Skip to main content
Erschienen in: Journal of Coatings Technology and Research 6/2018

25.06.2018

Polydopamine functional reduced graphene oxide for enhanced mechanical and electrical properties of waterborne polyurethane nanocomposites

verfasst von: Shengwen Zhang, Dandan Zhang, Zhen Li, Yifan Yang, Meng Sun, Ziwen Kong, Yang Wang, Huiyu Bai, Weifu Dong

Erschienen in: Journal of Coatings Technology and Research | Ausgabe 6/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Waterborne polyurethane/polydopamine (PDA) functional reduced graphene oxide (WPU/PDRGO) nanocomposites were prepared by in situ emulsification method. The presence of a PDA layer and the partial reduction of GO by PDA were confirmed by FTIR, XRD, Raman spectra, and TGA. It was found that the interfacial PDA layers facilitated the dispersion of the PDRGO sheets in the WPU matrix and enhanced mechanical properties of the WPU matrix. The resulting WPU/PDRGO nanocomposite coatings show excellent electrical conductivity (9.9 × 10−6–1.1 × 10−4 S cm−1) corresponding to a PDRGO content of 1–16 wt%. The obtained waterborne polyurethane/graphene nanocomposite dispersions are promising for anticorrosion, antistatic, conductive, and electromagnetic interference shielding coatings.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Aguirresarobe, RH, Martin, L, Aramburu, N, Irusta, L, Fernandez-Berridi, MJ, “Coumarin Based Light Responsive Healable Waterborne Polyurethanes.” Prog. Org. Coat, 99 314–321 (2016)CrossRef Aguirresarobe, RH, Martin, L, Aramburu, N, Irusta, L, Fernandez-Berridi, MJ, “Coumarin Based Light Responsive Healable Waterborne Polyurethanes.” Prog. Org. Coat, 99 314–321 (2016)CrossRef
2.
Zurück zum Zitat Xiao, Y, Fu, X, Zhang, Y, Liu, Z, Jiang, L, Lei, J, “Preparation of Waterborne Polyurethanes Based on the Organic Solvent-Free Process.” Green Chem., 18 412–416 (2016)CrossRef Xiao, Y, Fu, X, Zhang, Y, Liu, Z, Jiang, L, Lei, J, “Preparation of Waterborne Polyurethanes Based on the Organic Solvent-Free Process.” Green Chem., 18 412–416 (2016)CrossRef
3.
Zurück zum Zitat Santamaria-Echart, A, Fernandes, I, Saralegi, A, Costa, MRPFN, Barreiro, F, Corcuera, MA, Eceiza, A, “Synthesis of Waterborne Polyurethane-urea Dispersions with Chain Extension Step in Homogeneous and Heterogeneous Media.” J. Colloid Interf. Sci., 476 184–192 (2016)CrossRef Santamaria-Echart, A, Fernandes, I, Saralegi, A, Costa, MRPFN, Barreiro, F, Corcuera, MA, Eceiza, A, “Synthesis of Waterborne Polyurethane-urea Dispersions with Chain Extension Step in Homogeneous and Heterogeneous Media.” J. Colloid Interf. Sci., 476 184–192 (2016)CrossRef
4.
Zurück zum Zitat Yu, F, Cao, L, Meng, Z, Lin, N, Liu, XY, “Crosslinked Waterborne Polyurethane with High Waterproof Performance.” Polym. Chem., 7 3913 (2016)CrossRef Yu, F, Cao, L, Meng, Z, Lin, N, Liu, XY, “Crosslinked Waterborne Polyurethane with High Waterproof Performance.” Polym. Chem., 7 3913 (2016)CrossRef
5.
Zurück zum Zitat Breucker, L, Landfester, K, Taden, A, “Phosphonic Acid-Functionalized Polyurethane Dispersions with Improved Adhesion Properties.” ACS Appl. Mater. Interfaces, 7 24641–24648 (2015)CrossRef Breucker, L, Landfester, K, Taden, A, “Phosphonic Acid-Functionalized Polyurethane Dispersions with Improved Adhesion Properties.” ACS Appl. Mater. Interfaces, 7 24641–24648 (2015)CrossRef
6.
