Skip to main content
Erschienen in:
Buchtitelbild

2016 | OriginalPaper | Buchkapitel

Polymeric Hydrogels: A Review of Recent Developments

verfasst von : Shivani Bhardwaj Mishra, Ajay Kumar Mishra

Erschienen in: Polymeric Hydrogels as Smart Biomaterials

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Hydrogels are special types of polymers that have enormous capacity to absorb large volumes of water. Hydrogels are natural as well as man-made. To suit to a type of an application, hydrogel can be modified to tailor made properties that can be exploited for natural, applied, and medical sciences. This chapter deals with the recent research done in the area of hydrogels, modified hydrogels, hydrogel composites, and nanocomposites. General trends of the thrust areas where hydrogels have prime role of importance were biomedical and health care. However, the other areas such as environmental aspects for the utility of hydrogels have also been an area of interest among researchers across the globe.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Tanaka T (1978) Collapse of gels and the critical end point. Phys Rev Lett 40:820–823CrossRef Tanaka T (1978) Collapse of gels and the critical end point. Phys Rev Lett 40:820–823CrossRef
2.
Zurück zum Zitat Shibayama M, Tanaka T (1993) Phase transition and related phenomena of polymer gels. Adv Polym Sci 109:1–62CrossRef Shibayama M, Tanaka T (1993) Phase transition and related phenomena of polymer gels. Adv Polym Sci 109:1–62CrossRef
3.
Zurück zum Zitat Lindemann B, Schroder UP, Oppermann W (1997) Influence of crosslinker reactivity on the formation of inhomogeneities in hydrogels. Macromolecules 30:4073–4077CrossRef Lindemann B, Schroder UP, Oppermann W (1997) Influence of crosslinker reactivity on the formation of inhomogeneities in hydrogels. Macromolecules 30:4073–4077CrossRef
4.
Zurück zum Zitat Kizilay MY, Okay O (2004) Effect of swelling on spatial inhomogeneity in poly(acrylamide) gels formed at various monomer concentrations. Polymer 45:2567–2576CrossRef Kizilay MY, Okay O (2004) Effect of swelling on spatial inhomogeneity in poly(acrylamide) gels formed at various monomer concentrations. Polymer 45:2567–2576CrossRef
5.
Zurück zum Zitat Gundogan N, Okay O, Oppermann W (2004) Swelling, elasticity and spatial inhomogeneity of poly(N, N-dimethylacrylamide) hydrogels formed at various polymer concentrations. Macromol Chem Phys 205:814–823CrossRef Gundogan N, Okay O, Oppermann W (2004) Swelling, elasticity and spatial inhomogeneity of poly(N, N-dimethylacrylamide) hydrogels formed at various polymer concentrations. Macromol Chem Phys 205:814–823CrossRef
6.
Zurück zum Zitat Peppas NA, Bures P, Leobandung W, Ichikawa H (2000) Hydrogels in pharmaceutical formulations. Euro J Pharma Biopharma 50:27–46CrossRef Peppas NA, Bures P, Leobandung W, Ichikawa H (2000) Hydrogels in pharmaceutical formulations. Euro J Pharma Biopharma 50:27–46CrossRef
8.
Zurück zum Zitat Wiese KG, Heinemann DEH, Ostermeirer D, Peters JH (2001) Biomaterial properties and biocompatibility in cell culture of a novel self-inflating hydrogel tissue expander. J Biomed Mater Res 54:179–188CrossRef Wiese KG, Heinemann DEH, Ostermeirer D, Peters JH (2001) Biomaterial properties and biocompatibility in cell culture of a novel self-inflating hydrogel tissue expander. J Biomed Mater Res 54:179–188CrossRef
10.
Zurück zum Zitat Chen Q, Zhu L, Zhao C, Zheng J (2012) Hydrogels for removal of heavy metals from aqueous solution. J Environ Anal Toxicol, 2012 [Open access] Chen Q, Zhu L, Zhao C, Zheng J (2012) Hydrogels for removal of heavy metals from aqueous solution. J Environ Anal Toxicol, 2012 [Open access]
11.
Zurück zum Zitat Omidian H, Park K (2012) Hydrogels. In: Siepmann J, Siegel R, Rathbone M (eds) Fundamentals and applications of controlled release drug delivery. Spinger, New York, pp 75–106 Omidian H, Park K (2012) Hydrogels. In: Siepmann J, Siegel R, Rathbone M (eds) Fundamentals and applications of controlled release drug delivery. Spinger, New York, pp 75–106
12.
