Skip to main content
Erschienen in: Archive of Applied Mechanics 5/2020

02.01.2020 | Original

Plane strain gradient elastic rectangle in bending

verfasst von: Antonios Charalambopoulos, Stephanos V. Tsinopoulos, Demosthenes Polyzos

Erschienen in: Archive of Applied Mechanics | Ausgabe 5/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The present paper can be considered as an extension of the work (Charalambopoulos and Polyzos in Arch Appl Mech 85:1421–1438, 2015). The simplest possible elastostatic version of Mindlin’s strain gradient elastic (SGE) theory is employed for the solution of a SGE rectangle in bending under plane strain conditions. The equilibrium equations as well as expressions for all types of stresses and boundary conditions appearing in the considered rectangle are explicitly provided. An improved version of Mindlin’s solution procedure via potentials is proposed. Besides, an elegant solution representation that contains the solution of the corresponding classical elastic problem is demonstrated. Results of six plane strain bending problems, which reveal a significant diversification from the classical elasticity theory and specific features of the underlying microstructure, are addressed and discussed.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Exadaktylos, G.E., Vardoulakis, I.: Microstructure in linear elasticity and scale effects: a reconsideration of basic rock mechanics and rock fracture mechanics. Tectonophysics 335, 81–109 (2001)CrossRef Exadaktylos, G.E., Vardoulakis, I.: Microstructure in linear elasticity and scale effects: a reconsideration of basic rock mechanics and rock fracture mechanics. Tectonophysics 335, 81–109 (2001)CrossRef
2.
Zurück zum Zitat Polyzos, D., Fotiadis, D.I.: Derivation of Mindlin’s gradient elastic theory via simple lattice and continuum models. Int. J. Solids Struct. 49, 470–480 (2012)CrossRef Polyzos, D., Fotiadis, D.I.: Derivation of Mindlin’s gradient elastic theory via simple lattice and continuum models. Int. J. Solids Struct. 49, 470–480 (2012)CrossRef
4.
Zurück zum Zitat Mindlin, R.D.: Second gradient of strain and surface-tension in linear elasticity. Int. J. Solids Struct. 1, 417–438 (1965)CrossRef Mindlin, R.D.: Second gradient of strain and surface-tension in linear elasticity. Int. J. Solids Struct. 1, 417–438 (1965)CrossRef
6.
Zurück zum Zitat Polyzos, D., Tsepoura, K.G., Tsinopoulos, S.V., Beskos, D.E.: A boundary element method for solving 2D and 3D static gradient elastic problems, Part 1: integral formulation. Comput. Methods Appl. Mech. Eng. 192, 2845–2873 (2003)CrossRefMATH Polyzos, D., Tsepoura, K.G., Tsinopoulos, S.V., Beskos, D.E.: A boundary element method for solving 2D and 3D static gradient elastic problems, Part 1: integral formulation. Comput. Methods Appl. Mech. Eng. 192, 2845–2873 (2003)CrossRefMATH
7.
Zurück zum Zitat Lazar, M., Maugin, G.A.: Nonsingular stress and strain fields of dislocations and disclinations in first strain gradient elasticity. Int. J. Eng. Sci. 43, 1157–1184 (2005)CrossRefMathSciNetMATH Lazar, M., Maugin, G.A.: Nonsingular stress and strain fields of dislocations and disclinations in first strain gradient elasticity. Int. J. Eng. Sci. 43, 1157–1184 (2005)CrossRefMathSciNetMATH
8.
Zurück zum Zitat Gao, X.-L., Park, S.K.: Variational formulation of a simplified strain gradient elasticity theory and its application to pressurized thick-walled cylinder problem. Int. J. Solids Struct. 44, 7486–7499 (2007)CrossRefMATH Gao, X.-L., Park, S.K.: Variational formulation of a simplified strain gradient elasticity theory and its application to pressurized thick-walled cylinder problem. Int. J. Solids Struct. 44, 7486–7499 (2007)CrossRefMATH
9.
