Skip to main content
Erschienen in: Engineering with Computers 5/2022

03.05.2022 | Original Article

POLYLLA: polygonal meshing algorithm based on terminal-edge regions

verfasst von: Sergio Salinas-Fernández, Nancy Hitschfeld-Kahler, Alejandro Ortiz-Bernardin, Hang Si

Erschienen in: Engineering with Computers | Ausgabe 5/2022

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This paper presents an algorithm to generate a new kind of polygonal mesh obtained from triangulations. Each polygon is built from a terminal-edge region surrounded by edges that are not the longest-edge of any of the two triangles that share them. The algorithm is termed Polylla and is divided into three phases. The first phase consists of labeling each edge of the input triangulation according to its size; the second phase builds polygons (simple or not) from terminal-edges regions using the label system; and the third phase transforms each non simple polygon into simple ones. The final mesh contains polygons with convex and non convex shape. Since Voronoi-based meshes are currently the most used polygonal meshes, we compare some geometric properties of our meshes against constrained Voronoi meshes. Several experiments were run to compare the shape and size of polygons, the number of final mesh points and polygons. For the same input, Polylla meshes contain less polygons than Voronoi meshes and the algorithm is simpler and faster than the algorithm to generate constrained Voronoi meshes. Finally, we have validated Polylla meshes by solving the Laplace equation on an L-shaped domain using the virtual element method (VEM). We show that the numerical performance of the VEM using Polylla meshes and Voronoi meshes is similar.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Fußnoten
1
A terminal-edge region is formed by all triangles whose longest-edge propagation path (Lepp) [4] share the same terminal-edge.
 
Literatur
1.
Zurück zum Zitat Beirão da Veiga L, Brezzi F, Cangiani A, Manzini G, Marini L, Russo A (2013) Basic principles of virtual element methods. Math Models Methods Appl Sci 23(01):199–214MathSciNetCrossRefMATH Beirão da Veiga L, Brezzi F, Cangiani A, Manzini G, Marini L, Russo A (2013) Basic principles of virtual element methods. Math Models Methods Appl Sci 23(01):199–214MathSciNetCrossRefMATH
2.
Zurück zum Zitat Beirão da Veiga L, Brezzi F, Marini LD (2013) Virtual elements for linear elasticity problems. SIAM J Numer Anal 51(2):794–812MathSciNetCrossRefMATH Beirão da Veiga L, Brezzi F, Marini LD (2013) Virtual elements for linear elasticity problems. SIAM J Numer Anal 51(2):794–812MathSciNetCrossRefMATH
3.
Zurück zum Zitat Wriggers P, Aldakheel F, Hudobivnik B (2019) Application of the virtual element method in mechanics. Technical report, report number: ISSN 2196-3789. Leibniz Universität Hannover (January) Wriggers P, Aldakheel F, Hudobivnik B (2019) Application of the virtual element method in mechanics. Technical report, report number: ISSN 2196-3789. Leibniz Universität Hannover (January)
4.
Zurück zum Zitat Rivara MC (1997) New longest-edge algorithms for the refinement and/or improvement of unstructured triangulations. Int J Numer Methods Eng 40:3313–3324MathSciNetCrossRefMATH Rivara MC (1997) New longest-edge algorithms for the refinement and/or improvement of unstructured triangulations. Int J Numer Methods Eng 40:3313–3324MathSciNetCrossRefMATH
6.
Zurück zum Zitat Huisman O, de By R (2009) Principles of geographic information systems: an introductory textbook, p 258 Huisman O, de By R (2009) Principles of geographic information systems: an introductory textbook, p 258
8.
Zurück zum Zitat Ho-Le K (1988) Finite element mesh generation methods: a review and classification. Comput Aided Des 20(1):27–38CrossRefMATH Ho-Le K (1988) Finite element mesh generation methods: a review and classification. Comput Aided Des 20(1):27–38CrossRefMATH
9.