Zurück zum Zitat Hejcl A, Lesny P, Pradny M, Michalek J, Jendelova P, Stulik J, Sykova E (2008) Biocompatible hydrogels in spinal cord injury repair. Physiol Res 57:S121–S132 Hejcl A, Lesny P, Pradny M, Michalek J, Jendelova P, Stulik J, Sykova E (2008) Biocompatible hydrogels in spinal cord injury repair. Physiol Res 57:S121–S132
13.
Zurück zum Zitat Zhong YH, Bellamkonda RV (2008) Biomaterials for the central nervous system. J R Soc Interface 5:957–975CrossRef Zhong YH, Bellamkonda RV (2008) Biomaterials for the central nervous system. J R Soc Interface 5:957–975CrossRef
14.
Zurück zum Zitat Mano JF, Silva GA, Azevedo HS, Malafaya PB, Sousa RA, Silva S, Boesel LF, Oliveira JM, Santos TC, Marques AP, Neves NM, Reis RL (2007) Natural origin biodegradable systems in tissue engineering and regenerative medicine: present status and some moving trends. J R Soc Interface 4:999–1030CrossRef Mano JF, Silva GA, Azevedo HS, Malafaya PB, Sousa RA, Silva S, Boesel LF, Oliveira JM, Santos TC, Marques AP, Neves NM, Reis RL (2007) Natural origin biodegradable systems in tissue engineering and regenerative medicine: present status and some moving trends. J R Soc Interface 4:999–1030CrossRef
15.
Zurück zum Zitat Chung HJ, Park TG (2007) Surface engineered and drug releasing pre-fabricated scaffolds for tissue engineering. Adv Drug Delivery Rev 59:249–262CrossRef Chung HJ, Park TG (2007) Surface engineered and drug releasing pre-fabricated scaffolds for tissue engineering. Adv Drug Delivery Rev 59:249–262CrossRef
16.
Zurück zum Zitat Willerth SM, Sakiyama-Elbert SE (2007) Approaches to neural tissue engineering using scaffolds for drug delivery. Adv Drug Delivery Rev 59:325–338CrossRef Willerth SM, Sakiyama-Elbert SE (2007) Approaches to neural tissue engineering using scaffolds for drug delivery. Adv Drug Delivery Rev 59:325–338CrossRef
17.
Zurück zum Zitat Perale G, Rossi F, Sundstrom E, Bacchiega S, Masi M, Forloni G, Veglianese P (2011) Hydrogels in spinal cord injury repair strategies. ACS Chem Neurosci 2:336–345CrossRef Perale G, Rossi F, Sundstrom E, Bacchiega S, Masi M, Forloni G, Veglianese P (2011) Hydrogels in spinal cord injury repair strategies. ACS Chem Neurosci 2:336–345CrossRef
18.
Zurück zum Zitat Betz M, Hormansperger J, Fuchs T, Kulozik U (2012) Swelling behaviour, charge and mesh size of thermal protein hydrogels as influenced by pH during gelation. Soft Matter 8:2477CrossRef Betz M, Hormansperger J, Fuchs T, Kulozik U (2012) Swelling behaviour, charge and mesh size of thermal protein hydrogels as influenced by pH during gelation. Soft Matter 8:2477CrossRef
19.
Zurück zum Zitat von Wald Cresce A, Dandu R, Burger A, Cappello J, Ghandehari H (2008) Characterization and real-time imaging of gene expression of adenovirus embedded silk-elastinlike protein polymer hydrogels. Mol Pharmaceu 5:891–897 von Wald Cresce A, Dandu R, Burger A, Cappello J, Ghandehari H (2008) Characterization and real-time imaging of gene expression of adenovirus embedded silk-elastinlike protein polymer hydrogels. Mol Pharmaceu 5:891–897
20.
Zurück zum Zitat Numata K, Katashima T, Sakai T (2011) State of water, molecular structure, and cytotoxicity of silk hydrogels. Biomacromolecules 12:2137–2144CrossRef Numata K, Katashima T, Sakai T (2011) State of water, molecular structure, and cytotoxicity of silk hydrogels. Biomacromolecules 12:2137–2144CrossRef
21.
Zurück zum Zitat Abd El-Rehim HA, Hegazy ESA, Abd El-Mohdy HL (2004) Radiation synthesis of hydrogels to enhance sandy soils water retention and increase plant performance. J Appl Polym Sci 93:1360–1371 Abd El-Rehim HA, Hegazy ESA, Abd El-Mohdy HL (2004) Radiation synthesis of hydrogels to enhance sandy soils water retention and increase plant performance. J Appl Polym Sci 93:1360–1371
22.
