Skip to main content
Erschienen in: The International Journal of Advanced Manufacturing Technology 1-2/2022

31.01.2022 | ORIGINAL ARTICLE

Prediction model of machining surface roughness for five-axis machine tool based on machine-tool structure performance

verfasst von: Tzu-Chi Chan, Hsin-Hsien Lin, Sabbella Veera Venkata Satyanarayana Reddy

Erschienen in: The International Journal of Advanced Manufacturing Technology | Ausgabe 1-2/2022

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this study, structural performance analysis and test verification of a machine tool were performed. This research is based on a five-axis machine tool for modeling and experimental verification. The mechanical-structure performance of the machine-tool cutting process directly affects the processing results. The processing performance of a five-axis machine tool was analyzed to identify processing weaknesses as the basis for subsequent structural improvements. Data were then integrated through the abductory induction mechanism (AIM) polynomial neural network to predict intelligent processing quality, and an in-depth investigation was conducted by importing processing parameters to predict the surface quality of the finished product. The finite-element analysis method was used to analyze the static and dynamic characteristics of the whole machine and to test the structural modal frequency and vibration shape. For modal testing, the experiment used various equipment, including impact hammers, accelerometers, and signal extractors. Subsequent planning of modal frequency band processing experiments was conducted to verify the influence of natural frequencies on the processing level. Finally, according to the machine processing characteristics, a processing experiment was planned. The measurement record was used as the training data of the AIM polynomial neural network to establish the processing quality prediction model. After analysis and an actual machine test comparison, the two-axis static rigidity values of the machine were X: 1.63 kg/µm and Y: 1.93 kg/µm. The modal vibration shape maximum error of the machine was within 6.2%. The processing quality prediction model established by the AIM polynomial neural network could input processing parameters to achieve the surface roughness prediction value, and the actual relative error of the Ra value was within 0.1 µm. Based on the results of cutting experiments, the influence of the dynamic characteristics of the machine on the processing quality was obtained, especially in the modal vibration environment, which had an adverse effect on the surface roughness. Hence, the surface roughness of the workpiece processed by the machine could be predicted.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Eynian M (2019) In-process identification of modal parameters using dimensionless relationships in milling chatter. Int J Mach Tools Manuf 143:49–62CrossRef Eynian M (2019) In-process identification of modal parameters using dimensionless relationships in milling chatter. Int J Mach Tools Manuf 143:49–62CrossRef
2.
Zurück zum Zitat Tang X, Peng F, Yan R, Zhu Z, Li Z, Xin S (2021) Nonlinear process damping identification using finite amplitude stability and the influence analysis on five-axis milling stability. Int J Mech Sci 190:106008 Tang X, Peng F, Yan R, Zhu Z, Li Z, Xin S (2021) Nonlinear process damping identification using finite amplitude stability and the influence analysis on five-axis milling stability. Int J Mech Sci 190:106008
3.
Zurück zum Zitat Liu H, Wu J, Liu K, Kuang K, Luo Q, Liu Z, Wang Y (2019) Pretightening sequence planning of anchor bolts based on structure uniform deformation for large CNC machine tools. Int J Mach Tools Manuf 136:1–18CrossRef Liu H, Wu J, Liu K, Kuang K, Luo Q, Liu Z, Wang Y (2019) Pretightening sequence planning of anchor bolts based on structure uniform deformation for large CNC machine tools. Int J Mach Tools Manuf 136:1–18CrossRef
4.
Zurück zum Zitat Muñoz-Escalonaa P, Maropoulosb PG (2015) A geometrical model for surface roughness prediction when face milling Al 7075–T7351 with square insert tools. J Manuf Syst 36:216–223CrossRef Muñoz-Escalonaa P, Maropoulosb PG (2015) A geometrical model for surface roughness prediction when face milling Al 7075–T7351 with square insert tools. J Manuf Syst 36:216–223CrossRef
5.