Zurück zum Zitat Santamaria-Echart, A, Arbelaiz, A, Saralegi, A, Fernández-d’Arlas, B, Eceiza, A, Corcuera, MA, “Relationship Between Reagents Molar Ratio and Dispersion Stability and Film Properties of Waterborne Polyurethanes.” Colloids Surf. A: Physicochem. Eng. Aspects, 482 554–561 (2015)CrossRef Santamaria-Echart, A, Arbelaiz, A, Saralegi, A, Fernández-d’Arlas, B, Eceiza, A, Corcuera, MA, “Relationship Between Reagents Molar Ratio and Dispersion Stability and Film Properties of Waterborne Polyurethanes.” Colloids Surf. A: Physicochem. Eng. Aspects, 482 554–561 (2015)CrossRef
7.
Zurück zum Zitat Sardon, H, Irusta, L, Aguirresarobe, RH, Fernández-Berridi, MJ, “Polymer/Silica Nanohybrids by Means of Tetraethoxysilane Sol-Gelcondensation onto Waterborne Polyurethane Particles.” Prog. Org. Coat, 77 1436–1442 (2014)CrossRef Sardon, H, Irusta, L, Aguirresarobe, RH, Fernández-Berridi, MJ, “Polymer/Silica Nanohybrids by Means of Tetraethoxysilane Sol-Gelcondensation onto Waterborne Polyurethane Particles.” Prog. Org. Coat, 77 1436–1442 (2014)CrossRef
8.
Zurück zum Zitat Sun, D, Miao, X, Zhang, K, Kim, H, Yuan, Y, “Triazole-Forming Waterborne Polyurethane Composites Fabricated with Silane Coupling Agent Functionalized Nano-Silica.” J. Colloid Interf Sci, 361 483–490 (2011)CrossRef Sun, D, Miao, X, Zhang, K, Kim, H, Yuan, Y, “Triazole-Forming Waterborne Polyurethane Composites Fabricated with Silane Coupling Agent Functionalized Nano-Silica.” J. Colloid Interf Sci, 361 483–490 (2011)CrossRef
9.
Zurück zum Zitat Lee, HT, Lin, LH, “Waterborne Polyurethane/Clay Nanocomposites: Novel Effects of the Clay and its Interlayer Ions on the Morphology and Physical and Electrical Properties.” Macromolecules, 39 6133–6141 (2006)CrossRef Lee, HT, Lin, LH, “Waterborne Polyurethane/Clay Nanocomposites: Novel Effects of the Clay and its Interlayer Ions on the Morphology and Physical and Electrical Properties.” Macromolecules, 39 6133–6141 (2006)CrossRef
10.
Zurück zum Zitat Liao, L, Li, X, Wang, Y, Fu, H, Li, Y, “Effects of Surface Structure and Morphology of Nanoclays on the Properties of Jatropha Curcas Oil-Based Waterborne Polyurethane/Clay Nanocomposites.” Ind. Eng. Chem. Res., 55 11689–11699 (2016)CrossRef Liao, L, Li, X, Wang, Y, Fu, H, Li, Y, “Effects of Surface Structure and Morphology of Nanoclays on the Properties of Jatropha Curcas Oil-Based Waterborne Polyurethane/Clay Nanocomposites.” Ind. Eng. Chem. Res., 55 11689–11699 (2016)CrossRef
11.
Zurück zum Zitat Santamaria-Echart, A, Ugarte, L, Arbelaiz, A, Gabilondo, N, Corcuera, MA, Eceiza, A, “Two Different Incorporation Routes of Cellulose Nanocrystals in Waterborne Polyurethane Nanocomposites.” Eur. Polym. J., 76 99–109 (2016)CrossRef Santamaria-Echart, A, Ugarte, L, Arbelaiz, A, Gabilondo, N, Corcuera, MA, Eceiza, A, “Two Different Incorporation Routes of Cellulose Nanocrystals in Waterborne Polyurethane Nanocomposites.” Eur. Polym. J., 76 99–109 (2016)CrossRef
12.
Zurück zum Zitat Cao, X, Dong, H, Li, CM, “New Nanocomposite Materials Reinforced with Flax Cellulose Nanocrystals in Waterborne Polyurethane.” Biomacromolecules, 8 899–904 (2007)CrossRef Cao, X, Dong, H, Li, CM, “New Nanocomposite Materials Reinforced with Flax Cellulose Nanocrystals in Waterborne Polyurethane.” Biomacromolecules, 8 899–904 (2007)CrossRef
13.