Zurück zum Zitat Baldrian P, Valaskova V (2008) Degradation of cellulose by basidiomycetous fungi. FEMS Microbiol Rev 32:501–521CrossRef Baldrian P, Valaskova V (2008) Degradation of cellulose by basidiomycetous fungi. FEMS Microbiol Rev 32:501–521CrossRef
23.
Zurück zum Zitat Saboktakin MR, M.i Tabatabaei R (2015) Supramolecular hydrogels as drug delivery systems. Int J Bio Macro 75:426–436 Saboktakin MR, M.i Tabatabaei R (2015) Supramolecular hydrogels as drug delivery systems. Int J Bio Macro 75:426–436
24.
Zurück zum Zitat Buwalda SJ, Kristel WM, Dijkstra PJ, Feijen J, Vermonden T, Hennink WE (2014) Hydrogels in a historical perspective: from simple networks to smart materials. J Controlled Release 190:254–273CrossRef Buwalda SJ, Kristel WM, Dijkstra PJ, Feijen J, Vermonden T, Hennink WE (2014) Hydrogels in a historical perspective: from simple networks to smart materials. J Controlled Release 190:254–273CrossRef
25.
Zurück zum Zitat Hassan CM, Peppas NA (2000) Structure and applications of polyvinyl alcohol hydrogels produced convestional cross-linking or by freeze/thawing method. Adv Polym Sci 153:37–65CrossRef Hassan CM, Peppas NA (2000) Structure and applications of polyvinyl alcohol hydrogels produced convestional cross-linking or by freeze/thawing method. Adv Polym Sci 153:37–65CrossRef
26.
Zurück zum Zitat Tsutsumi K, Takayama K, Machida Y, Ebert CD, Nakatomi I, Nagai T, Pharma STP (1994) Formulation of buccal mucoadhesive dosage form of ergotomine tartrate. Sci. 4:230 Tsutsumi K, Takayama K, Machida Y, Ebert CD, Nakatomi I, Nagai T, Pharma STP (1994) Formulation of buccal mucoadhesive dosage form of ergotomine tartrate. Sci. 4:230
27.
Zurück zum Zitat Dinu MV, Přádný M, Drăgan ES, Michálek J (2013) Morphogical and swelling properties of porous hydrogels based on poly(hydroxyethyl methacrylate) and chitosan modulated by ice-templating process and porogen leaching. Polym Res 20:285CrossRef Dinu MV, Přádný M, Drăgan ES, Michálek J (2013) Morphogical and swelling properties of porous hydrogels based on poly(hydroxyethyl methacrylate) and chitosan modulated by ice-templating process and porogen leaching. Polym Res 20:285CrossRef
28.
Zurück zum Zitat Nho YC, Park JS, Lim YM (2014) Preparation of poly(acrylic acid) hydrogel by radiation crosslinking and its application for mucoadhesives. Polymers 6:890–898 [Open Access] Nho YC, Park JS, Lim YM (2014) Preparation of poly(acrylic acid) hydrogel by radiation crosslinking and its application for mucoadhesives. Polymers 6:890–898 [Open Access]
29.
Zurück zum Zitat Saika S, Miyamoto T, Ohnishi Y (2003) Histology of anterior capsule opacification with a polyHEMA/HOHEXMA hydrophilic hydrogel intraocular lens compared to poly (methyl methacrylate), silicone, and acrylic lenses. J Cataract Refract Surg 29:1198CrossRef Saika S, Miyamoto T, Ohnishi Y (2003) Histology of anterior capsule opacification with a polyHEMA/HOHEXMA hydrophilic hydrogel intraocular lens compared to poly (methyl methacrylate), silicone, and acrylic lenses. J Cataract Refract Surg 29:1198CrossRef
30.
Zurück zum Zitat Kubinova S, Horak D, Kozubenko N, Vanecek V, Proks V, Price J, Cocks G, Sykova E (2010) The use of superporous Ac-CGGASIKVAVS-OH-modified PHEMA scaffolds to promote cell adhesion and the differentiation of human fetal neural precursors. Biomaterials 31:5966–5975CrossRef Kubinova S, Horak D, Kozubenko N, Vanecek V, Proks V, Price J, Cocks G, Sykova E (2010) The use of superporous Ac-CGGASIKVAVS-OH-modified PHEMA scaffolds to promote cell adhesion and the differentiation of human fetal neural precursors. Biomaterials 31:5966–5975CrossRef
31.
