Skip to main content
Erschienen in: Cellulose 1/2014

01.02.2014 | Original Paper

Prediction of cellulose nanotube models through density functional theory calculations

verfasst von: Takuya Uto, Tatsuhiko Miyata, Toshifumi Yui

Erschienen in: Cellulose | Ausgabe 1/2014

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

We report the generation of a nano-scale tubular structure of cellulose molecules (CelNT), through density functional theory (DFT) calculations. When a cellulose IIII (1 0 0) chain sheet model is optimized by DFT calculations, the sheet models spontaneously roll into tubes. The oligomers arrange in a right-handed, four-fold helix with one-quarter chain staggering, oriented with parallel polarity similar to the original crystal structure. Based on a one-quarter chain staggering relationship, six large CelNT models, consisting of 16 cellulose chains with DP = 80, are constructed by combinations of two types of chain polarities and three types of symmetry operations to generate a circular arrangement of molecular chains. All six CelNT models are examined by molecular dynamics (MD) calculations in chloroform. While four CelNT models retain a tubular form throughout MD calculations, the remaining two deform. 3D-RISM theory model is used to estimate the solvation free energies of the four CelNT models. The results suggest that the CelNT model with a chain arrangement of parallel polarity and right-handed helical symmetry forms the most stable tube structure.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
Zurück zum Zitat Attala R, VanderHart DL (1984) Native cellulose: a composite of two distinct crystalline forms. Science 223:283–285CrossRef Attala R, VanderHart DL (1984) Native cellulose: a composite of two distinct crystalline forms. Science 223:283–285CrossRef
Zurück zum Zitat Basma M, Sundara S, Calgan D, Venali T, Woods RJ (2001) Solvated ensemble averaging in the calculation of partial atomic charges. J Comput Chem 22:1125–1137CrossRef Basma M, Sundara S, Calgan D, Venali T, Woods RJ (2001) Solvated ensemble averaging in the calculation of partial atomic charges. J Comput Chem 22:1125–1137CrossRef
Zurück zum Zitat Boys SF, Bernardi F (1970) The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors. Mol Phys 19:553–566CrossRef Boys SF, Bernardi F (1970) The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors. Mol Phys 19:553–566CrossRef
Zurück zum Zitat Case DA, Darden TA, Cheatham TE III, Simmerling CL, Wang J, Duke RE, Luo R, Walker RC, Zhang W, Merz KM, Roberts B, Wang B, Hayik S, Roitberg A, Seabra G, Kolossváry I, Wong KF, Paesani F, Vanicek J, Liu J, Wu X, Brozell SR, Steinbrecher T, Gohlke H, Cai Q, Ye X, Wang J, Hsieh M-J, Cui G, Roe DR, Mathews DH, Seetin MG, Sagui C, Babin V, Luchko T, Gusarov S, Kovalenko A, Kollman PA (2009) AMBER 11. University of California, San Francisco Case DA, Darden TA, Cheatham TE III, Simmerling CL, Wang J, Duke RE, Luo R, Walker RC, Zhang W, Merz KM, Roberts B, Wang B, Hayik S, Roitberg A, Seabra G, Kolossváry I, Wong KF, Paesani F, Vanicek J, Liu J, Wu X, Brozell SR, Steinbrecher T, Gohlke H, Cai Q, Ye X, Wang J, Hsieh M-J, Cui G, Roe DR, Mathews DH, Seetin MG, Sagui C, Babin V, Luchko T, Gusarov S, Kovalenko A, Kollman PA (2009) AMBER 11. University of California, San Francisco