Zurück zum Zitat Wu, Z, Wang, H, Xue, M, Tian, X, Zhou, H, Ye, X, Zheng, K, Cui, Z, “Preparation of Carbon Nanotubes/Waterborne Polyurethane Composites with the Emulsion Particles Assisted Dispersion of Carbon Nanotubes.” Compos. Sci. Technol., 114 50–56 (2015)CrossRef Wu, Z, Wang, H, Xue, M, Tian, X, Zhou, H, Ye, X, Zheng, K, Cui, Z, “Preparation of Carbon Nanotubes/Waterborne Polyurethane Composites with the Emulsion Particles Assisted Dispersion of Carbon Nanotubes.” Compos. Sci. Technol., 114 50–56 (2015)CrossRef
14.
Zurück zum Zitat Hajializadeh, S, Barikani, M, Bellah, SM, “Synthesis and Characterization of Multiwall Carbon Nanotube/Waterborne Polyurethane Nanocomposites, Polymer International.” Polym. Int., 66 1074–1083 (2017)CrossRef Hajializadeh, S, Barikani, M, Bellah, SM, “Synthesis and Characterization of Multiwall Carbon Nanotube/Waterborne Polyurethane Nanocomposites, Polymer International.” Polym. Int., 66 1074–1083 (2017)CrossRef
15.
Zurück zum Zitat Nanda, AK, Wicks, DA, Madbouly, SA, Otaigbe, JU, “Nanostructured Polyurethane/POSS Hybrid Aqueous Dispersions Prepared by Homogeneous Solution Polymerization.” Macromolecules, 39 7037–7043 (2006)CrossRef Nanda, AK, Wicks, DA, Madbouly, SA, Otaigbe, JU, “Nanostructured Polyurethane/POSS Hybrid Aqueous Dispersions Prepared by Homogeneous Solution Polymerization.” Macromolecules, 39 7037–7043 (2006)CrossRef
16.
Zurück zum Zitat Turri, S, Levi, M, “Structure, Dynamic Properties, and Surface Behavior of Nanostructured Ionomeric Polyurethanes from Reactive Polyhedral Oligomeric Silsesquioxanes.” Macromolecules, 38 5569–5574 (2005)CrossRef Turri, S, Levi, M, “Structure, Dynamic Properties, and Surface Behavior of Nanostructured Ionomeric Polyurethanes from Reactive Polyhedral Oligomeric Silsesquioxanes.” Macromolecules, 38 5569–5574 (2005)CrossRef
17.
Zurück zum Zitat Yousefi, N, Gudarzi, MM, Zheng, Q, Aboutalebi, SH, Sharif, F, Kim, JK, “Self-alignment and High Electrical Conductivity of Ultralarge Graphene Oxide-Polyurethane Nanocomposites.” J. Mater. Chem., 22 12709–12717 (2012)CrossRef Yousefi, N, Gudarzi, MM, Zheng, Q, Aboutalebi, SH, Sharif, F, Kim, JK, “Self-alignment and High Electrical Conductivity of Ultralarge Graphene Oxide-Polyurethane Nanocomposites.” J. Mater. Chem., 22 12709–12717 (2012)CrossRef
18.
Zurück zum Zitat Shahabadi, SIS, Kong, J, Lu, X, “Aqueous-Only, Green Route to Self-Healable, UV-Resistant, and Electrically Conductive Polyurethane/Graphene/Lignin Nanocomposite Coatings.” ACS Sustainable Chem. Eng., 5 3148–3157 (2017)CrossRef Shahabadi, SIS, Kong, J, Lu, X, “Aqueous-Only, Green Route to Self-Healable, UV-Resistant, and Electrically Conductive Polyurethane/Graphene/Lignin Nanocomposite Coatings.” ACS Sustainable Chem. Eng., 5 3148–3157 (2017)CrossRef
19.