Zurück zum Zitat Kubinova S, Horak D, Sykova E (2009) Cholesterol-modified superporous poly(2- hydroxyethyl methacrylate) scaffolds for tissue engineering. Biomaterials 30:4601–4609CrossRef Kubinova S, Horak D, Sykova E (2009) Cholesterol-modified superporous poly(2- hydroxyethyl methacrylate) scaffolds for tissue engineering. Biomaterials 30:4601–4609CrossRef
32.
Zurück zum Zitat Kumar N, Ganapathy H, Kim J, Jeong YS, Jeong YT (2008) Preparation of poly 2-hydroxyethyl methacrylate functionalized carbon nanotubes as novel biomaterial nanocomposites. Eur Polym J 44:579–586CrossRef Kumar N, Ganapathy H, Kim J, Jeong YS, Jeong YT (2008) Preparation of poly 2-hydroxyethyl methacrylate functionalized carbon nanotubes as novel biomaterial nanocomposites. Eur Polym J 44:579–586CrossRef
33.
Zurück zum Zitat Rizzi S, Halstenberg S, Hubbell J (2001) Synthetic, enzymatically degradable extracellular matrices formed from recombinant protein-(poly)ethyleneglycol. Eur Cells Mat 2:82–83 Rizzi S, Halstenberg S, Hubbell J (2001) Synthetic, enzymatically degradable extracellular matrices formed from recombinant protein-(poly)ethyleneglycol. Eur Cells Mat 2:82–83
34.
Zurück zum Zitat Gong C, Shi S, Dong P-W, Kan B, Gou M, Wang XH, Li X-Y, Luo F, Zhao X, Wei Y-Q, Qian ZY (2009) Synthesis and characterization of PEG-PCL-PEG thermosensitive hydrogel. Int J Pharmaceutics 365:89–99CrossRef Gong C, Shi S, Dong P-W, Kan B, Gou M, Wang XH, Li X-Y, Luo F, Zhao X, Wei Y-Q, Qian ZY (2009) Synthesis and characterization of PEG-PCL-PEG thermosensitive hydrogel. Int J Pharmaceutics 365:89–99CrossRef
35.
Zurück zum Zitat Lin C, Anseth K (2008) Cell–cell communication mimicry with poly(ethylene glycol) hydrogels for enhancing β-cell function. Pharmac Res 26:6380–6385 Lin C, Anseth K (2008) Cellcell communication mimicry with poly(ethylene glycol) hydrogels for enhancing β-cell function. Pharmac Res 26:6380–6385
36.
Zurück zum Zitat Kim B, Peppas N (2003) Poly(ethylene glycol)-containing hydro-gels for oral protein delivery applications. Biomed Microdevices 5:333–341CrossRef Kim B, Peppas N (2003) Poly(ethylene glycol)-containing hydro-gels for oral protein delivery applications. Biomed Microdevices 5:333–341CrossRef
37.
Zurück zum Zitat Lum L, Elisseeff J (2003) Ch. 4 In: Ashammakhi N, Ferretti P (eds) Topics in tissue engineering. University of Oulu, Oulu Lum L, Elisseeff J (2003) Ch. 4 In: Ashammakhi N, Ferretti P (eds) Topics in tissue engineering. University of Oulu, Oulu
38.
Zurück zum Zitat Li J, Wang N, Wu X (1998) Poly(vinyl alcohol) nanoparticles prepared by freezing- thawing process for protein/peptide drug delivery. J Control Release 56:117–126CrossRef Li J, Wang N, Wu X (1998) Poly(vinyl alcohol) nanoparticles prepared by freezing- thawing process for protein/peptide drug delivery. J Control Release 56:117–126CrossRef
39.
Zurück zum Zitat Ajji Z, Othoman I, Rosiak J (2005) Production of hydrogel wound dressings using gamma radiations. Nucl Instrum Methods Phys Res B 229:375–380CrossRef Ajji Z, Othoman I, Rosiak J (2005) Production of hydrogel wound dressings using gamma radiations. Nucl Instrum Methods Phys Res B 229:375–380CrossRef
40.
