Skip to main content
Erschienen in: The International Journal of Advanced Manufacturing Technology 7-8/2020

06.06.2020 | ORIGINAL ARTICLE

Predicting milling force variation in time and space domain for multi-toothed face milling

verfasst von: Shun Liu, Sun Jin

Erschienen in: The International Journal of Advanced Manufacturing Technology | Ausgabe 7-8/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Variations of milling force in time domain and space domain are the common behaviors of face milling for large-scale component with discontinuous multi-holed surface, which specifically generate surface variations along feed direction and circumferential direction. An accurate prediction model of local milling force is a key issue to reliable simulation of the milling force variations and the resultant machined surface variations. However, milling force variation modeling is still a significant challenge due to changing of instantaneous chip thickness in angular domain and the non-constant cutting coefficients under different milling conditions. Therefore, a general milling force model with cutting coefficients derived from average forces of milling experiments may loss the robustness when applied to different milling conditions. To address this issue, this paper attempts to provide a methodology to identify the unknown cutting coefficients in dual-mechanism local force model for face milling through the periodic averages integrated with multiple angular local forces which are measured at specific sampling angular positions in each single test. And each of the dual-mechanism cutting coefficients is modeled as multi-quadratic regression equation individually based on response surface methodology (RSM) via the design of experiments. The influence of feed per tooth, spindle speed, and cutting depth on the cutting coefficients are studied in order to build a model which can predict reliably the local milling force for different process parameter combinations. The proposed prediction model of milling force variations in time and space domains is verified by experimental measurements.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Nguyen HT, Wang H, Tai BL, Ren J, Jack Hu S, Shih A (2015) High-definition metrology enabled surface variation control by cutting load balancing. J Manuf Sci E Trans ASME 138(2):21010CrossRef Nguyen HT, Wang H, Tai BL, Ren J, Jack Hu S, Shih A (2015) High-definition metrology enabled surface variation control by cutting load balancing. J Manuf Sci E Trans ASME 138(2):21010CrossRef
2.
Zurück zum Zitat Liu S, Jin S, Zhang X, Chen K, Tian A, Xi L (2019) A coupled model for the prediction of surface variation in face milling large-scale workpiece with complex geometry. J Manuf Sci E Trans ASME 141(3):31009CrossRef Liu S, Jin S, Zhang X, Chen K, Tian A, Xi L (2019) A coupled model for the prediction of surface variation in face milling large-scale workpiece with complex geometry. J Manuf Sci E Trans ASME 141(3):31009CrossRef
3.
Zurück zum Zitat ELK S, Erdim H, Lazoglu I (2012) Offline force control and feedrate scheduling for complex free form surfaces in 5-Axis milling. Procedia Cirp 1(1):96–101 ELK S, Erdim H, Lazoglu I (2012) Offline force control and feedrate scheduling for complex free form surfaces in 5-Axis milling. Procedia Cirp 1(1):96–101
4.
Zurück zum Zitat Nguyen HT, Wang H, Hu SJ (2013) Characterization of cutting force induced surface shape variation in face milling using high-definition metrology. J Manuf Sci E Trans ASME 135(4):41014CrossRef Nguyen HT, Wang H, Hu SJ (2013) Characterization of cutting force induced surface shape variation in face milling using high-definition metrology. J Manuf Sci E Trans ASME 135(4):41014CrossRef
5.
Zurück zum Zitat Yang Y, Liu Q, Zhang B (2014) Three-dimensional chatter stability prediction of milling based on the linear and exponential cutting force model. Int J Adv Manuf Technol 72(9–12):1175–1185CrossRef Yang Y, Liu Q, Zhang B (2014) Three-dimensional chatter stability prediction of milling based on the linear and exponential cutting force model. Int J Adv Manuf Technol 72(9–12):1175–1185CrossRef
6.
