Skip to main content
Erschienen in: Journal of Materials Engineering and Performance 2/2015

01.02.2015

Preferred Crystallographic Orientation Development in Nano/Ultrafine-Grained 316L Stainless Steel During Martensite to Austenite Reversion

verfasst von: M. Eskandari, M. A. Mohtadi-Bonab, R. Basu, M. Nezakat, A. Kermanpur, J. A. Szpunar, S. Nahar, A. H. Baghpanah

Erschienen in: Journal of Materials Engineering and Performance | Ausgabe 2/2015

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The crystallographic orientation of cold-rolled 316L stainless steel is investigated during reversion of strain-induced ά-martensite to nano/ultrafine-grained austenite upon annealing at 750 °C for different holding times; 1, 5, 15, and 30 min. The texture of nanoscale reverted austenite reveals a Brass ({110}〈112〉) and a Goss ({110}〈100〉) textures after annealing for 1 min. No new texture component is appeared through the completion of martensite to austenite reversion for 5 min, but the intensity of Brass and Goss textures are increased. Further annealing for 30 min results in a stronger texture with higher intensity for Brass compared to Goss.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat M. Eskandari, A. Kermanpur, and A. Najafizadeh, Formation of Nano-grained Structure in a 301 Stainless Steel Using a Repetitive Thermo-mechanical Treatment, Mater. Lett., 2009, 63, p 1442CrossRef M. Eskandari, A. Kermanpur, and A. Najafizadeh, Formation of Nano-grained Structure in a 301 Stainless Steel Using a Repetitive Thermo-mechanical Treatment, Mater. Lett., 2009, 63, p 1442CrossRef
2.
Zurück zum Zitat M. Eskandari, A. Najafizadeh, and A. Kermanpur, Effect of Strain-Induced Martensite on the Formation of Nanocrystalline 316L Stainless Steel After Cold Rolling and Annealing, Mater. Sci. Eng. A, 2009, 519, p 46CrossRef M. Eskandari, A. Najafizadeh, and A. Kermanpur, Effect of Strain-Induced Martensite on the Formation of Nanocrystalline 316L Stainless Steel After Cold Rolling and Annealing, Mater. Sci. Eng. A, 2009, 519, p 46CrossRef
3.
Zurück zum Zitat M. Eskandari, A. Zarei-Hanzaki, and H.R. Abedi, An Investigation into the Room Temperature Mechanical Properties of Nanocrystalline Austenitic Stainless Steels, Mater. Des., 2013, 45, p 674CrossRef M. Eskandari, A. Zarei-Hanzaki, and H.R. Abedi, An Investigation into the Room Temperature Mechanical Properties of Nanocrystalline Austenitic Stainless Steels, Mater. Des., 2013, 45, p 674CrossRef
4.
Zurück zum Zitat L. Yuan, D. Ponge, J. Wittig, P. Choi, J.A. Jimenez, and D. Raabe, Nanoscale Austenite Reversion Through Partitioning, Segregation and Kinetic Freezing: Example of a Ductile 2 GPa Fe-Cr-C steel, Acta Mater., 2012, 60, p 2790CrossRef L. Yuan, D. Ponge, J. Wittig, P. Choi, J.A. Jimenez, and D. Raabe, Nanoscale Austenite Reversion Through Partitioning, Segregation and Kinetic Freezing: Example of a Ductile 2 GPa Fe-Cr-C steel, Acta Mater., 2012, 60, p 2790CrossRef
5.
Zurück zum Zitat D. Raabe, D. Ponge, O. Dmitrieva, and B. Sander, Nanoprecipitate-Hardened 1.5 GPa Steels with Unexpected High Ductility, Scripta Mater., 2009, 60, p 1141CrossRef D. Raabe, D. Ponge, O. Dmitrieva, and B. Sander, Nanoprecipitate-Hardened 1.5 GPa Steels with Unexpected High Ductility, Scripta Mater., 2009, 60, p 1141CrossRef
6.
Zurück zum Zitat M. Eskandari, A. Kermanpur, and A. Najafizadeh, Formation of Nanocrystalline Structure in 301 Stainless Steel Produced by Martensite Treatment, Metall. Mater. Trans. A, 2009, 40, p 2241CrossRef M. Eskandari, A. Kermanpur, and A. Najafizadeh, Formation of Nanocrystalline Structure in 301 Stainless Steel Produced by Martensite Treatment, Metall. Mater. Trans. A, 2009, 40, p 2241CrossRef
7.
Zurück zum Zitat B. Ravikumar, B. Mahato, N.R. Bandyopadhyay, and D.K. Bhattacharya, Influence of Strain-Induced Phase Transformation on the Surface Crystallographic Texture in Cold-Rolled-and-Aged Austenitic Stainless Steel, Metall. Mater. Trans. A, 2005, 36, p 3165CrossRef B. Ravikumar, B. Mahato, N.R. Bandyopadhyay, and D.K. Bhattacharya, Influence of Strain-Induced Phase Transformation on the Surface Crystallographic Texture in Cold-Rolled-and-Aged Austenitic Stainless Steel, Metall. Mater. Trans. A, 2005, 36, p 3165CrossRef
8.