Zurück zum Zitat Król, P, Król, B, Pielichowska, K, Špírková, M, “Composites Prepared from the Waterborne Polyurethane Cationomers-Modified Graphene. Part I. Synthesis, Structure, and Physicochemical Properties.” Colloid Polym. Sci., 293 421–431 (2015)CrossRef Król, P, Król, B, Pielichowska, K, Špírková, M, “Composites Prepared from the Waterborne Polyurethane Cationomers-Modified Graphene. Part I. Synthesis, Structure, and Physicochemical Properties.” Colloid Polym. Sci., 293 421–431 (2015)CrossRef
20.
Zurück zum Zitat Hsiao, ST, Ma, CCM, Tien, HW, Liao, WH, Wang, YS, Li, SM, Huang, YC, “Using a Non-covalent Modification to Prepare a High Electromagnetic Interference Shielding Performance Graphene Nanosheet/Water-borne Polyurethane Composite.” Carbon, 60 57–66 (2013)CrossRef Hsiao, ST, Ma, CCM, Tien, HW, Liao, WH, Wang, YS, Li, SM, Huang, YC, “Using a Non-covalent Modification to Prepare a High Electromagnetic Interference Shielding Performance Graphene Nanosheet/Water-borne Polyurethane Composite.” Carbon, 60 57–66 (2013)CrossRef
21.
Zurück zum Zitat Zhang, J, Zhang, CQ, Madbouly, SA, “In Situ Polymerization of Bio-based Thermosetting Polyurethane/Graphene Oxide Nanocomposites.” J. Appl. Polym. Sci., 132 41751 (2015) Zhang, J, Zhang, CQ, Madbouly, SA, “In Situ Polymerization of Bio-based Thermosetting Polyurethane/Graphene Oxide Nanocomposites.” J. Appl. Polym. Sci., 132 41751 (2015)
22.
Zurück zum Zitat Arzac, A, Leal, GP, de la Cal, JC, Tomovska, R, “Water-Borne Polymer/Graphene Nanocomposites.” Macromol. Mater. Eng., 302 1600315 (2017)CrossRef Arzac, A, Leal, GP, de la Cal, JC, Tomovska, R, “Water-Borne Polymer/Graphene Nanocomposites.” Macromol. Mater. Eng., 302 1600315 (2017)CrossRef
23.
Zurück zum Zitat Tkalya, E, Ghislandi, M, Alekseev, A, Koning, C, Loos, J, “Latex-Based Concept for the Preparation of Graphene-Based Polymer Nanocomposites.” J. Mater. Chem., 20 3035–3039 (2010)CrossRef Tkalya, E, Ghislandi, M, Alekseev, A, Koning, C, Loos, J, “Latex-Based Concept for the Preparation of Graphene-Based Polymer Nanocomposites.” J. Mater. Chem., 20 3035–3039 (2010)CrossRef
24.
Zurück zum Zitat Arzac, A, Leal, GP, Fajgar, R, Tomovska, R, “Comparison of the Emulsion Mixing and In Situ Polymerization Techniques for Synthesis of Water-Borne Reduced Graphene Oxide/Polymer Composites: Advantages and Drawbacks.” Part. Part. Syst. Charact., 31 143–151 (2014)CrossRef Arzac, A, Leal, GP, Fajgar, R, Tomovska, R, “Comparison of the Emulsion Mixing and In Situ Polymerization Techniques for Synthesis of Water-Borne Reduced Graphene Oxide/Polymer Composites: Advantages and Drawbacks.” Part. Part. Syst. Charact., 31 143–151 (2014)CrossRef
25.
Zurück zum Zitat Konkena, B, Vasudevan, S, “Covalently Linked, Water-Dispersible, Cyclodextrin: Reduced-Graphene Oxide Sheets.” Langmuir, 28 12432–12437 (2012)CrossRef Konkena, B, Vasudevan, S, “Covalently Linked, Water-Dispersible, Cyclodextrin: Reduced-Graphene Oxide Sheets.” Langmuir, 28 12432–12437 (2012)CrossRef
26.
Zurück zum Zitat Stankovich, S, Dikin, DA, Dommett, GHB, Kohlhaas, KM, Zimney, EJ, Stach, EA, Piner, RD, Nguyen, SBT, Ruoff, RS, “Graphene-Based Composite Materials.” Nature, 442 282–286 (2006)CrossRef Stankovich, S, Dikin, DA, Dommett, GHB, Kohlhaas, KM, Zimney, EJ, Stach, EA, Piner, RD, Nguyen, SBT, Ruoff, RS, “Graphene-Based Composite Materials.” Nature, 442 282–286 (2006)CrossRef
27.