Zurück zum Zitat Tandon V, El-Mounayri H (2001) A novel artificial neural networks force model for end milling. Int J Adv Manuf Technol 18(10):693–700CrossRef Tandon V, El-Mounayri H (2001) A novel artificial neural networks force model for end milling. Int J Adv Manuf Technol 18(10):693–700CrossRef
7.
Zurück zum Zitat Ghorbani H, Moetakef-Imani B (2016) Specific cutting force and cutting condition interaction modeling for round insert face milling operation. Int J Adv Manuf Technol 84(5):1705–1715 Ghorbani H, Moetakef-Imani B (2016) Specific cutting force and cutting condition interaction modeling for round insert face milling operation. Int J Adv Manuf Technol 84(5):1705–1715
8.
Zurück zum Zitat Radhakrishnan T, Nandan U (2005) Milling force prediction using regression and neural networks. J Intell Manuf 16(1):93–102CrossRef Radhakrishnan T, Nandan U (2005) Milling force prediction using regression and neural networks. J Intell Manuf 16(1):93–102CrossRef
9.
Zurück zum Zitat Szecsi T (1999) Cutting force modeling using artificial neural networks. J Mater Process Technol 92-93(3):344–349CrossRef Szecsi T (1999) Cutting force modeling using artificial neural networks. J Mater Process Technol 92-93(3):344–349CrossRef
10.
Zurück zum Zitat Aykut Ş, Gölcü M, Semiz S, Ergür HS (2007) Modeling of cutting forces as function of cutting parameters for face milling of satellite 6 using an artificial neural network. J Mater Process Technol 190(1):199–203CrossRef Aykut Ş, Gölcü M, Semiz S, Ergür HS (2007) Modeling of cutting forces as function of cutting parameters for face milling of satellite 6 using an artificial neural network. J Mater Process Technol 190(1):199–203CrossRef
11.
Zurück zum Zitat Ehmann KKSD (1997) Machining process modeling: a review. J Manuf Sci E Trans ASME 119(11):655–663CrossRef Ehmann KKSD (1997) Machining process modeling: a review. J Manuf Sci E Trans ASME 119(11):655–663CrossRef
12.
Zurück zum Zitat Heikkala J (1995) Determining of cutting-force components in face milling. J Mater Process Technol 52(1):1–8CrossRef Heikkala J (1995) Determining of cutting-force components in face milling. J Mater Process Technol 52(1):1–8CrossRef
13.
Zurück zum Zitat Guo D, Ren F, Sun Y (2010) An approach to modeling cutting forces in five-axis ball-end milling of curved geometries based on tool motion analysis. J Manuf Sci E Trans ASME, 132(4):575–590 Guo D, Ren F, Sun Y (2010) An approach to modeling cutting forces in five-axis ball-end milling of curved geometries based on tool motion analysis. J Manuf Sci E Trans ASME, 132(4):575–590
14.
Zurück zum Zitat Kilic ZM, Altintas Y (2016) Generalized mechanics and dynamics of metal cutting operations for unified simulations. Int J Mach Tool Manu 104:1–13CrossRef Kilic ZM, Altintas Y (2016) Generalized mechanics and dynamics of metal cutting operations for unified simulations. Int J Mach Tool Manu 104:1–13CrossRef
15.
Zurück zum Zitat Wang JJJ, Zheng CM (2002) An analytical force model with shearing and ploughing mechanisms for end milling. Int J Mach Tool Manu 42(67):761–771CrossRef Wang JJJ, Zheng CM (2002) An analytical force model with shearing and ploughing mechanisms for end milling. Int J Mach Tool Manu 42(67):761–771CrossRef
16.
Zurück zum Zitat Campatelli G, Scippa A. (2012). Prediction of milling cutting force coefficients for Aluminum 6082-T4. In Wegener K (ed.), Procedia CIRP 1: 563–568 Campatelli G, Scippa A. (2012). Prediction of milling cutting force coefficients for Aluminum 6082-T4. In Wegener K (ed.), Procedia CIRP 1: 563–568
17.
Zurück zum Zitat Song G, Li J, Sun J (2013) Approach for modeling accurate undeformed chip thickness in milling operation. Int J Adv Manuf Technol 68(5–8):1429–1439CrossRef Song G, Li J, Sun J (2013) Approach for modeling accurate undeformed chip thickness in milling operation. Int J Adv Manuf Technol 68(5–8):1429–1439CrossRef
18.
Zurück zum Zitat Andersson C, Andersson M, Stahl JE (2011) Experimental studies of cutting force variation in face milling. Int J Mach Tool Manu 51(1):67–76CrossRef Andersson C, Andersson M, Stahl JE (2011) Experimental studies of cutting force variation in face milling. Int J Mach Tool Manu 51(1):67–76CrossRef
19.
Zurück zum Zitat Zheng HQ, Li XP, Wong YS, Nee A (1999) Theoretical modelling and simulation of cutting forces in face milling with cutter runout. Int J Mach Tool Manu 39(12):2003–2018CrossRef Zheng HQ, Li XP, Wong YS, Nee A (1999) Theoretical modelling and simulation of cutting forces in face milling with cutter runout. Int J Mach Tool Manu 39(12):2003–2018CrossRef