Zurück zum Zitat Gourgiotis, P.A., Georgiadis, H.G.: Plane-strain crack problems in microstructured solids governed by dipolar gradient elasticity. J. Mech. Phys. Solids 57, 1898–1920 (2009)CrossRefMathSciNetMATH Gourgiotis, P.A., Georgiadis, H.G.: Plane-strain crack problems in microstructured solids governed by dipolar gradient elasticity. J. Mech. Phys. Solids 57, 1898–1920 (2009)CrossRefMathSciNetMATH
10.
Zurück zum Zitat Tekoglu, C., Onck, P.R.: Size effects in two-dimensional Voronoi foams: a comparison between generalized continua and discrete models. J. Mech. Phys. Solids 56, 3541–3564 (2008)CrossRefMATH Tekoglu, C., Onck, P.R.: Size effects in two-dimensional Voronoi foams: a comparison between generalized continua and discrete models. J. Mech. Phys. Solids 56, 3541–3564 (2008)CrossRefMATH
11.
Zurück zum Zitat Georgiadis, H.G., Anagnostou, D.S.: Problems of the Flamant–Boussinesq and Kelvin type in dipolar gradient elasticity. J. Elast. 90, 71–98 (2008)CrossRefMathSciNetMATH Georgiadis, H.G., Anagnostou, D.S.: Problems of the Flamant–Boussinesq and Kelvin type in dipolar gradient elasticity. J. Elast. 90, 71–98 (2008)CrossRefMathSciNetMATH
12.
Zurück zum Zitat Neff, P., Jeong, J., Ramézani, H.: Subgrid interaction and micro-randomness: novel invariance requirements in infinitesimal gradient elasticity. Int. J. Solids Struct. 46, 4261–4276 (2009)CrossRefMATH Neff, P., Jeong, J., Ramézani, H.: Subgrid interaction and micro-randomness: novel invariance requirements in infinitesimal gradient elasticity. Int. J. Solids Struct. 46, 4261–4276 (2009)CrossRefMATH
13.
Zurück zum Zitat Froiio, F., Zervos, A., Vardoulakis, I.: On natural boundary conditions in linear 2nd-grade elasticity in mechanics of generalized continua. In: Maugin GA, Metrikine AV (eds), pp. 211–221. Springer, Berlin (2010) Froiio, F., Zervos, A., Vardoulakis, I.: On natural boundary conditions in linear 2nd-grade elasticity in mechanics of generalized continua. In: Maugin GA, Metrikine AV (eds), pp. 211–221. Springer, Berlin (2010)
14.
Zurück zum Zitat Karlis, G.F., Charalambopoulos, A., Polyzos, D.: An advanced boundary element method for solving 2D and 3D static problems in Mindlin’s strain-gradient theory of elasticity. Int. J. Numer. Methods Eng. 83, 1407–1427 (2010)CrossRefMathSciNetMATH Karlis, G.F., Charalambopoulos, A., Polyzos, D.: An advanced boundary element method for solving 2D and 3D static problems in Mindlin’s strain-gradient theory of elasticity. Int. J. Numer. Methods Eng. 83, 1407–1427 (2010)CrossRefMathSciNetMATH
15.
Zurück zum Zitat Askes, H., Aifantis, E.C.: Gradient elasticity in statics and dynamics: an overview of formulations, length scale identification procedures, finite element implementations and new results. Int. J. Solids Struct. 48, 1962–1990 (2011)CrossRef Askes, H., Aifantis, E.C.: Gradient elasticity in statics and dynamics: an overview of formulations, length scale identification procedures, finite element implementations and new results. Int. J. Solids Struct. 48, 1962–1990 (2011)CrossRef
16.
Zurück zum Zitat Forest, S., Trinh, D.K.: Generalized continua and non homogeneous boundary conditions in homogenisation methods. ZAMM. Z. Angew. Math. Mech. 91(2), 90–109 (2011)CrossRefMathSciNetMATH Forest, S., Trinh, D.K.: Generalized continua and non homogeneous boundary conditions in homogenisation methods. ZAMM. Z. Angew. Math. Mech. 91(2), 90–109 (2011)CrossRefMathSciNetMATH
17.