Zurück zum Zitat Wang, X, Hu, Y, Song, L, Yang, H, Xing, W, Lu, H, “In Situ Polymerization of Graphene Nanosheets and Polyurethane with Enhanced Mechanical and Thermal Properties.” J. Mater. Chem., 21 4222–4227 (2011)CrossRef Wang, X, Hu, Y, Song, L, Yang, H, Xing, W, Lu, H, “In Situ Polymerization of Graphene Nanosheets and Polyurethane with Enhanced Mechanical and Thermal Properties.” J. Mater. Chem., 21 4222–4227 (2011)CrossRef
28.
Zurück zum Zitat Tang, XZ, Mu, C, Zhu, W, Yan, X, Hu, X, Yang, J, “Flexible Polyurethane Composites Prepared by Incorporation of Polyethylenimine-Modified Slightly Reduced Graphene Oxide.” Carbon, 98 432–440 (2016)CrossRef Tang, XZ, Mu, C, Zhu, W, Yan, X, Hu, X, Yang, J, “Flexible Polyurethane Composites Prepared by Incorporation of Polyethylenimine-Modified Slightly Reduced Graphene Oxide.” Carbon, 98 432–440 (2016)CrossRef
29.
Zurück zum Zitat Compton, OC, Dikin, DA, Putz, KW, Brinson, LC, Nguyen, ST, “Electrically Conductive “Alkylated” Graphene Paper via Chemical Reduction of Amine-Functionalized Graphene Oxide Paper.” Adv. Mater., 22 892–896 (2010)CrossRef Compton, OC, Dikin, DA, Putz, KW, Brinson, LC, Nguyen, ST, “Electrically Conductive “Alkylated” Graphene Paper via Chemical Reduction of Amine-Functionalized Graphene Oxide Paper.” Adv. Mater., 22 892–896 (2010)CrossRef
30.
Zurück zum Zitat Lee, H, Dellatore, SM, Miller, WM, Messersmith, PB, “Mussel-Inspired Surface Chemistry for Multifunctional Coatings.” Science, 318 426–430 (2007)CrossRef Lee, H, Dellatore, SM, Miller, WM, Messersmith, PB, “Mussel-Inspired Surface Chemistry for Multifunctional Coatings.” Science, 318 426–430 (2007)CrossRef
31.
Zurück zum Zitat Yang, L, Phua, SL, Toh, CL, Zhang, L, Ling, H, Chang, M, Zhou, D, Dong, Y, Lu, X, “Polydopamine-Coated Graphene as Multifunctional Nanofillers in Polyurethane.” RSC Adv., 3 6377–6385 (2013)CrossRef Yang, L, Phua, SL, Toh, CL, Zhang, L, Ling, H, Chang, M, Zhou, D, Dong, Y, Lu, X, “Polydopamine-Coated Graphene as Multifunctional Nanofillers in Polyurethane.” RSC Adv., 3 6377–6385 (2013)CrossRef
32.
Zurück zum Zitat Li, W, Shang, T, Yang, W, Yang, H, Lin, S, Jia, X, Cai, Q, Yang, X, “Effectively Exerting the Reinforcement of Dopamine Reduced Graphene Oxide on Epoxy-Based Composites via Strengthened Interfacial Bonding.” ACS Appl. Mater. Interfaces, 8 13037–13050 (2016)CrossRef Li, W, Shang, T, Yang, W, Yang, H, Lin, S, Jia, X, Cai, Q, Yang, X, “Effectively Exerting the Reinforcement of Dopamine Reduced Graphene Oxide on Epoxy-Based Composites via Strengthened Interfacial Bonding.” ACS Appl. Mater. Interfaces, 8 13037–13050 (2016)CrossRef
33.