Zurück zum Zitat Charani PR, Dehghani-Firouzabadi M, Afra E, Shakeri A (2013) Rheological characterization of high concentrated MFC gel from kenaf unbleached pulp. Cellulose 20:727–740CrossRef Charani PR, Dehghani-Firouzabadi M, Afra E, Shakeri A (2013) Rheological characterization of high concentrated MFC gel from kenaf unbleached pulp. Cellulose 20:727–740CrossRef
Zurück zum Zitat Chuah CT, Sarko A, Marchessault RH (1983) Triple-helical crystalline structure of curdlan and paramylon. Macromolecules 16:1375–1382CrossRef Chuah CT, Sarko A, Marchessault RH (1983) Triple-helical crystalline structure of curdlan and paramylon. Macromolecules 16:1375–1382CrossRef
Zurück zum Zitat Deslandes Y, Marchessault RH, Sarko A (1980) Triple-helical structure of (1,3)-β-D-glucan. Macromolecules 13:1466–1471CrossRef Deslandes Y, Marchessault RH, Sarko A (1980) Triple-helical structure of (1,3)-β-D-glucan. Macromolecules 13:1466–1471CrossRef
Zurück zum Zitat Essmann U, Pereta L, Berkowitz ML, Darden TA, Lee H, Pedersen LG (1995) A smooth particle mesh Ewald method. J Chem Phys 103:8577–8593CrossRef Essmann U, Pereta L, Berkowitz ML, Darden TA, Lee H, Pedersen LG (1995) A smooth particle mesh Ewald method. J Chem Phys 103:8577–8593CrossRef
Zurück zum Zitat Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery Jr JA, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09, Revision C.01. Gaussian Inc., Wallingford Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery Jr JA, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09, Revision C.01. Gaussian Inc., Wallingford
Zurück zum Zitat Harada A, Li J, Kamachi M (1992) The molecular necklace: a rotaxane containing many threaded α-cyclodextrins. Nature 356:325–327CrossRef Harada A, Li J, Kamachi M (1992) The molecular necklace: a rotaxane containing many threaded α-cyclodextrins. Nature 356:325–327CrossRef
Zurück zum Zitat Hirata F (ed) (2003) Molecular theory of solvation. Kluwer, Dordrecht Hirata F (ed) (2003) Molecular theory of solvation. Kluwer, Dordrecht
Zurück zum Zitat Humphrey W, Dalke A, Schulten K (1996) VMD—visual molecular dynamics. J Molec Graphics 14:33–38CrossRef Humphrey W, Dalke A, Schulten K (1996) VMD—visual molecular dynamics. J Molec Graphics 14:33–38CrossRef
Zurück zum Zitat Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354:56–58CrossRef Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354:56–58CrossRef
Zurück zum Zitat Iijima S, Ichihashi T (1993) Single-shell carbon nanotubes of 1-nm diameter. Nature 363:603–605CrossRef Iijima S, Ichihashi T (1993) Single-shell carbon nanotubes of 1-nm diameter. Nature 363:603–605CrossRef
Zurück zum Zitat Ikeda M, Hasegawa T, Numata M, Sugikawa K, Sakurai K, Fujiki M, Shikai S (2007) Instaneous inclusion of a polynucleotide and hydrophobic guest molecules into a helical core of cationic β-1.3-glucan polysaccharide. J Am Chem Soc 129:3979–3988CrossRef Ikeda M, Hasegawa T, Numata M, Sugikawa K, Sakurai K, Fujiki M, Shikai S (2007) Instaneous inclusion of a polynucleotide and hydrophobic guest molecules into a helical core of cationic β-1.3-glucan polysaccharide. J Am Chem Soc 129:3979–3988CrossRef
Zurück zum Zitat Kirchner KN, Woods RJ (2001) Solvent interactions determine carbohydrate conformation. Proc Natl Acad Sci USA 98:10541–10545CrossRef Kirchner KN, Woods RJ (2001) Solvent interactions determine carbohydrate conformation. Proc Natl Acad Sci USA 98:10541–10545CrossRef