Zurück zum Zitat Ramires P, Miccoli M, Panzarini E, Dini L, Protopapa C (2005) In vitro and in vivo biocompatibility evaluation of a polyalkylimide hydrogel for soft tissue augmentation. J Biomed Mater Res B Appl Biomater 72:230–238CrossRef Ramires P, Miccoli M, Panzarini E, Dini L, Protopapa C (2005) In vitro and in vivo biocompatibility evaluation of a polyalkylimide hydrogel for soft tissue augmentation. J Biomed Mater Res B Appl Biomater 72:230–238CrossRef
41.
Zurück zum Zitat Zhang X, Yang Y, Yao J, Shao Z, Chen X (2014) Strong collagen hydrogels by oxidized dextran modification. ACS Sustainable Chem Eng 2:1318–1324CrossRef Zhang X, Yang Y, Yao J, Shao Z, Chen X (2014) Strong collagen hydrogels by oxidized dextran modification. ACS Sustainable Chem Eng 2:1318–1324CrossRef
42.
Zurück zum Zitat Choi B, Kim S, Lin B, Wu BM, Lee M (2014) Cartilaginous extracellular matrix- modified chitosan hydrogels for cartilage tissue engineering. ACS Appl Mater Interfaces 6:20110–20121CrossRef Choi B, Kim S, Lin B, Wu BM, Lee M (2014) Cartilaginous extracellular matrix- modified chitosan hydrogels for cartilage tissue engineering. ACS Appl Mater Interfaces 6:20110–20121CrossRef
43.
Zurück zum Zitat Park KM, Yang J-A, Jung H, Yeom J, Park JS, Park KH, Hoffman AS, Hahn SK, Kim K (2012) in situ supramolecular assembly and modular modification of hyaluronic acid hydrogels for 3D cellular engineering. ACS Nano 6:2960–2968CrossRef Park KM, Yang J-A, Jung H, Yeom J, Park JS, Park KH, Hoffman AS, Hahn SK, Kim K (2012) in situ supramolecular assembly and modular modification of hyaluronic acid hydrogels for 3D cellular engineering. ACS Nano 6:2960–2968CrossRef
44.
Zurück zum Zitat Ahmad N, Amin MCIM, Mahali SM, Ismail I, Chuang VTG (2014) Biocompatible and mucoadhesive bacterial cellulose-g-poly(acrylic acid) hydrogels for oral protein delivery. Mol Pharmaceutics 11:4130–4142CrossRef Ahmad N, Amin MCIM, Mahali SM, Ismail I, Chuang VTG (2014) Biocompatible and mucoadhesive bacterial cellulose-g-poly(acrylic acid) hydrogels for oral protein delivery. Mol Pharmaceutics 11:4130–4142CrossRef
45.
Zurück zum Zitat Wang J, Miao X, Fengzhao Q, Ren C, Yang Z, Wang L (2013) Using a mild hydrogelation process to confer stable hybrid hydrogels for enzyme immobilization. RSC Adv. 3:16739–16746CrossRef Wang J, Miao X, Fengzhao Q, Ren C, Yang Z, Wang L (2013) Using a mild hydrogelation process to confer stable hybrid hydrogels for enzyme immobilization. RSC Adv. 3:16739–16746CrossRef
46.
Zurück zum Zitat Hu X, Feng L, Xie A, Wei W, Wang S, Zhang J, Dong W (2014) Synthesis and characterization of a novel hydrogel: salecan/polyacrylamide semi-IPN hydrogel with a desirable pore structure. J Mater Chem B 2:3646–3658CrossRef Hu X, Feng L, Xie A, Wei W, Wang S, Zhang J, Dong W (2014) Synthesis and characterization of a novel hydrogel: salecan/polyacrylamide semi-IPN hydrogel with a desirable pore structure. J Mater Chem B 2:3646–3658CrossRef
47.
Zurück zum Zitat Sui X, Feng X, Luca AD, van Blitterswijk CA, Moroni L, Hempenius MA, Vancso GJ (2013) Poly(N-isopropylacrylamide)–poly(ferrocenylsilane) dual-responsive hydrogels: synthesis, characterization and antimicrobial applications. Polym Chem 4:337–342CrossRef Sui X, Feng X, Luca AD, van Blitterswijk CA, Moroni L, Hempenius MA, Vancso GJ (2013) Poly(N-isopropylacrylamide)–poly(ferrocenylsilane) dual-responsive hydrogels: synthesis, characterization and antimicrobial applications. Polym Chem 4:337–342CrossRef
48.