Zurück zum Zitat Chen, K, Tian, Q, Tian, C, Yan, G, Cao, F, Liang, S, Wang, X, “Mechanical Reinforcement in Thermoplastic Polyurethane Nanocomposite Incorporated with Polydopamine Functionalized Graphene Nanoplatelet.” Ind. Eng. Chem. Res., 56 11827–11838 (2017)CrossRef Chen, K, Tian, Q, Tian, C, Yan, G, Cao, F, Liang, S, Wang, X, “Mechanical Reinforcement in Thermoplastic Polyurethane Nanocomposite Incorporated with Polydopamine Functionalized Graphene Nanoplatelet.” Ind. Eng. Chem. Res., 56 11827–11838 (2017)CrossRef
34.
Zurück zum Zitat Tian, Y, Cao, Y, Wang, Y, Yang, W, Feng, J, “Realizing Ultrahigh Modulus and High Strength of Macroscopic Graphene Oxide Papers Through Crosslinking of Mussel-Inspired Polymers.” Adv. Mater., 25 2980–2983 (2013)CrossRef Tian, Y, Cao, Y, Wang, Y, Yang, W, Feng, J, “Realizing Ultrahigh Modulus and High Strength of Macroscopic Graphene Oxide Papers Through Crosslinking of Mussel-Inspired Polymers.” Adv. Mater., 25 2980–2983 (2013)CrossRef
35.
Zurück zum Zitat Hummers, WS, Jr., Offeman, RE, “Preparation of Graphitic Oxide.” J. Am. Chem. Soc., 80 1339 (1958)CrossRef Hummers, WS, Jr., Offeman, RE, “Preparation of Graphitic Oxide.” J. Am. Chem. Soc., 80 1339 (1958)CrossRef
36.
Zurück zum Zitat Xu, LQ, Yang, WJ, Neoh, KG, Kang, ET, Fu, GD, “Dopamine-Induced Reduction and Functionalization of Graphene Oxide Nanosheets.” Macromolecules, 43 8336–8339 (2010)CrossRef Xu, LQ, Yang, WJ, Neoh, KG, Kang, ET, Fu, GD, “Dopamine-Induced Reduction and Functionalization of Graphene Oxide Nanosheets.” Macromolecules, 43 8336–8339 (2010)CrossRef
37.
Zurück zum Zitat Wang, X, Song, L, Yang, H, Xing, W, Kandola, B, Hu, Y, “Simultaneous Reduction and Surface Functionalization of Graphene Oxide with POSS for Reducing Fire Hazards in Epoxy Composites.” J. Mater. Chem., 22 22037–22043 (2012)CrossRef Wang, X, Song, L, Yang, H, Xing, W, Kandola, B, Hu, Y, “Simultaneous Reduction and Surface Functionalization of Graphene Oxide with POSS for Reducing Fire Hazards in Epoxy Composites.” J. Mater. Chem., 22 22037–22043 (2012)CrossRef
38.
Zurück zum Zitat Ramanathan, T, Abdala, AA, Stankovich, S, Dikin, DA, Herrera-Alonso, M, Piner, RD, Adamson, DH, Schniepp, HC, Chen, X, Ruoff, RS, Nguyen, ST, Aksay, IA, Prud’Homme, RK, Brinson, LC, “Functionalized Graphene Sheets for Polymer Nanocomposites.” Nat. Nanotechnol., 3 327–331 (2008)CrossRef Ramanathan, T, Abdala, AA, Stankovich, S, Dikin, DA, Herrera-Alonso, M, Piner, RD, Adamson, DH, Schniepp, HC, Chen, X, Ruoff, RS, Nguyen, ST, Aksay, IA, Prud’Homme, RK, Brinson, LC, “Functionalized Graphene Sheets for Polymer Nanocomposites.” Nat. Nanotechnol., 3 327–331 (2008)CrossRef
Metadaten
Titel
Polydopamine functional reduced graphene oxide for enhanced mechanical and electrical properties of waterborne polyurethane nanocomposites
verfasst von
Shengwen Zhang
Dandan Zhang
Zhen Li
Yifan Yang
Meng Sun
Ziwen Kong
Yang Wang
Huiyu Bai
Weifu Dong
Publikationsdatum
25.06.2018
Verlag
Springer US
Erschienen in
Journal of Coatings Technology and Research / Ausgabe 6/2018
Print ISSN: 1547-0091
Elektronische ISSN: 1935-3804
DOI
https://doi.org/10.1007/s11998-018-0082-3

Weitere Artikel der Ausgabe 6/2018

Journal of Coatings Technology and Research 6/2018 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.