Zurück zum Zitat Klemm D, Kramer F, Moritz S, Lindstrőm T, Ankerfos M, Gray D, Dorris A (2011) Nanocelluloses: a new family of nature-based materials. Angew Int Ed 50:5438–5466CrossRef Klemm D, Kramer F, Moritz S, Lindstrőm T, Ankerfos M, Gray D, Dorris A (2011) Nanocelluloses: a new family of nature-based materials. Angew Int Ed 50:5438–5466CrossRef
Zurück zum Zitat Langan P, Nishiyama Y, Chanzy H (2001) X-ray structure of mercerized cellulose II at 1 angstrom resolution. Biomacromolecules 2:410–416CrossRef Langan P, Nishiyama Y, Chanzy H (2001) X-ray structure of mercerized cellulose II at 1 angstrom resolution. Biomacromolecules 2:410–416CrossRef
Zurück zum Zitat Langan P, Sukumar N, Nishiyama Y, Chanzy H (2005) Synchrotron X-ray structures of cellulose Iβ and regenerated cellulose II at ambient temperature and 100 K. Cellulose 12:551–562CrossRef Langan P, Sukumar N, Nishiyama Y, Chanzy H (2005) Synchrotron X-ray structures of cellulose Iβ and regenerated cellulose II at ambient temperature and 100 K. Cellulose 12:551–562CrossRef
Zurück zum Zitat Lasseuguette E, Roux D, Nishiyama Y (2008) Rheological properties of microfibrillar suspension of TEMPO-oxidized pulp. Cellulose 15:425–433CrossRef Lasseuguette E, Roux D, Nishiyama Y (2008) Rheological properties of microfibrillar suspension of TEMPO-oxidized pulp. Cellulose 15:425–433CrossRef
Zurück zum Zitat Legrand C (1951) Recherches sur la cellulose III régénérée de l’ammoniac-cellulose. J Polym Sci 7:333–339CrossRef Legrand C (1951) Recherches sur la cellulose III régénérée de l’ammoniac-cellulose. J Polym Sci 7:333–339CrossRef
Zurück zum Zitat Miyata T, Ikuta Y, Hirata F (2011) Free energy calculation using molecular dynamics simulation combined with the three-dimensional reference interaction site model theory. II. Thermodynamic integration along a spatial reaction coordinate. J Chem Phys 134:044127CrossRef Miyata T, Ikuta Y, Hirata F (2011) Free energy calculation using molecular dynamics simulation combined with the three-dimensional reference interaction site model theory. II. Thermodynamic integration along a spatial reaction coordinate. J Chem Phys 134:044127CrossRef
Zurück zum Zitat Nishimura H, Sarko A (1987) Mercerization of cellulose. III, changes in crystalline sizes. J Appl Polym Sci 33:855–866CrossRef Nishimura H, Sarko A (1987) Mercerization of cellulose. III, changes in crystalline sizes. J Appl Polym Sci 33:855–866CrossRef
Zurück zum Zitat Nishiyama Y, Langan P, Chanzy H (2002) Crystal structure and hydrogen-bonding system in cellulose Iβ from synchrotron X-ray and neutron fiber diffraction. J Am Chem Soc 124:9074–9082CrossRef Nishiyama Y, Langan P, Chanzy H (2002) Crystal structure and hydrogen-bonding system in cellulose Iβ from synchrotron X-ray and neutron fiber diffraction. J Am Chem Soc 124:9074–9082CrossRef
Zurück zum Zitat Nishiyama Y, Sugiyama J, Chanzy H, Langan P (2003) Crystal structure and hydrogen bonding system in cellulose Iα from synchrotron X-ray and neutron fiber diffraction. J Am Chem Soc 125:14300–14306CrossRef Nishiyama Y, Sugiyama J, Chanzy H, Langan P (2003) Crystal structure and hydrogen bonding system in cellulose Iα from synchrotron X-ray and neutron fiber diffraction. J Am Chem Soc 125:14300–14306CrossRef
Zurück zum Zitat Oksman K, Sain M (eds) (2006) Cellulose nanocomposites: processing, characterization, and properties. ACS Symp Ser 938, American Chemical Society, Washington Oksman K, Sain M (eds) (2006) Cellulose nanocomposites: processing, characterization, and properties. ACS Symp Ser 938, American Chemical Society, Washington