Zurück zum Zitat Zhao Z, Wang S, Wang Z, Liu N, Wang S, Ma C, Yang B (2020) Interference- and chatter-free cutter posture optimization towards minimal surface roughness in five-axis machining. Int J Mech Sci 171:105395 Zhao Z, Wang S, Wang Z, Liu N, Wang S, Ma C, Yang B (2020) Interference- and chatter-free cutter posture optimization towards minimal surface roughness in five-axis machining. Int J Mech Sci 171:105395
6.
Zurück zum Zitat Wang L, Ge S, Si H, Yuan X, Duan F (2020) Roughness control method for five-axis flank milling based on the analysis of surface topography. Int J Mech Sci 169:105337 Wang L, Ge S, Si H, Yuan X, Duan F (2020) Roughness control method for five-axis flank milling based on the analysis of surface topography. Int J Mech Sci 169:105337
7.
Zurück zum Zitat Wang L, Ge S, Si H, Guan L, Duan F, Liu Y (2020) Elliptical model for surface topography prediction in five-axis flank milling. Chin J Aeronaut 33(4):1361–1374CrossRef Wang L, Ge S, Si H, Guan L, Duan F, Liu Y (2020) Elliptical model for surface topography prediction in five-axis flank milling. Chin J Aeronaut 33(4):1361–1374CrossRef
8.
Zurück zum Zitat Tomov M, Kuzinovski M, Cichosz P (2016) Development of mathematical models for surface roughness parameter prediction in turning depending on the process condition. Int J Mech Sci 113:120–132CrossRef Tomov M, Kuzinovski M, Cichosz P (2016) Development of mathematical models for surface roughness parameter prediction in turning depending on the process condition. Int J Mech Sci 113:120–132CrossRef
9.
Zurück zum Zitat Das B, Roy S, Rai RN, Saha SC (2016) Study on machinability of in situ Al–4.5%Cu–TiC metal matrix composite-surface finish, cutting force prediction using ANN. CIRP J Manuf Sci Technol 12:67–78CrossRef Das B, Roy S, Rai RN, Saha SC (2016) Study on machinability of in situ Al–4.5%Cu–TiC metal matrix composite-surface finish, cutting force prediction using ANN. CIRP J Manuf Sci Technol 12:67–78CrossRef
10.
Zurück zum Zitat García-Plaza E, Núñez Lópeza PJ, Beamud Gonzálezb EM (2019) Efficiency of vibration signal feature extraction for surface finish monitoring in CNC machining. J Manuf Process 44:145–157CrossRef García-Plaza E, Núñez Lópeza PJ, Beamud Gonzálezb EM (2019) Efficiency of vibration signal feature extraction for surface finish monitoring in CNC machining. J Manuf Process 44:145–157CrossRef
11.
Zurück zum Zitat Rasagopal P, Senthilkumar P, Nallakumarasamy G, Magibalan S (2020) A study surface integrity of aluminum hybrid composites during milling peration. J Market Res 9(3):4884–4893 Rasagopal P, Senthilkumar P, Nallakumarasamy G, Magibalan S (2020) A study surface integrity of aluminum hybrid composites during milling peration. J Market Res 9(3):4884–4893
12.
Zurück zum Zitat Mansour A, Abdalla H (2002) Surface roughness model for end milling: a semi-free cutting carbon casehardening steel (EN32) in dry condition. J Mater Process Technol 124:183–191CrossRef Mansour A, Abdalla H (2002) Surface roughness model for end milling: a semi-free cutting carbon casehardening steel (EN32) in dry condition. J Mater Process Technol 124:183–191CrossRef
13.
Zurück zum Zitat Abouelatta OB, Mádl J (2001) Surface roughness prediction based on cutting parameters and tool vibrations in turning operations. J Mater Process Technol 118(1–3):269–277 Abouelatta OB, Mádl J (2001) Surface roughness prediction based on cutting parameters and tool vibrations in turning operations. J Mater Process Technol 118(1–3):269–277
14.
Zurück zum Zitat Lin WS, Lee BY, Wu CL (2001) Modeling the surface roughness and cutting force for turning. J Mater Process Technol 108:286–293CrossRef Lin WS, Lee BY, Wu CL (2001) Modeling the surface roughness and cutting force for turning. J Mater Process Technol 108:286–293CrossRef
15.
Zurück zum Zitat Ostasevicius V, Gaidys R, Rimkeviciene J, Dauksevicius R (2010) An approach based on tool mode control for surface roughness reduction in high-frequency vibration cutting. J Sound Vib 329:4866–4879CrossRef Ostasevicius V, Gaidys R, Rimkeviciene J, Dauksevicius R (2010) An approach based on tool mode control for surface roughness reduction in high-frequency vibration cutting. J Sound Vib 329:4866–4879CrossRef
16.