Zurück zum Zitat Li L, Ren L, Wang L, Liu S, Zhang Y, Tang L, Wang Y (2015) Effect of water state and polymer chain motion on the mechanical properties of a bacterial cellulose and polyvinyl alcohol (BC/PVA) hydrogel. RSC Adv 5:25525–25531CrossRef Li L, Ren L, Wang L, Liu S, Zhang Y, Tang L, Wang Y (2015) Effect of water state and polymer chain motion on the mechanical properties of a bacterial cellulose and polyvinyl alcohol (BC/PVA) hydrogel. RSC Adv 5:25525–25531CrossRef
49.
Zurück zum Zitat Qi X, Hu X, Wei W, Yu H, Li J, Zhang J, Dong W (2015) Investigation of Salecan/poly(vinyl alcohol) hydrogels prepared by freeze/thaw method. Carbo Polym 118:60–69CrossRef Qi X, Hu X, Wei W, Yu H, Li J, Zhang J, Dong W (2015) Investigation of Salecan/poly(vinyl alcohol) hydrogels prepared by freeze/thaw method. Carbo Polym 118:60–69CrossRef
50.
Zurück zum Zitat Selvam S, Pithapuram MV, Victor SP, Muthu J (2015) Injectable in situ forming xylitol–PEG-based hydrogels for cell encapsulation and delivery. Col Surf B Biointerfaces 126:35–43CrossRef Selvam S, Pithapuram MV, Victor SP, Muthu J (2015) Injectable in situ forming xylitol–PEG-based hydrogels for cell encapsulation and delivery. Col Surf B Biointerfaces 126:35–43CrossRef
51.
Zurück zum Zitat Li D, Zhang X, Yao J, Zeng Y, Simon GP, Wang H (2011) Composite polymer hydrogels as draw agents in forward osmosis and solar dewatering. Soft Matter 7:10048–10056CrossRef Li D, Zhang X, Yao J, Zeng Y, Simon GP, Wang H (2011) Composite polymer hydrogels as draw agents in forward osmosis and solar dewatering. Soft Matter 7:10048–10056CrossRef
52.
Zurück zum Zitat Giammanco EG, Sosnofsky CT, Ostrowski AD (2015) Light-responsive iron(III)—polysaccharide coordination hydrogels for controlled delivery. ACS Appl Mater Interfaces 7:3068–3076CrossRef Giammanco EG, Sosnofsky CT, Ostrowski AD (2015) Light-responsive iron(III)—polysaccharide coordination hydrogels for controlled delivery. ACS Appl Mater Interfaces 7:3068–3076CrossRef
53.
Zurück zum Zitat Ni T, Xu L, Sun Y, Yao W, Dai T, Lu Y (2015) Facile fabrication of reduced graphene oxide/polypyrrole composite hydrogels with excellent electrochemical performance and compression capacity. ACS Sustainable Chem Eng 3:862–870CrossRef Ni T, Xu L, Sun Y, Yao W, Dai T, Lu Y (2015) Facile fabrication of reduced graphene oxide/polypyrrole composite hydrogels with excellent electrochemical performance and compression capacity. ACS Sustainable Chem Eng 3:862–870CrossRef
54.
Zurück zum Zitat Ananthoji R, Eubank JF, Nouar F, Mouttaki H, Eddaoudi M, Harmon JP (2011) Symbiosis of zeolite-like metal–organic frameworks (rho-ZMOF) and hydrogels: composites for controlled drug release. J Mater Chem 21:9587–9594CrossRef Ananthoji R, Eubank JF, Nouar F, Mouttaki H, Eddaoudi M, Harmon JP (2011) Symbiosis of zeolite-like metal–organic frameworks (rho-ZMOF) and hydrogels: composites for controlled drug release. J Mater Chem 21:9587–9594CrossRef
55.
Zurück zum Zitat Li Z, Su Y, Xie B, Wang H, Wen T, He C, Shen H, Wuc D, Wang D (2013) A tough hydrogel–hydroxyapatite bone-like composite fabricated in situ by the electrophoresis approach. J Mater Chem B 1:1755–1764CrossRef Li Z, Su Y, Xie B, Wang H, Wen T, He C, Shen H, Wuc D, Wang D (2013) A tough hydrogel–hydroxyapatite bone-like composite fabricated in situ by the electrophoresis approach. J Mater Chem B 1:1755–1764CrossRef
56.