Zurück zum Zitat Olsson C, Wesman G (2013) Direct dissolution of cellulose: background, means and applications. In: van de Ven T, Godbout L (eds) Cellulose–fundamental aspects, InTech, Chapt 6, pp 144–178 Olsson C, Wesman G (2013) Direct dissolution of cellulose: background, means and applications. In: van de Ven T, Godbout L (eds) Cellulose–fundamental aspects, InTech, Chapt 6, pp 144–178
Zurück zum Zitat Pääkkő M, Ankerfors M, Kosonen H, Nykänen A, Ahola S, Osterberg M, Ruokolainen J, Laine J, Larsson P, Ikkala O, Lindstrőm T (2007) Enzymatic hydrolysis combined with mechanical shearing and high-pressure homogenization for nanoscale cellulose fibrils and strong gels. Biomacromolecules 8:1934–1941CrossRef Pääkkő M, Ankerfors M, Kosonen H, Nykänen A, Ahola S, Osterberg M, Ruokolainen J, Laine J, Larsson P, Ikkala O, Lindstrőm T (2007) Enzymatic hydrolysis combined with mechanical shearing and high-pressure homogenization for nanoscale cellulose fibrils and strong gels. Biomacromolecules 8:1934–1941CrossRef
Zurück zum Zitat Ryckaert JP, Cicotti G, Berendsen HJC (1977) Numerical integration of the cartesian equations of motion of a system with constraints: molecular dynamics of n-alkanes. J Comput Phys 23:327–341CrossRef Ryckaert JP, Cicotti G, Berendsen HJC (1977) Numerical integration of the cartesian equations of motion of a system with constraints: molecular dynamics of n-alkanes. J Comput Phys 23:327–341CrossRef
Zurück zum Zitat Sakakibara K, Granström M, Kilpeläinen I, Helaja J, Heinilehto S, Inoue R, Kanaya T, Hill JP, Nakatsubo F, Tsujii T, Ariga K (2013) Light-harvesting nanorods based on pheophorbide-appending cellulose. Biomacromolecules 14:3223–3230CrossRef Sakakibara K, Granström M, Kilpeläinen I, Helaja J, Heinilehto S, Inoue R, Kanaya T, Hill JP, Nakatsubo F, Tsujii T, Ariga K (2013) Light-harvesting nanorods based on pheophorbide-appending cellulose. Biomacromolecules 14:3223–3230CrossRef
Zurück zum Zitat Sarko A, Southwick J, Hayashi J (1976) Packing analysis of carbohydrates and polysaccharides. 7. Crystal structure of cellulose IIII and its relationship to other cellulose polymorphs. Macromolecules 9:857–863CrossRef Sarko A, Southwick J, Hayashi J (1976) Packing analysis of carbohydrates and polysaccharides. 7. Crystal structure of cellulose IIII and its relationship to other cellulose polymorphs. Macromolecules 9:857–863CrossRef
Zurück zum Zitat Shimizu T, Masuda M, Minamikawa H (2005) Supramolecular nanotube architectures based on amphiphilic molecules. Chem Rev 105:1401–1443CrossRef Shimizu T, Masuda M, Minamikawa H (2005) Supramolecular nanotube architectures based on amphiphilic molecules. Chem Rev 105:1401–1443CrossRef
Zurück zum Zitat Simon S, Duran M, Dannenberg JJ (1996) How does basis set superposition error change the potential surfaces for hydrogen-bonded dimers? J Chem Phys 105:11024–11031CrossRef Simon S, Duran M, Dannenberg JJ (1996) How does basis set superposition error change the potential surfaces for hydrogen-bonded dimers? J Chem Phys 105:11024–11031CrossRef
Zurück zum Zitat Sugiyama J, Vuong R, Chanzy H (1991) Electron diffraction study of the two crystalline phases occurring in native cellulose from an algal cell wall. Macromolecules 24:4168–4175CrossRef Sugiyama J, Vuong R, Chanzy H (1991) Electron diffraction study of the two crystalline phases occurring in native cellulose from an algal cell wall. Macromolecules 24:4168–4175CrossRef