Zurück zum Zitat Forest, S., Sab, K.: Stress gradient continuum theory. Mech. Res. Commun. 40, 16–25 (2012)CrossRef Forest, S., Sab, K.: Stress gradient continuum theory. Mech. Res. Commun. 40, 16–25 (2012)CrossRef
18.
Zurück zum Zitat Sciarra, G., Vidoli, S.: Asymptotic fracture modes in strain-gradient elasticity: size effects and characteristic lengths for isotropic materials. J. Elast. 113, 27–53 (2013)CrossRefMathSciNetMATH Sciarra, G., Vidoli, S.: Asymptotic fracture modes in strain-gradient elasticity: size effects and characteristic lengths for isotropic materials. J. Elast. 113, 27–53 (2013)CrossRefMathSciNetMATH
19.
Zurück zum Zitat Javili, A., dell’Isola, F., Steinmann, P.: Geometrically nonlinear higher-gradient elasticity with energetic boundaries. J. Mech. Phys. Solids 61, 2381–2401 (2013)CrossRefMathSciNetMATH Javili, A., dell’Isola, F., Steinmann, P.: Geometrically nonlinear higher-gradient elasticity with energetic boundaries. J. Mech. Phys. Solids 61, 2381–2401 (2013)CrossRefMathSciNetMATH
20.
Zurück zum Zitat Broese, C., Tsakmakis, C., Beskos, D.E.: Mindlin’s micro-structural and gradient elasticity theories and their thermodynamics. J. Elast. 125, 87–132 (2016)CrossRefMathSciNetMATH Broese, C., Tsakmakis, C., Beskos, D.E.: Mindlin’s micro-structural and gradient elasticity theories and their thermodynamics. J. Elast. 125, 87–132 (2016)CrossRefMathSciNetMATH
21.
Zurück zum Zitat Ojaghnezhada, F., Shodja, H.M.: Surface elasticity revisited in the context of second strain gradient theory. Mech. Mater. 93, 220–237 (2016)CrossRef Ojaghnezhada, F., Shodja, H.M.: Surface elasticity revisited in the context of second strain gradient theory. Mech. Mater. 93, 220–237 (2016)CrossRef
22.
Zurück zum Zitat Forest, S.: Nonlinear regularization operators as derived from the micromorphic approach to gradient elasticity, viscoplasticity and damage. Proc. R. Soc. A 472, 20150755 (2016)CrossRefMathSciNetMATH Forest, S.: Nonlinear regularization operators as derived from the micromorphic approach to gradient elasticity, viscoplasticity and damage. Proc. R. Soc. A 472, 20150755 (2016)CrossRefMathSciNetMATH
23.
Zurück zum Zitat Polizzotto, C.: Stress gradient versus strain gradient constitutive models within elasticity. Int. J. Solids Struct. 51, 1809–1818 (2014)CrossRef Polizzotto, C.: Stress gradient versus strain gradient constitutive models within elasticity. Int. J. Solids Struct. 51, 1809–1818 (2014)CrossRef
24.
Zurück zum Zitat Polizzotto, C.: A note on the higher order strain and stress tensors within deformation gradient elasticity theories: physical interpretations and comparisons. Int. J. Solids Struct. 90, 116–121 (2016)CrossRef Polizzotto, C.: A note on the higher order strain and stress tensors within deformation gradient elasticity theories: physical interpretations and comparisons. Int. J. Solids Struct. 90, 116–121 (2016)CrossRef
25.
Zurück zum Zitat Polizzotto, C.: A hierarchy of simplified constitutive models within isotropic strain gradient elasticity. Eur J. Mech. A/Solids 61, 92–109 (2017)CrossRefMathSciNetMATH Polizzotto, C.: A hierarchy of simplified constitutive models within isotropic strain gradient elasticity. Eur J. Mech. A/Solids 61, 92–109 (2017)CrossRefMathSciNetMATH
26.