Zurück zum Zitat Zhang YJ, Hughes TJR, Bajaj CL (2007) Automatic 3D mesh generation for a domain with multiple materials. In: IMR Zhang YJ, Hughes TJR, Bajaj CL (2007) Automatic 3D mesh generation for a domain with multiple materials. In: IMR
10.
Zurück zum Zitat Cheng S-W, Dey TK, Shewchuk J, Sahni S (2013) Delaunay mesh generation. CRC Press Boca Raton Cheng S-W, Dey TK, Shewchuk J, Sahni S (2013) Delaunay mesh generation. CRC Press Boca Raton
13.
Zurück zum Zitat Talischi C, Paulino G, Pereira A, Menezes I (2012) Polymesher: a general-purpose mesh generator for polygonal elements written in matlab. Struct Multidiscip Optim 45(3):309–328MathSciNetCrossRefMATH Talischi C, Paulino G, Pereira A, Menezes I (2012) Polymesher: a general-purpose mesh generator for polygonal elements written in matlab. Struct Multidiscip Optim 45(3):309–328MathSciNetCrossRefMATH
14.
Zurück zum Zitat Löhner R (1996) Progress in grid generation via the advancing front technique. Eng Comput 12(3–4):186–210CrossRef Löhner R (1996) Progress in grid generation via the advancing front technique. Eng Comput 12(3–4):186–210CrossRef
15.
Zurück zum Zitat Schöberl J (1997) Netgen an advancing front 2D/3D-mesh generator based on abstract rules. Comput Vis Sci 1:41–52CrossRefMATH Schöberl J (1997) Netgen an advancing front 2D/3D-mesh generator based on abstract rules. Comput Vis Sci 1:41–52CrossRefMATH
17.
Zurück zum Zitat Bommes D, Lévy B, Pietroni N, Puppo E, Silva C, Tarini M, Zorin D (2013) Quad-mesh generation and processing: a survey. In: Computer graphics forum. Wiley Online Library, vol 32, pp 51–76 Bommes D, Lévy B, Pietroni N, Puppo E, Silva C, Tarini M, Zorin D (2013) Quad-mesh generation and processing: a survey. In: Computer graphics forum. Wiley Online Library, vol 32, pp 51–76
18.
Zurück zum Zitat Liang X, Zhang YJ (2013) An octree-based dual contouring method for triangular and tetrahedral mesh generation with guaranteed angle range. Eng Comput 30:211–222CrossRef Liang X, Zhang YJ (2013) An octree-based dual contouring method for triangular and tetrahedral mesh generation with guaranteed angle range. Eng Comput 30:211–222CrossRef
19.
Zurück zum Zitat Owen SJ, Staten ML, Canann SA, Saigal S (1999) Q-morph: an indirect approach to advancing front quad meshing. Int J Numer Methods Eng 44(9):1317–1340CrossRefMATH Owen SJ, Staten ML, Canann SA, Saigal S (1999) Q-morph: an indirect approach to advancing front quad meshing. Int J Numer Methods Eng 44(9):1317–1340CrossRefMATH
20.
Zurück zum Zitat Ito Y, Nakahashi K (2002) Unstructured mesh generation for viscous flow computations. IMR 2002:367–377 Ito Y, Nakahashi K (2002) Unstructured mesh generation for viscous flow computations. IMR 2002:367–377
21.
Zurück zum Zitat Owen SJ (1998) A survey of unstructured mesh generation technology. IMR 239:267 Owen SJ (1998) A survey of unstructured mesh generation technology. IMR 239:267
22.
Zurück zum Zitat Johnen A (2016) Indirect quadrangular mesh generation and validation of curved finite elements. Ph.D. thesis, Université de Liège, Liège, Belgique Johnen A (2016) Indirect quadrangular mesh generation and validation of curved finite elements. Ph.D. thesis, Université de Liège, Liège, Belgique
23.