Zurück zum Zitat Sahin Y, Motorcu AR (2008) Surface roughness model in machining hardened steel with cubic boron nitride cutting tool. Int J Refract Metal Hard Mater 26:84–90CrossRef Sahin Y, Motorcu AR (2008) Surface roughness model in machining hardened steel with cubic boron nitride cutting tool. Int J Refract Metal Hard Mater 26:84–90CrossRef
17.
Zurück zum Zitat Öktem H, Erzurumlu T, Kurtaran H (2005) Application of response surface methodology in the optimization of cutting conditions for surface roughness. J Mater Process Technol 170:11–16CrossRef Öktem H, Erzurumlu T, Kurtaran H (2005) Application of response surface methodology in the optimization of cutting conditions for surface roughness. J Mater Process Technol 170:11–16CrossRef
18.
Zurück zum Zitat Lalwani DI, Mehta NK, Jain PK (2008) Experimental investigations of cutting parameters influence on cutting forces and surface roughness in finish hard turning of MDN250 steel. J Mater Process Technol 206:167–179CrossRef Lalwani DI, Mehta NK, Jain PK (2008) Experimental investigations of cutting parameters influence on cutting forces and surface roughness in finish hard turning of MDN250 steel. J Mater Process Technol 206:167–179CrossRef
19.
Zurück zum Zitat Davim JP, Gaitonde VN, Karnikc SR (2008) Investigations into the effect of cutting conditions on surface roughness in turning of free machining steel by ANN models. J Mater Process Technol 205:16–23CrossRef Davim JP, Gaitonde VN, Karnikc SR (2008) Investigations into the effect of cutting conditions on surface roughness in turning of free machining steel by ANN models. J Mater Process Technol 205:16–23CrossRef
20.
Zurück zum Zitat Liu N, Wang SB, Zhang YF, Lu WF (2016) A novel approach to predicting surface roughness based on specific cutting energy consumption when slot milling Al-7075. Int J Mech Sci 118:13–20CrossRef Liu N, Wang SB, Zhang YF, Lu WF (2016) A novel approach to predicting surface roughness based on specific cutting energy consumption when slot milling Al-7075. Int J Mech Sci 118:13–20CrossRef
21.
Zurück zum Zitat Diniz AE, Micaroni R (2002) Cutting conditions for finish turning process aiming: the use of dry. Int J Mach Tools Manuf 42:899904 Diniz AE, Micaroni R (2002) Cutting conditions for finish turning process aiming: the use of dry. Int J Mach Tools Manuf 42:899904
22.
Zurück zum Zitat Muthukrishnan N, Davim JP (2009) Optimization of machining parameters of Al/SiC-MMC with ANOVA and ANN analysis. J Mater Process Technol 209:225–232CrossRef Muthukrishnan N, Davim JP (2009) Optimization of machining parameters of Al/SiC-MMC with ANOVA and ANN analysis. J Mater Process Technol 209:225–232CrossRef
23.
Zurück zum Zitat Rawangwong S, Chatthong J, Boonchouytan W, Burapa R (2014) Influence of cutting parameters in face milling semi-solid AA7075 using carbide tool affected the surface roughness and tool wear. Energy Procedia 56:448–457CrossRef Rawangwong S, Chatthong J, Boonchouytan W, Burapa R (2014) Influence of cutting parameters in face milling semi-solid AA7075 using carbide tool affected the surface roughness and tool wear. Energy Procedia 56:448–457CrossRef
24.
Zurück zum Zitat Wang YC, Chen CH, Lee BY (2009) The predictive model of surface roughness and searching system in database for cutting tool grinding. Mater Sci Forum 626–627:11–16CrossRef Wang YC, Chen CH, Lee BY (2009) The predictive model of surface roughness and searching system in database for cutting tool grinding. Mater Sci Forum 626–627:11–16CrossRef
25.
Zurück zum Zitat Chen J-Y, Chan T-C, Lee B-Y, Liang C-Y (2020) Prediction model of cutting edge for end mills based on mechanical material properties. Int J Adv Manuf Technol 107:2939–2951CrossRef Chen J-Y, Chan T-C, Lee B-Y, Liang C-Y (2020) Prediction model of cutting edge for end mills based on mechanical material properties. Int J Adv Manuf Technol 107:2939–2951CrossRef
Metadaten
Titel
Prediction model of machining surface roughness for five-axis machine tool based on machine-tool structure performance
verfasst von
Tzu-Chi Chan
Hsin-Hsien Lin
Sabbella Veera Venkata Satyanarayana Reddy
Publikationsdatum
31.01.2022
Verlag
Springer London
Erschienen in
The International Journal of Advanced Manufacturing Technology / Ausgabe 1-2/2022
Print ISSN: 0268-3768
Elektronische ISSN: 1433-3015
DOI
https://doi.org/10.1007/s00170-021-08634-7

Weitere Artikel der Ausgabe 1-2/2022

The International Journal of Advanced Manufacturing Technology 1-2/2022 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.