Zurück zum Zitat Lazar, M., Po, G.: On Mindlin’s isotropic strain gradient elasticity: green tensors, regularization and operator-split. J. Micromech. Mol. Phys. 3(3), 1840008 (2018)CrossRef Lazar, M., Po, G.: On Mindlin’s isotropic strain gradient elasticity: green tensors, regularization and operator-split. J. Micromech. Mol. Phys. 3(3), 1840008 (2018)CrossRef
27.
Zurück zum Zitat Bleustein, J.L.: Effects of micro-structure on the stress concentration at a sphere cavity. Int. J. Solids Struct. 2, 83–104 (1966)CrossRef Bleustein, J.L.: Effects of micro-structure on the stress concentration at a sphere cavity. Int. J. Solids Struct. 2, 83–104 (1966)CrossRef
28.
Zurück zum Zitat Cook, T.S., Weitsman, Y.: Strain-gradient effects around spherical inclusions and cavities. Int. J. Solids Struct. 2, 393–406 (1966)CrossRef Cook, T.S., Weitsman, Y.: Strain-gradient effects around spherical inclusions and cavities. Int. J. Solids Struct. 2, 393–406 (1966)CrossRef
29.
Zurück zum Zitat Eshel, N.N., Rosenfeld, G.: Effects of strain-gradient on the stress concentration at a cylindrical hole in a field of uniaxial tension. J. Eng. Math. 4(2), 97–111 (1970)CrossRefMATH Eshel, N.N., Rosenfeld, G.: Effects of strain-gradient on the stress concentration at a cylindrical hole in a field of uniaxial tension. J. Eng. Math. 4(2), 97–111 (1970)CrossRefMATH
30.
Zurück zum Zitat Eshel, N.N., Rosenfeld, G.: Some two-dimensional exterior problems in a linear elastic solid of grade two, ZAMM- Z. Angew. Math. Mech. 53, 761–772 (1973)CrossRefMATH Eshel, N.N., Rosenfeld, G.: Some two-dimensional exterior problems in a linear elastic solid of grade two, ZAMM- Z. Angew. Math. Mech. 53, 761–772 (1973)CrossRefMATH
31.
Zurück zum Zitat Eshel, N.N., Rosenfeld, G.: Axisymmetric problems in elastic materials of grade two. J. Frankl. Inst. 299(1), 43–51 (1975)CrossRefMATH Eshel, N.N., Rosenfeld, G.: Axisymmetric problems in elastic materials of grade two. J. Frankl. Inst. 299(1), 43–51 (1975)CrossRefMATH
32.
Zurück zum Zitat Li, S., Miskioglu, I., Altan, B.S.: Solution to line loading of a semi-infinite solid in gradient elasticity. Int. J. Solids Struct. 41, 3395–3410 (2004)CrossRefMATH Li, S., Miskioglu, I., Altan, B.S.: Solution to line loading of a semi-infinite solid in gradient elasticity. Int. J. Solids Struct. 41, 3395–3410 (2004)CrossRefMATH
33.
Zurück zum Zitat Anagnostou, D.S., Gourgiotis, P.A., Georgiadis, H.G.: The Cerruti problem in dipolar gradient elasticity. Math. Mech. Solids 20, 1088–1106 (2015)CrossRefMathSciNetMATH Anagnostou, D.S., Gourgiotis, P.A., Georgiadis, H.G.: The Cerruti problem in dipolar gradient elasticity. Math. Mech. Solids 20, 1088–1106 (2015)CrossRefMathSciNetMATH
34.