Zurück zum Zitat Lee CK, Lo SH (1994) A new scheme for the generation of a graded quadrilateral mesh. Comput Struct 52(5):847–857CrossRefMATH Lee CK, Lo SH (1994) A new scheme for the generation of a graded quadrilateral mesh. Comput Struct 52(5):847–857CrossRefMATH
24.
Zurück zum Zitat Remacle J-F, Lambrechts J, Seny B, Marchandise E, Johnen A, Geuzainet C (2012) Blossom-quad: a non-uniform quadrilateral mesh generator using a minimum-cost perfect-matching algorithm. Int J Numer Methods Eng 89(9):1102–1119MathSciNetCrossRefMATH Remacle J-F, Lambrechts J, Seny B, Marchandise E, Johnen A, Geuzainet C (2012) Blossom-quad: a non-uniform quadrilateral mesh generator using a minimum-cost perfect-matching algorithm. Int J Numer Methods Eng 89(9):1102–1119MathSciNetCrossRefMATH
25.
Zurück zum Zitat Merhof D, Grosso R, Tremel U, Greiner G (2007) Anisotropic quadrilateral mesh generation: an indirect approach. Adv Eng Softw 38(11/12):860–867CrossRef Merhof D, Grosso R, Tremel U, Greiner G (2007) Anisotropic quadrilateral mesh generation: an indirect approach. Adv Eng Softw 38(11/12):860–867CrossRef
26.
Zurück zum Zitat Shewchuk JR (1996) Triangle: engineering a 2D quality mesh generator and Delaunay triangulator. In: Lin MC, Manocha D (eds) Applied computational geometry towards geometric engineering. Springer, Berlin, pp 203–222CrossRef Shewchuk JR (1996) Triangle: engineering a 2D quality mesh generator and Delaunay triangulator. In: Lin MC, Manocha D (eds) Applied computational geometry towards geometric engineering. Springer, Berlin, pp 203–222CrossRef
27.
Zurück zum Zitat Si H (2019) An introduction to unstructured mesh generation methods and softwares for scientific computing. Course. 2019 International Summer School in Beihang University Si H (2019) An introduction to unstructured mesh generation methods and softwares for scientific computing. Course. 2019 International Summer School in Beihang University
28.
31.
Zurück zum Zitat Canann SA, Tristano JR, Staten ML (1998) An approach to combined Laplacian and optimization-based smoothing for triangular, quadrilateral and quad-dominant meshes. In: 7th international meshing roundtable, pp 479–494 Canann SA, Tristano JR, Staten ML (1998) An approach to combined Laplacian and optimization-based smoothing for triangular, quadrilateral and quad-dominant meshes. In: 7th international meshing roundtable, pp 479–494
32.
Zurück zum Zitat Lee K-Y, Kim I-I, Cho D-Y, Kim T-w (2003) An algorithm for automatic 2D quadrilateral mesh generation with line constraints. Comput Aided Des 35(12):1055–1068CrossRef Lee K-Y, Kim I-I, Cho D-Y, Kim T-w (2003) An algorithm for automatic 2D quadrilateral mesh generation with line constraints. Comput Aided Des 35(12):1055–1068CrossRef
33.
Zurück zum Zitat Owen SJ, Staten ML, Canann SA, Saigal S (1998) Advancing front quadrilateral meshing using triangle transformations. In: Proceedings, 7th international meshing roundtable, vol 98, pp 409–428 Owen SJ, Staten ML, Canann SA, Saigal S (1998) Advancing front quadrilateral meshing using triangle transformations. In: Proceedings, 7th international meshing roundtable, vol 98, pp 409–428
34.
Zurück zum Zitat Jaillet F, Lobos C (2021) Fast Quadtree/Octree adaptive meshing and re-meshing with linear mixed elements. Eng Comput 1435–5663 Jaillet F, Lobos C (2021) Fast Quadtree/Octree adaptive meshing and re-meshing with linear mixed elements. Eng Comput 1435–5663
36.
