Skip to main content
main-content

Tipp

Weitere Artikel dieser Ausgabe durch Wischen aufrufen

05.06.2018 | S.I. : Emerging Intelligent Algorithms for Edge-of-Things Computing | Ausgabe 5/2019

Neural Computing and Applications 5/2019

Prediction model for optimized self-compacting concrete with fly ash using response surface method based on fuzzy classification

Zeitschrift:
Neural Computing and Applications > Ausgabe 5/2019
Autoren:
Sundari Selvaraj, Sukumar Sivaraman

Abstract

This paper elucidates a data predicting model using an intelligent rule-based enhanced multiclass support vector machine and fuzzy rules (IREMSVM-FR) while optimizing the test practices and trials needed for the proportioning of self-compacting concrete (SCC) using response surface methodology (RSM). The SCC requires a wide range of material content, and hence, more numbers of investigations were typically essential to select a suitable mixture to get the required properties of SCC. Taguchi’s methodology with an L18 array and three-level factor was used to reduce the number of the experiment. Four regulating elements, i.e., cement, fly ash, water powder ratio and superplasticizer, were used. Two results such as slump flow in the fresh state and the compressive strength in the hardened state at 28 days were assessed. Optimizations of the results were set by using RSM. The reactions of material parameters examined to optimize the fresh and hardened properties such as slump flow and compressive strength of SCC. The full quadratic equation of a model can be used to assess the influence of constituent materials on the properties of SCC. Moreover, these 28-days observation records are considered as SCC dataset. For predicting the properties of SCC, an existing intelligent classification algorithm IREMSVM-FR has been used. In which cement (kg), fly ash (kg), water powder ratio (W/P) and superplasticizer (l/m3) were taken as sources of data, whereas slump flow and compressive strength were the responses. It is revealed from the results that RSM has optimized the test procedures and trials needed for the proportioning of SCC so as to maximize the slump flow and compressive strength effectively than DOE and IREMSVM model have conformed.

Bitte loggen Sie sich ein, um Zugang zu diesem Inhalt zu erhalten

Sie möchten Zugang zu diesem Inhalt erhalten? Dann informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 58.000 Bücher
  • über 300 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Maschinenbau + Werkstoffe




Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Testen Sie jetzt 30 Tage kostenlos.

Literatur
Über diesen Artikel

Weitere Artikel der Ausgabe 5/2019

Neural Computing and Applications 5/2019 Zur Ausgabe

S.I.: Emerging Intelligent Algorithms for Edge-of-Things Computing

Fault classification and detection in wind turbine using Cuckoo-optimized support vector machine

S.I. : Emerging Intelligent Algorithms for Edge-of-Things Computing

Optimal body mass index cutoff point for cardiovascular disease and high blood pressure

Premium Partner

    Bildnachweise