20.
Zurück zum Zitat Sun Y, Guo Q (2011) Numerical simulation and prediction of cutting forces in five-axis milling processes with cutter run-out. Int J Mach Tool Manu 51(10–11):806–815CrossRef Sun Y, Guo Q (2011) Numerical simulation and prediction of cutting forces in five-axis milling processes with cutter run-out. Int J Mach Tool Manu 51(10–11):806–815CrossRef
21.
Zurück zum Zitat Qu S, Zhao J, Wang T, Tian F (2015) Improved method to predict cutting force in end milling considering cutting process dynamics. Int J Adv Manuf Technol 78(9–12):1501–1510CrossRef Qu S, Zhao J, Wang T, Tian F (2015) Improved method to predict cutting force in end milling considering cutting process dynamics. Int J Adv Manuf Technol 78(9–12):1501–1510CrossRef
22.
Zurück zum Zitat Cai S, Yao B, Feng W, Cai Z (2019) An improved cutting force prediction model in the milling process with a multi-blade face milling cutter based on FEM and NURBS. Int J Adv Manuf Technol 104(5):2487–2499CrossRef Cai S, Yao B, Feng W, Cai Z (2019) An improved cutting force prediction model in the milling process with a multi-blade face milling cutter based on FEM and NURBS. Int J Adv Manuf Technol 104(5):2487–2499CrossRef
23.
Zurück zum Zitat Liu XW, Cheng K, Webb D, Longstaff AP, Widiyarto MH (2004) Improved dynamic cutting force model in peripheral milling. Part II: experimental verification and prediction. Int J Adv Manuf Technol 24(11–12):794–805CrossRef Liu XW, Cheng K, Webb D, Longstaff AP, Widiyarto MH (2004) Improved dynamic cutting force model in peripheral milling. Part II: experimental verification and prediction. Int J Adv Manuf Technol 24(11–12):794–805CrossRef
24.
Zurück zum Zitat Pawełko P, Powałka B, Berczyński S (2013) Estimation of cutting force model coefficients with regularized inverse problem. Adv Manuf Sci Technol 37(2):5–21 Pawełko P, Powałka B, Berczyński S (2013) Estimation of cutting force model coefficients with regularized inverse problem. Adv Manuf Sci Technol 37(2):5–21
25.
Zurück zum Zitat Rubeo MA, Schmitz TL (2016) Milling force modeling: a comparison of two approaches. Procedia Manuf 5:90–105CrossRef Rubeo MA, Schmitz TL (2016) Milling force modeling: a comparison of two approaches. Procedia Manuf 5:90–105CrossRef
26.
Zurück zum Zitat Lee P, Altintas Y (1996) Prediction of ball-end milling forces from orthogonal cutting data. Int J Mach Tool Manu 36(9):1059–1072CrossRef Lee P, Altintas Y (1996) Prediction of ball-end milling forces from orthogonal cutting data. Int J Mach Tool Manu 36(9):1059–1072CrossRef
27.
Zurück zum Zitat Shi Z, Liu L, Liu Z (2015) Influence of dynamic effects on surface roughness for face milling process. Int J Adv Manuf Technol 80(9–12):1823–1831 Shi Z, Liu L, Liu Z (2015) Influence of dynamic effects on surface roughness for face milling process. Int J Adv Manuf Technol 80(9–12):1823–1831
28.
Zurück zum Zitat Jin S, Liu S, Zhang X, Chen K (2019) A unified prediction model of 3D surface topography in face milling considering multi-error sources. Int J Adv Manuf Technol 102(1–4):705–717CrossRef Jin S, Liu S, Zhang X, Chen K (2019) A unified prediction model of 3D surface topography in face milling considering multi-error sources. Int J Adv Manuf Technol 102(1–4):705–717CrossRef
29.
Zurück zum Zitat Kilic ZM, Altintas Y (2016) Generalized modelling of cutting tool geometries for unified process simulation. Int J Mach Tool Manu 104:14–25CrossRef Kilic ZM, Altintas Y (2016) Generalized modelling of cutting tool geometries for unified process simulation. Int J Mach Tool Manu 104:14–25CrossRef
Metadaten
Titel
Predicting milling force variation in time and space domain for multi-toothed face milling
verfasst von
Shun Liu
Sun Jin
Publikationsdatum
06.06.2020
Verlag
Springer London
Erschienen in
The International Journal of Advanced Manufacturing Technology / Ausgabe 7-8/2020
Print ISSN: 0268-3768
Elektronische ISSN: 1433-3015
DOI
https://doi.org/10.1007/s00170-020-05319-5

Weitere Artikel der Ausgabe 7-8/2020

The International Journal of Advanced Manufacturing Technology 7-8/2020 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.