Zurück zum Zitat Chi H, Talischi C, Lopez-Pamies O, Paulino G (2015) Polygonal finite elements for finite elasticity. Int J Numer Methods Eng 101:305–328MathSciNetCrossRefMATH Chi H, Talischi C, Lopez-Pamies O, Paulino G (2015) Polygonal finite elements for finite elasticity. Int J Numer Methods Eng 101:305–328MathSciNetCrossRefMATH
37.
Zurück zum Zitat Yan D-M, Wang W, Lévy B, Liu Y (2010) Efficient computation of 3D clipped Voronoi diagram. In: GMP, pp 269–282 Yan D-M, Wang W, Lévy B, Liu Y (2010) Efficient computation of 3D clipped Voronoi diagram. In: GMP, pp 269–282
38.
Zurück zum Zitat Ebeida MS, Mitchell SA (2012) Uniform random Voronoi meshes. In: Quadros WR (ed) Proceedings of the 20th international meshing roundtable, pp 273–290. Springer, Berlin Ebeida MS, Mitchell SA (2012) Uniform random Voronoi meshes. In: Quadros WR (ed) Proceedings of the 20th international meshing roundtable, pp 273–290. Springer, Berlin
39.
Zurück zum Zitat Sieger D, Alliez P, Botsch M (2010) Optimizing Voronoi diagrams for polygonal finite element computations. In: Proceedings of the 19th international meshing roundtable, IMR 2010, October 3–6, 2010, Chattanooga, Tennessee, USA, pp 335–350 Sieger D, Alliez P, Botsch M (2010) Optimizing Voronoi diagrams for polygonal finite element computations. In: Proceedings of the 19th international meshing roundtable, IMR 2010, October 3–6, 2010, Chattanooga, Tennessee, USA, pp 335–350
40.
Zurück zum Zitat Wachspress EL (1975) A rational finite element basis. Mathematics in science and engineering. Academic Press, New YorkMATH Wachspress EL (1975) A rational finite element basis. Mathematics in science and engineering. Academic Press, New YorkMATH
41.
Zurück zum Zitat Sukumar N, Malsch EA (2006) Recent advances in the construction of polygonal finite element interpolants. Arch Comput Methods Eng 13(1):129–163MathSciNetCrossRefMATH Sukumar N, Malsch EA (2006) Recent advances in the construction of polygonal finite element interpolants. Arch Comput Methods Eng 13(1):129–163MathSciNetCrossRefMATH
42.
Zurück zum Zitat Tabarraei A, Sukumar N (2008) Extended finite element method on polygonal and quadtree meshes. Comput Methods Appl Mech Eng 197(5):425–438MathSciNetCrossRefMATH Tabarraei A, Sukumar N (2008) Extended finite element method on polygonal and quadtree meshes. Comput Methods Appl Mech Eng 197(5):425–438MathSciNetCrossRefMATH
43.
Zurück zum Zitat Beirão da Veiga L, Lovadina C, Mora D (2015) A virtual element method for elastic and inelastic problems on polytope meshes. Comput Methods Appl Mech Eng 295:327–346MathSciNetCrossRefMATH Beirão da Veiga L, Lovadina C, Mora D (2015) A virtual element method for elastic and inelastic problems on polytope meshes. Comput Methods Appl Mech Eng 295:327–346MathSciNetCrossRefMATH
44.
Zurück zum Zitat Cáceres E, Gatica GN, Sequeira FA (2017) A mixed virtual element method for the brinkman problem. Math Models Methods Appl Sci 27(04):707–743MathSciNetCrossRefMATH Cáceres E, Gatica GN, Sequeira FA (2017) A mixed virtual element method for the brinkman problem. Math Models Methods Appl Sci 27(04):707–743MathSciNetCrossRefMATH
45.
Zurück zum Zitat Cáceres E, Gatica GN, Sequeira FA (2018) A mixed virtual element method for quasi-Newtonian stokes flows. SIAM J Numer Anal 56(1):317–343MathSciNetCrossRefMATH Cáceres E, Gatica GN, Sequeira FA (2018) A mixed virtual element method for quasi-Newtonian stokes flows. SIAM J Numer Anal 56(1):317–343MathSciNetCrossRefMATH
46.