Zurück zum Zitat Bakarich SE, Gorkin R, in het Panhuis M, Spinks GM (2014) Three-dimensional printing fiber reinforced hydrogel composites. ACS Appl Mater Interfaces 6:15998–16006CrossRef Bakarich SE, Gorkin R, in het Panhuis M, Spinks GM (2014) Three-dimensional printing fiber reinforced hydrogel composites. ACS Appl Mater Interfaces 6:15998–16006CrossRef
57.
Zurück zum Zitat Qi X, Guan Y, Chen G, Zhang B, Ren J, Peng F, Sun R (2015) A non-covalent strategy for montmorillonite/xylose self-healing hydrogels. RSC Adv 5:41006–41012CrossRef Qi X, Guan Y, Chen G, Zhang B, Ren J, Peng F, Sun R (2015) A non-covalent strategy for montmorillonite/xylose self-healing hydrogels. RSC Adv 5:41006–41012CrossRef
58.
Zurück zum Zitat Xia N, Zhang Y, Chang K, Gai X, Jing Y, Li S, Liu L, Qu G (2015) Ferrocene-phenylalanine hydrogels for immobilization of acetylcholinesterase and detection of chlorpyrifos. J Electroana Chem 746:68–74CrossRef Xia N, Zhang Y, Chang K, Gai X, Jing Y, Li S, Liu L, Qu G (2015) Ferrocene-phenylalanine hydrogels for immobilization of acetylcholinesterase and detection of chlorpyrifos. J Electroana Chem 746:68–74CrossRef
59.
Zurück zum Zitat Guarino V, Ambrosio L (2013) Thermoset composite hydrogels for bone/intervertebral disc interface. Mater Lett 110:249–252CrossRef Guarino V, Ambrosio L (2013) Thermoset composite hydrogels for bone/intervertebral disc interface. Mater Lett 110:249–252CrossRef
60.
Zurück zum Zitat Dumitrescu AM, Slatineanu T, Poiata A, Iordana AR, Mihailescu C, Palamaru MN (2014) Advanced composite materials based on hydrogels and ferrites for potential biomedical applications. Collo Surf A Physicochem Eng Aspects 455:185–194CrossRef Dumitrescu AM, Slatineanu T, Poiata A, Iordana AR, Mihailescu C, Palamaru MN (2014) Advanced composite materials based on hydrogels and ferrites for potential biomedical applications. Collo Surf A Physicochem Eng Aspects 455:185–194CrossRef
61.
Zurück zum Zitat Qu B, Chen C, Qian L, Xiao H, He B (2014) Facile preparation of conductive composite hydrogels based on sodium alginate and graphite. Mate Lett 137:106–109CrossRef Qu B, Chen C, Qian L, Xiao H, He B (2014) Facile preparation of conductive composite hydrogels based on sodium alginate and graphite. Mate Lett 137:106–109CrossRef
62.
Zurück zum Zitat Yang Q, Adrus N, Tomicki F, Ulbricht M (2011) Composites of functional polymeric hydrogels and porous membranes. J Mater Chem 21:2783–2811CrossRef Yang Q, Adrus N, Tomicki F, Ulbricht M (2011) Composites of functional polymeric hydrogels and porous membranes. J Mater Chem 21:2783–2811CrossRef
63.
Zurück zum Zitat Gaharwar AK, Avery RK, Assmann A, Paul A, McKinley GH, Khademhosseini A, Olsen BD (2014) shear-thinning nanocomposite hydrogels for the treatment of hemorrhage. ACS Nano 8:9833–9842CrossRef Gaharwar AK, Avery RK, Assmann A, Paul A, McKinley GH, Khademhosseini A, Olsen BD (2014) shear-thinning nanocomposite hydrogels for the treatment of hemorrhage. ACS Nano 8:9833–9842CrossRef
64.
Zurück zum Zitat Wang H, Yi H, Chen X, Wang X (2014) One-step strategy to three-dimensional graphene/VO2 nanobelt composite hydrogels for high performance supercapacitors. J Mater Chem A 2:1165–1173CrossRef Wang H, Yi H, Chen X, Wang X (2014) One-step strategy to three-dimensional graphene/VO2 nanobelt composite hydrogels for high performance supercapacitors. J Mater Chem A 2:1165–1173CrossRef
65.
Zurück zum Zitat Chang C-W, van Spreeuwel A, Zhang C, Varghese S (2010) PEG/clay nanocomposite hydrogel: a mechanically robust tissue engineering Scaffold. Soft Matter 6:5157–5164CrossRef Chang C-W, van Spreeuwel A, Zhang C, Varghese S (2010) PEG/clay nanocomposite hydrogel: a mechanically robust tissue engineering Scaffold. Soft Matter 6:5157–5164CrossRef
66.