Zurück zum Zitat Uto T, Hosoya T, Hayashi S, Yui T (2013) Partial crystalline transformation of solvated cellulose IIII crystals, reproduced by theoretical calculations. Cellulose 20:605–612CrossRef Uto T, Hosoya T, Hayashi S, Yui T (2013) Partial crystalline transformation of solvated cellulose IIII crystals, reproduced by theoretical calculations. Cellulose 20:605–612CrossRef
Zurück zum Zitat VanderHart DL, Attala R (1984) Studies of microstructure in native celluloses using solid-state carbon-13 NMR. Macromolecules 17:1465–1472CrossRef VanderHart DL, Attala R (1984) Studies of microstructure in native celluloses using solid-state carbon-13 NMR. Macromolecules 17:1465–1472CrossRef
Zurück zum Zitat Wada M, Chanzy H, Nishiyama Y, Langan P (2004) Cellulose IIII crystal structure and hydrogen bonding by synchrotron X-ray and neutron fiber diffraction. Macromolecules 37:8548–8555CrossRef Wada M, Chanzy H, Nishiyama Y, Langan P (2004) Cellulose IIII crystal structure and hydrogen bonding by synchrotron X-ray and neutron fiber diffraction. Macromolecules 37:8548–8555CrossRef
Zurück zum Zitat Wondraczek H, Petzold-Welcke K, Fardim P, Heinze T (2013) Nanoparticles from conventional cellulose esters: evaluation of preparation methods. Cellulose 20:751–760CrossRef Wondraczek H, Petzold-Welcke K, Fardim P, Heinze T (2013) Nanoparticles from conventional cellulose esters: evaluation of preparation methods. Cellulose 20:751–760CrossRef
Zurück zum Zitat Yanai T, Tew T, Handy N (2004) A new hybrid exchange-correlation functional using the Coulomb-attenuating method (CAM-B3LYP). Chem Phys Lett 393:51–57CrossRef Yanai T, Tew T, Handy N (2004) A new hybrid exchange-correlation functional using the Coulomb-attenuating method (CAM-B3LYP). Chem Phys Lett 393:51–57CrossRef
Zurück zum Zitat Yui T, Hayashi S (2007) Molecular dynamics simulations of solvated crystal models of cellulose Iα and IIII. Biomacromolecules 8:817–824CrossRef Yui T, Hayashi S (2007) Molecular dynamics simulations of solvated crystal models of cellulose Iα and IIII. Biomacromolecules 8:817–824CrossRef
Zurück zum Zitat Yui T, Hayashi S (2009) Structural stability of the solvated cellulose IIII crystal models: a molecular dynamics study. Cellulose 16:151–165CrossRef Yui T, Hayashi S (2009) Structural stability of the solvated cellulose IIII crystal models: a molecular dynamics study. Cellulose 16:151–165CrossRef
Zurück zum Zitat Yui T, Nishimura S, Akiba S, Hayashi S (2006) Swelling behavior of the cellulose Iβ crystal models by molecular dynamics. Carbohydr Res 341:2521–2530CrossRef Yui T, Nishimura S, Akiba S, Hayashi S (2006) Swelling behavior of the cellulose Iβ crystal models by molecular dynamics. Carbohydr Res 341:2521–2530CrossRef
Zurück zum Zitat Yui T, Okayama N, Hayashi S (2010) Structure conversion of cellulose IIII crystal models in solution state: a molecular dynamics study. Cellulose 17:679–691CrossRef Yui T, Okayama N, Hayashi S (2010) Structure conversion of cellulose IIII crystal models in solution state: a molecular dynamics study. Cellulose 17:679–691CrossRef
Metadaten
Titel
Prediction of cellulose nanotube models through density functional theory calculations
verfasst von
Takuya Uto
Tatsuhiko Miyata
Toshifumi Yui
Publikationsdatum
01.02.2014
Verlag
Springer Netherlands
Erschienen in
Cellulose / Ausgabe 1/2014
Print ISSN: 0969-0239
Elektronische ISSN: 1572-882X
DOI
https://doi.org/10.1007/s10570-013-0125-y

Weitere Artikel der Ausgabe 1/2014

Cellulose 1/2014 Zur Ausgabe