Zurück zum Zitat Benedetto MF, Berrone S, Pieraccini S, Scialò S (2014) The virtual element method for discrete fracture network simulations. Comput Methods Appl Mech Eng 280:135–156MathSciNetCrossRefMATH Benedetto MF, Berrone S, Pieraccini S, Scialò S (2014) The virtual element method for discrete fracture network simulations. Comput Methods Appl Mech Eng 280:135–156MathSciNetCrossRefMATH
47.
Zurück zum Zitat Wriggers P, Reddy BD, Rust WT, Hudobivnik B (2017) Efficient virtual element formulations for compressible and incompressible finite deformations. Comput Mech 60:253–268MathSciNetCrossRefMATH Wriggers P, Reddy BD, Rust WT, Hudobivnik B (2017) Efficient virtual element formulations for compressible and incompressible finite deformations. Comput Mech 60:253–268MathSciNetCrossRefMATH
48.
Zurück zum Zitat Wriggers P, Hudobivnik B (2017) A low order virtual element formulation for finite elasto-plastic deformations. Comput Methods Appl Mech 327:459–477MathSciNetCrossRefMATH Wriggers P, Hudobivnik B (2017) A low order virtual element formulation for finite elasto-plastic deformations. Comput Methods Appl Mech 327:459–477MathSciNetCrossRefMATH
49.
Zurück zum Zitat Hussein A, Aldakheel F, Hudobivnik B, Wriggers P, Guidault P-A, Allix O (2019) A computational framework for brittle crack-propagation based on efficient virtual element method. Finite Elem Anal Des 159:15–32MathSciNetCrossRef Hussein A, Aldakheel F, Hudobivnik B, Wriggers P, Guidault P-A, Allix O (2019) A computational framework for brittle crack-propagation based on efficient virtual element method. Finite Elem Anal Des 159:15–32MathSciNetCrossRef
50.
Zurück zum Zitat Aldakheel F, Hudobivnik B, Wriggers P (2019) Virtual element formulation for phase-field modeling of ductile fracture. Int J Multiscale Comput Eng 17(2):181–200CrossRefMATH Aldakheel F, Hudobivnik B, Wriggers P (2019) Virtual element formulation for phase-field modeling of ductile fracture. Int J Multiscale Comput Eng 17(2):181–200CrossRefMATH
51.
Zurück zum Zitat Park K, Chi H, Paulino GH (2019) On nonconvex meshes for elastodynamics using virtual element methods with explicit time integration. Comput Methods Appl Mech Eng 356:669–684MathSciNetCrossRefMATH Park K, Chi H, Paulino GH (2019) On nonconvex meshes for elastodynamics using virtual element methods with explicit time integration. Comput Methods Appl Mech Eng 356:669–684MathSciNetCrossRefMATH
52.
Zurück zum Zitat Chi H, da Veiga LB, Paulino GH (2017) Some basic formulations of the virtual element method (VEM) for finite deformations. Comput Methods Appl Mech Eng 318:148–192MathSciNetCrossRefMATH Chi H, da Veiga LB, Paulino GH (2017) Some basic formulations of the virtual element method (VEM) for finite deformations. Comput Methods Appl Mech Eng 318:148–192MathSciNetCrossRefMATH
53.
Zurück zum Zitat Torres J, Hitschfeld N, Ruiz RO, Ortiz-Bernardin A (2020) Convex polygon packing based meshing algorithm for modeling of rock and porous media. In: Krzhizhanovskaya VV, Závodszky G, Lees MH, Dongarra JJ, Sloot PMA, Brissos S, Teixeira J (eds) Computational science—ICCS 2020. Springer, Cham, pp 257–269CrossRef Torres J, Hitschfeld N, Ruiz RO, Ortiz-Bernardin A (2020) Convex polygon packing based meshing algorithm for modeling of rock and porous media. In: Krzhizhanovskaya VV, Závodszky G, Lees MH, Dongarra JJ, Sloot PMA, Brissos S, Teixeira J (eds) Computational science—ICCS 2020. Springer, Cham, pp 257–269CrossRef
54.