Zurück zum Zitat Cheng C, Liu Z, Li X, Su B, Zhou T, Zhao C (2014) Graphene oxide interpenetrated Polymeric composite hydrogels as highly effective adsorbents for water treatment. RSC Adv 4:42346–42357CrossRef Cheng C, Liu Z, Li X, Su B, Zhou T, Zhao C (2014) Graphene oxide interpenetrated Polymeric composite hydrogels as highly effective adsorbents for water treatment. RSC Adv 4:42346–42357CrossRef
67.
Zurück zum Zitat Baeissa A, Dave N, Smith BD, Liu Juewen (2010) DNA-functionalized monolithic hydrogels and gold nanoparticles for colorimetric DNA detection. ACS Appl Mater Interface 2:3594–3600CrossRef Baeissa A, Dave N, Smith BD, Liu Juewen (2010) DNA-functionalized monolithic hydrogels and gold nanoparticles for colorimetric DNA detection. ACS Appl Mater Interface 2:3594–3600CrossRef
68.
Zurück zum Zitat Gu X, Yang Y, Hu Y, Hu M, Wang C (2015) Fabrication of graphene-based xerogels for removal of heavy metal ions and capacitive deionization. ACS Sustainable Chem Eng 3:1056–1065CrossRef Gu X, Yang Y, Hu Y, Hu M, Wang C (2015) Fabrication of graphene-based xerogels for removal of heavy metal ions and capacitive deionization. ACS Sustainable Chem Eng 3:1056–1065CrossRef
69.
Zurück zum Zitat Xua M, Huanga Q, Wanga X, Suna R (2015) Highly tough cellulose/graphene composite hydrogels prepared from ionic liquids. Industrial Crops Products 70:56–63CrossRef Xua M, Huanga Q, Wanga X, Suna R (2015) Highly tough cellulose/graphene composite hydrogels prepared from ionic liquids. Industrial Crops Products 70:56–63CrossRef
70.
Zurück zum Zitat Güler MA, Gök MK, Figenc AK, Özgümüş S (2015) Swelling, mechanical and mucoadhesion properties of Mt/starch-g-PMAA nanocomposite hydrogels. App Clay Sci 112–113:44–52CrossRef Güler MA, Gök MK, Figenc AK, Özgümüş S (2015) Swelling, mechanical and mucoadhesion properties of Mt/starch-g-PMAA nanocomposite hydrogels. App Clay Sci 112–113:44–52CrossRef
71.
Zurück zum Zitat De Filpo G, Palermo AM, Munno R, Molinaro L, Formoso P, Nicoletta FP (2015) Gellan gum/titanium dioxide nanoparticle hybrid hydrogels for the cleaning and disinfection of parchment. Inter Biodeter Biodegrad 103:51–58CrossRef De Filpo G, Palermo AM, Munno R, Molinaro L, Formoso P, Nicoletta FP (2015) Gellan gum/titanium dioxide nanoparticle hybrid hydrogels for the cleaning and disinfection of parchment. Inter Biodeter Biodegrad 103:51–58CrossRef
72.
Zurück zum Zitat Isabel González-Sánchez M, Perni S, Tommasi G, Morris NG, Hawkins K, López-Cabarcos E, Prokopovich P (2015) Silver nanoparticle based antibacterial methacrylate hydrogels potential for bone graft applications. Mater Sci Eng C 50:332–340CrossRef Isabel González-Sánchez M, Perni S, Tommasi G, Morris NG, Hawkins K, López-Cabarcos E, Prokopovich P (2015) Silver nanoparticle based antibacterial methacrylate hydrogels potential for bone graft applications. Mater Sci Eng C 50:332–340CrossRef
73.
Zurück zum Zitat Tóth IY, Veress G, Szekeres M, Illés E, Tombác E (2015) Magnetic hyaluronate hydrogels: preparation and characterization. J Magnet Magnetic Mater 380:175–180CrossRef Tóth IY, Veress G, Szekeres M, Illés E, Tombác E (2015) Magnetic hyaluronate hydrogels: preparation and characterization. J Magnet Magnetic Mater 380:175–180CrossRef
Metadaten
Titel
Polymeric Hydrogels: A Review of Recent Developments
verfasst von
Shivani Bhardwaj Mishra
Ajay Kumar Mishra
Copyright-Jahr
2016
DOI
https://doi.org/10.1007/978-3-319-25322-0_1

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.