Zurück zum Zitat Gourgiotis, P.A., Zisis, Th, Georgiadis, H.G.: On concentrated surface loads and Green’s functions in the Toupin–Mindlin theory of strain-gradient elasticity. Int. J. Solids Struct. 130–131, 153–171 (2018)CrossRef Gourgiotis, P.A., Zisis, Th, Georgiadis, H.G.: On concentrated surface loads and Green’s functions in the Toupin–Mindlin theory of strain-gradient elasticity. Int. J. Solids Struct. 130–131, 153–171 (2018)CrossRef
35.
Zurück zum Zitat Aravas, N., Giannakopoulos, A.E.: Plane asymptotic crack-tip solutions in gradient elasticity. Int. J. Solids Struct. 46, 4478–4503 (2009)CrossRefMATH Aravas, N., Giannakopoulos, A.E.: Plane asymptotic crack-tip solutions in gradient elasticity. Int. J. Solids Struct. 46, 4478–4503 (2009)CrossRefMATH
36.
Zurück zum Zitat Gao, X.-L., Ma, H.M.: Solution of Eshelby’s inclusion problem with a bounded domain and Eshelby’s tensor for a spherical inclusion in a finite spherical matrix based on a simplified strain gradient elasticity theory. J. Mech. Phys. Solids 58, 779–779 (2010)CrossRefMathSciNetMATH Gao, X.-L., Ma, H.M.: Solution of Eshelby’s inclusion problem with a bounded domain and Eshelby’s tensor for a spherical inclusion in a finite spherical matrix based on a simplified strain gradient elasticity theory. J. Mech. Phys. Solids 58, 779–779 (2010)CrossRefMathSciNetMATH
37.
Zurück zum Zitat Ma, H.M., Gao, X.-L.: Strain gradient solution for a finite-domain Eshelby-type plane strain inclusion problem and Eshelby’s tensor for a cylindrical inclusion in a finite elastic matrix. Int. J. Solids Struct. 48(2011), 44–55 (2011)CrossRefMATH Ma, H.M., Gao, X.-L.: Strain gradient solution for a finite-domain Eshelby-type plane strain inclusion problem and Eshelby’s tensor for a cylindrical inclusion in a finite elastic matrix. Int. J. Solids Struct. 48(2011), 44–55 (2011)CrossRefMATH
38.
Zurück zum Zitat Charalambopoulos, A., Polyzos, D.: Plane strain gradient elastic rectangle in tension. Arch. Appl. Mech. 85, 1421–1438 (2015)CrossRefMATH Charalambopoulos, A., Polyzos, D.: Plane strain gradient elastic rectangle in tension. Arch. Appl. Mech. 85, 1421–1438 (2015)CrossRefMATH
39.
Zurück zum Zitat Papargyri-Beskou, S., Tsinopoulos, S.V.: Lame’s strain potential method for plain gradient elasticity problems. Arch. Appl. Mech. 9–10, 1399–1419 (2015)CrossRefMATH Papargyri-Beskou, S., Tsinopoulos, S.V.: Lame’s strain potential method for plain gradient elasticity problems. Arch. Appl. Mech. 9–10, 1399–1419 (2015)CrossRefMATH
40.
Zurück zum Zitat Khakalo, S., Niiranen, J.: Gradient-elastic stress analysis near cylindrical holes in a plane under bi-axial tension fields. Int. J. Solids Struct. 110–111, 351–366 (2017)CrossRef Khakalo, S., Niiranen, J.: Gradient-elastic stress analysis near cylindrical holes in a plane under bi-axial tension fields. Int. J. Solids Struct. 110–111, 351–366 (2017)CrossRef
41.
Zurück zum Zitat Khakalo, S., Niiranen, J.: Form II of Mindlin’s second strain gradient theory of elasticity with a simplification: for materials and structures from nano- to macro-scales. Eur. J. Mech. A/Solids 71, 292–319 (2018)CrossRefMathSciNetMATH Khakalo, S., Niiranen, J.: Form II of Mindlin’s second strain gradient theory of elasticity with a simplification: for materials and structures from nano- to macro-scales. Eur. J. Mech. A/Solids 71, 292–319 (2018)CrossRefMathSciNetMATH
42.