Zurück zum Zitat Alonso R, Ojeda J, Hitschfeld N, Hervías C, Campusano LE (2018) Delaunay based algorithm for finding polygonal voids in planar point sets. Astron Comput 22:48–62CrossRef Alonso R, Ojeda J, Hitschfeld N, Hervías C, Campusano LE (2018) Delaunay based algorithm for finding polygonal voids in planar point sets. Astron Comput 22:48–62CrossRef
55.
Zurück zum Zitat Ojeda J, Alonso R, Hitschfeld-Kahler N (2018) A new algorithm for finding polygonal voids in delaunay triangulations and its parallelization. In: The 34th European workshop on computational geometry, EuroCG, pp 349–354 Ojeda J, Alonso R, Hitschfeld-Kahler N (2018) A new algorithm for finding polygonal voids in delaunay triangulations and its parallelization. In: The 34th European workshop on computational geometry, EuroCG, pp 349–354
56.
Zurück zum Zitat Hervías C, Hitschfeld-Kahler N, Campusano LE, Font G (2013) On finding large polygonal voids using Delaunay triangulation: the case of planar point sets. In: Proceedings of the 22nd international meshing roundtable, pp 275–292 Hervías C, Hitschfeld-Kahler N, Campusano LE, Font G (2013) On finding large polygonal voids using Delaunay triangulation: the case of planar point sets. In: Proceedings of the 22nd international meshing roundtable, pp 275–292
57.
Zurück zum Zitat De Floriani L, Kobbelt L, Puppo E (2005) A survey on data structures for level-of-detail models. In: Dodgson NA, Floater MS, Sabin MA (eds) Advances in multiresolution for geometric modelling. Springer, Berlin, pp 49–74CrossRefMATH De Floriani L, Kobbelt L, Puppo E (2005) A survey on data structures for level-of-detail models. In: Dodgson NA, Floater MS, Sabin MA (eds) Advances in multiresolution for geometric modelling. Springer, Berlin, pp 49–74CrossRefMATH
62.
Zurück zum Zitat Ortiz-Bernardin A, Álvarez C, Hitschfeld-Kahler N, Russo A, Silva-Valenzuela R, Olate-Sanzana E (2019) Veamy: an extensible object-oriented C++ library for the virtual element method. Numer Algor 82(4):1–32MathSciNetCrossRefMATH Ortiz-Bernardin A, Álvarez C, Hitschfeld-Kahler N, Russo A, Silva-Valenzuela R, Olate-Sanzana E (2019) Veamy: an extensible object-oriented C++ library for the virtual element method. Numer Algor 82(4):1–32MathSciNetCrossRefMATH
63.
Zurück zum Zitat Mitchell WF (2013) A collection of 2D elliptic problems for testing adaptive grid refinement algorithms. Appl Math Comput 220:350–364MathSciNetMATH Mitchell WF (2013) A collection of 2D elliptic problems for testing adaptive grid refinement algorithms. Appl Math Comput 220:350–364MathSciNetMATH
Metadaten
Titel
POLYLLA: polygonal meshing algorithm based on terminal-edge regions
verfasst von
Sergio Salinas-Fernández
Nancy Hitschfeld-Kahler
Alejandro Ortiz-Bernardin
Hang Si
Publikationsdatum
03.05.2022
Verlag
Springer London
Erschienen in
Engineering with Computers / Ausgabe 5/2022
Print ISSN: 0177-0667
Elektronische ISSN: 1435-5663
DOI
https://doi.org/10.1007/s00366-022-01643-4

Weitere Artikel der Ausgabe 5/2022

Engineering with Computers 5/2022 Zur Ausgabe

Neuer Inhalt