiC matrix composites. J Appl Phys 106:014311
30.
Zurück zum Zitat Bringuier S, Manga VR, Runge K, Deymier P, Muralidharan K (2015) Grain boundary dynamics of SiC bicrystals under shear deformation. Mater Sci Eng, A 634:161–166 Bringuier S, Manga VR, Runge K, Deymier P, Muralidharan K (2015) Grain boundary dynamics of SiC bicrystals under shear deformation. Mater Sci Eng, A 634:161–166
31.
Zurück zum Zitat Lee WH, Yao XH, Jian WR, Han Q (2015) High-velocity shock compression of SiC via molecular dynamics simulation. Comput Mater Sci 98:297–303 Lee WH, Yao XH, Jian WR, Han Q (2015) High-velocity shock compression of SiC via molecular dynamics simulation. Comput Mater Sci 98:297–303
32.
Zurück zum Zitat Devanathan R, Diaz de la Rubia T, Weber WJ (1998) J Nucl Mater 253:47 Devanathan R, Diaz de la Rubia T, Weber WJ (1998) J Nucl Mater 253:47
33.
Zurück zum Zitat Erhart P, Albe K (2005) Analytical potential for atomistic simulations of silicon, carbon, and silicon carbide. Phys Rev B 71(3):035211 Erhart P, Albe K (2005) Analytical potential for atomistic simulations of silicon, carbon, and silicon carbide. Phys Rev B 71(3):035211
34.
Zurück zum Zitat Vashishta P et al (2007) Interaction potential for silicon carbide: a molecular dynamics study of elastic constants and vibrational density of states for crystalline and amorphous silicon carbide. J Appl Phys 101(10):103515 Vashishta P et al (2007) Interaction potential for silicon carbide: a molecular dynamics study of elastic constants and vibrational density of states for crystalline and amorphous silicon carbide. J Appl Phys 101(10):103515
35.
Zurück zum Zitat Tsuzuki H, Rino JP, Branicio PS (2011) Dynamic behaviour of silicon carbide nanowires under high and extreme strain rates: a molecular dynamics study. J Phys D Appl Phys 44:055405 (8pp) Tsuzuki H, Rino JP, Branicio PS (2011) Dynamic behaviour of silicon carbide nanowires under high and extreme strain rates: a molecular dynamics study. J Phys D Appl Phys 44:055405 (8pp)
36.
Zurück zum Zitat Branicio PS, Kalia RK, Nakano A, Vashishta P (2010) Nanoductility induced brittle fracture in shocked high performance ceramics. Appl Phys Lett 97:111903 Branicio PS, Kalia RK, Nakano A, Vashishta P (2010) Nanoductility induced brittle fracture in shocked high performance ceramics. Appl Phys Lett 97:111903
37.
Zurück zum Zitat Zhang J, Branicio PS (2014) Molecular dynamics simulations of plane shock loading in SiC. Procedia Eng 75:150–153 Zhang J, Branicio PS (2014) Molecular dynamics simulations of plane shock loading in SiC. Procedia Eng 75:150–153
38.
Zurück zum Zitat Li WH, Yao XH (2016) The spall of single crystal SiC: the effects of shock pulse duration. Computat Mater Sci 124:151–159 Li WH, Yao XH (2016) The spall of single crystal SiC: the effects of shock pulse duration. Computat Mater Sci 124:151–159
39.
Zurück zum Zitat Li WH, Yao XH, Branicio PS (2017) X, Q, Zhang and N. B. Zhang, Shock-induced spall in single and nanocrystalline SiC. Acta Mater 140:274–289 Li WH, Yao XH, Branicio PS (2017) X, Q, Zhang and N. B. Zhang, Shock-induced spall in single and nanocrystalline SiC. Acta Mater 140:274–289
42.
Zurück zum Zitat Marsh SP (1980) LSAL shock hugoniot data. University of California Press, Berkeley Marsh SP (1980) LSAL shock hugoniot data. University of California Press, Berkeley
43.
Zurück zum Zitat Yosida M, Onodera A, Ueno M, Takemura K, Shimomura O (1993) Pressure-induced phase transition in SiC. Phys Rev B 48:10587 Yosida M, Onodera A, Ueno M, Takemura K, Shimomura O (1993) Pressure-induced phase transition in SiC. Phys Rev B 48:10587
44.
Zurück zum Zitat Shimojo F, Ebbsjo I, Kalia RK, Nakano A, Rino JP, Vashishta P (2000) Molecular dynamics simulation of structural transformation in silicon carbide under pressure. Phys Rev Lett 84:15 Shimojo F, Ebbsjo I, Kalia RK, Nakano A, Rino JP, Vashishta P (2000) Molecular dynamics simulation of structural transformation in silicon carbide under pressure. Phys Rev Lett 84:15
Metadaten
Titel
Planar impacts on nanocrystalline SiC: a comparison of different potentials
verfasst von
Wanghui Li
Xiaohu Yao
Xiaoqing Zhang
Publikationsdatum
01.02.2018
Verlag
Springer US
Erschienen in
Journal of Materials Science / Ausgabe 9/2018
Print ISSN: 0022-2461
Elektronische ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-018-1985-1

Weitere Artikel der Ausgabe 9/2018

Journal of Materials Science 9/2018 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.