Zurück zum Zitat Papargyri-Beskou, S., Tsepoura, K.G., Polyzos, D., Beskos, D.E.: Bending and stability analysis of gradient elastic beams. Int. J. Solids Struct.40, 385–400 and 42, 4911–4912 (2003) Papargyri-Beskou, S., Tsepoura, K.G., Polyzos, D., Beskos, D.E.: Bending and stability analysis of gradient elastic beams. Int. J. Solids Struct.40, 385–400 and 42, 4911–4912 (2003)
43.
Zurück zum Zitat Giannakopoulos, A.E., Stamoulis, K.: Structural analysis of gradient elastic components. Int. J. Solids Struct. 44, 3440–3451 (2007)CrossRefMATH Giannakopoulos, A.E., Stamoulis, K.: Structural analysis of gradient elastic components. Int. J. Solids Struct. 44, 3440–3451 (2007)CrossRefMATH
44.
Zurück zum Zitat Kong, S., Zhou, S., Nie, Z., Wang, K.: Static and dynamic analysis of micro beams based on strain gradient elasticity theory. Int. J. Eng. Sci. 47, 487–498 (2009)CrossRefMathSciNetMATH Kong, S., Zhou, S., Nie, Z., Wang, K.: Static and dynamic analysis of micro beams based on strain gradient elasticity theory. Int. J. Eng. Sci. 47, 487–498 (2009)CrossRefMathSciNetMATH
45.
Zurück zum Zitat Papargyri-Beskou, S., Beskos, D.E.: Static analysis of gradient elastic bars, beams, plates and shells. Open Mech. J. 4, 65–73 (2010) Papargyri-Beskou, S., Beskos, D.E.: Static analysis of gradient elastic bars, beams, plates and shells. Open Mech. J. 4, 65–73 (2010)
46.
Zurück zum Zitat Lazopoulos, K.A., Lazopoulos, A.K.: Bending and buckling of thin strain gradient elastic beams. Eur. J. Mech. A/Solids 29, 837–843 (2010)CrossRef Lazopoulos, K.A., Lazopoulos, A.K.: Bending and buckling of thin strain gradient elastic beams. Eur. J. Mech. A/Solids 29, 837–843 (2010)CrossRef
47.
Zurück zum Zitat Wang, B., Zhao, J., Zhou, S.: A micro scale Timoshenko beam model based on strain gradient elasticity theory. Eur. J. Mech. A/Solids 29, 591–599 (2010)CrossRef Wang, B., Zhao, J., Zhou, S.: A micro scale Timoshenko beam model based on strain gradient elasticity theory. Eur. J. Mech. A/Solids 29, 591–599 (2010)CrossRef
48.
Zurück zum Zitat Xia, W., Wang, L., Yin, L.: Nonlinear non-classical microscale beams: static bending, postbuckling and free vibration. Int. J. Eng. Sci. 48, 2044–2053 (2010)CrossRefMathSciNetMATH Xia, W., Wang, L., Yin, L.: Nonlinear non-classical microscale beams: static bending, postbuckling and free vibration. Int. J. Eng. Sci. 48, 2044–2053 (2010)CrossRefMathSciNetMATH
49.
Zurück zum Zitat Akgöz, B., Civalek, Ö.: Analysis of micro-sized beams for various boundary conditions based on the strain gradient elasticity theory. Arch. Appl. Mech. 82, 423–443 (2012)CrossRefMATH Akgöz, B., Civalek, Ö.: Analysis of micro-sized beams for various boundary conditions based on the strain gradient elasticity theory. Arch. Appl. Mech. 82, 423–443 (2012)CrossRefMATH
50.
Zurück zum Zitat Giannakopoulos, A.E., Petridis, S., Sophianopoulos, D.S.: Dipolar gradient elasticity of cables. Int. J. Solids Struct. 49, 1259–1265 (2012)CrossRef Giannakopoulos, A.E., Petridis, S., Sophianopoulos, D.S.: Dipolar gradient elasticity of cables. Int. J. Solids Struct. 49, 1259–1265 (2012)CrossRef
51.
Zurück zum Zitat Amiot, F.: An Euler–Bernoulli second strain gradient beam theory for cantilever sensors. Philos. Mag. Lett. 93(4), 204–212 (2013)CrossRef Amiot, F.: An Euler–Bernoulli second strain gradient beam theory for cantilever sensors. Philos. Mag. Lett. 93(4), 204–212 (2013)CrossRef
52.
Zurück zum Zitat Challamel, N.: Higher-order shear beam theories and enriched continuum. Mech. Res. Commun. 38, 388–392 (2011)CrossRefMATH Challamel, N.: Higher-order shear beam theories and enriched continuum. Mech. Res. Commun. 38, 388–392 (2011)CrossRefMATH
53.
Zurück zum Zitat Challamel, N.: Variational formulation of gradient or/and nonlocal higher-order shear elasticity beams. Compos. Struct. 105, 351–368 (2013)CrossRef Challamel, N.: Variational formulation of gradient or/and nonlocal higher-order shear elasticity beams. Compos. Struct. 105, 351–368 (2013)CrossRef
54.
Zurück zum Zitat Triantafyllou, A., Giannakopoulos, A.E.: Structural analysis using a dipolar elastic Timoshenko beam. Eur. J. Mech. A/Solids 39, 218–228 (2013)CrossRefMathSciNetMATH Triantafyllou, A., Giannakopoulos, A.E.: Structural analysis using a dipolar elastic Timoshenko beam. Eur. J. Mech. A/Solids 39, 218–228 (2013)CrossRefMathSciNetMATH
55.
Zurück zum Zitat Eltaher, M.A., Hamed, M.A., Sadoun, A.M., Mansour, A.: Mechanical analysis of higher order gradient nanobeams. Appl. Math. Comput. 229, 260–272 (2014)MathSciNetMATH Eltaher, M.A., Hamed, M.A., Sadoun, A.M., Mansour, A.: Mechanical analysis of higher order gradient nanobeams. Appl. Math. Comput. 229, 260–272 (2014)MathSciNetMATH
56.
Zurück zum Zitat Jafari, A., Ezzati, M.: Investigating the non-classical boundary conditions relevant to strain gradient theories. Physica E 86, 88–102 (2017)CrossRef Jafari, A., Ezzati, M.: Investigating the non-classical boundary conditions relevant to strain gradient theories. Physica E 86, 88–102 (2017)CrossRef
57.
Zurück zum Zitat Gortsas, T., Tsinopoulos, S.V., Rodopoulos, D., Polyzos, D.: Strain gradient elasticity and size effects in the bending of fiber composite plates. Int. J. Solids Struct. 143, 103–112 (2018)CrossRef Gortsas, T., Tsinopoulos, S.V., Rodopoulos, D., Polyzos, D.: Strain gradient elasticity and size effects in the bending of fiber composite plates. Int. J. Solids Struct. 143, 103–112 (2018)CrossRef
58.
Zurück zum Zitat Selvadurai, A.P.S.: Partial Differential Equations in Mechanics 2. Springer, Berlin (2000)CrossRefMATH Selvadurai, A.P.S.: Partial Differential Equations in Mechanics 2. Springer, Berlin (2000)CrossRefMATH
Metadaten
Titel
Plane strain gradient elastic rectangle in bending
verfasst von
Antonios Charalambopoulos
Stephanos V. Tsinopoulos
Demosthenes Polyzos
Publikationsdatum
02.01.2020
Verlag
Springer Berlin Heidelberg
Erschienen in
Archive of Applied Mechanics / Ausgabe 5/2020
Print ISSN: 0939-1533
Elektronische ISSN: 1432-0681
DOI
https://doi.org/10.1007/s00419-019-01649-3

Weitere Artikel der Ausgabe 5/2020

Archive of Applied Mechanics 5/2020 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.