Zurück zum Zitat K.B. Guy, E.P. Butler, and D.R.F. West, Reversion of bcc α′ Martensite in Fe-Cr-Ni Austenitic Stainless Steels, Met. Sci., 1983, 17, p 167CrossRef K.B. Guy, E.P. Butler, and D.R.F. West, Reversion of bcc α′ Martensite in Fe-Cr-Ni Austenitic Stainless Steels, Met. Sci., 1983, 17, p 167CrossRef
9.
Zurück zum Zitat S.G. Chowdhury, S. Das, B. Ravikumar, S. Kumar, and G. Gottstein, Textural Development in AISI, 316 Stainless Steel During Cold Rolling and Annealing, Mater. Sci. Forum, 2002, 408, p 1371CrossRef S.G. Chowdhury, S. Das, B. Ravikumar, S. Kumar, and G. Gottstein, Textural Development in AISI, 316 Stainless Steel During Cold Rolling and Annealing, Mater. Sci. Forum, 2002, 408, p 1371CrossRef
10.
Zurück zum Zitat S.G. Chowdhury, S. Das, and P.K. De, Cold rolling Behaviour and Textural Evolution in AISI, 316L Austenitic Stainless Steel, Acta Mater., 2005, 53, p 3951CrossRef S.G. Chowdhury, S. Das, and P.K. De, Cold rolling Behaviour and Textural Evolution in AISI, 316L Austenitic Stainless Steel, Acta Mater., 2005, 53, p 3951CrossRef
11.
Zurück zum Zitat D.V. Shtansky, K. Nakai, and Y. Ohmori, Crystallography and Structural Evolution During Reverse Transformation an Fe-17Cr-0.5C Tempered Martensite, Acta Mater., 2000, 48, p 1679CrossRef D.V. Shtansky, K. Nakai, and Y. Ohmori, Crystallography and Structural Evolution During Reverse Transformation an Fe-17Cr-0.5C Tempered Martensite, Acta Mater., 2000, 48, p 1679CrossRef
12.
Zurück zum Zitat N.C. Law and D.V. Edmonds, The Formation of Austenite in a Low-Alloy Steel, Metall. Trans. A, 1980, 11, p 33CrossRef N.C. Law and D.V. Edmonds, The Formation of Austenite in a Low-Alloy Steel, Metall. Trans. A, 1980, 11, p 33CrossRef
13.
Zurück zum Zitat N. Nakada, T. Tsuchiyama, S. Takaki, and S. Hashizume, Variant Selection of Reversed Austenite in Lath Martensite, ISIJ Int., 2007, 47, p 1527CrossRef N. Nakada, T. Tsuchiyama, S. Takaki, and S. Hashizume, Variant Selection of Reversed Austenite in Lath Martensite, ISIJ Int., 2007, 47, p 1527CrossRef
14.
Zurück zum Zitat O. Dmitrieva, D. Ponge, G. Inden, J. Millan, P. Choi, J. Sietsma, and D. Raabe, Chemical Gradients Across Phase Boundaries Between Martensite and Austenite in Steel Studied by Atom Probe Tomography and Simulation, Acta Mater., 2011, 59, p 364CrossRef O. Dmitrieva, D. Ponge, G. Inden, J. Millan, P. Choi, J. Sietsma, and D. Raabe, Chemical Gradients Across Phase Boundaries Between Martensite and Austenite in Steel Studied by Atom Probe Tomography and Simulation, Acta Mater., 2011, 59, p 364CrossRef
15.
Zurück zum Zitat D. Raabe, S. Sandlobes, J. Millan, D. Ponge, H. Assadi, M. Herbig, and P.P. Choi, Segregation Engineering Enables Nanoscale Martensite to Austenite Phase Transformation at Grain Boundaries: A Pathway to Ductile Martensite, Acta Mater., 2013, 61, p 6132CrossRef D. Raabe, S. Sandlobes, J. Millan, D. Ponge, H. Assadi, M. Herbig, and P.P. Choi, Segregation Engineering Enables Nanoscale Martensite to Austenite Phase Transformation at Grain Boundaries: A Pathway to Ductile Martensite, Acta Mater., 2013, 61, p 6132CrossRef
16.
Zurück zum Zitat N. Nakada, T. Tsuchiyama, S. Takaki, D. Ponge, and D. Raabe, Transition from Diffusive to Displacive Austenite Reversion in Low-Alloy Steel, ISIJ Int., 2013, 53, p 2275CrossRef N. Nakada, T. Tsuchiyama, S. Takaki, D. Ponge, and D. Raabe, Transition from Diffusive to Displacive Austenite Reversion in Low-Alloy Steel, ISIJ Int., 2013, 53, p 2275CrossRef
17.
Zurück zum Zitat M.M. Wang, C.C. Tasan, D. Ponge, A. Kostka, and D. Raabe, Smaller is Less Stable: Size Effects on Twinning Vs. Transformation of Reverted Austenite in TRIP-Maraging Steels, Acta Mater., 2014, 79, p 268CrossRef M.M. Wang, C.C. Tasan, D. Ponge, A. Kostka, and D. Raabe, Smaller is Less Stable: Size Effects on Twinning Vs. Transformation of Reverted Austenite in TRIP-Maraging Steels, Acta Mater., 2014, 79, p 268CrossRef
18.
Zurück zum Zitat N. Nakada, R. Fukagawa, T. Tsuchiyama, S. Takaki, D. Ponge, and D. Raabe, Inheritance of Dislocations and Crystallographic Texture During Martensitic Reversion into Austenite, ISIJ Int., 2013, 53, p 1286CrossRef N. Nakada, R. Fukagawa, T. Tsuchiyama, S. Takaki, D. Ponge, and D. Raabe, Inheritance of Dislocations and Crystallographic Texture During Martensitic Reversion into Austenite, ISIJ Int., 2013, 53, p 1286CrossRef
19.
Zurück zum Zitat M. Eskandari, M. Yeganeh, and M. Motamedi, Investigation in the Corrosion Behaviour of Bulk Nanocrystalline 316L Austenitic Stainless Steel in NaCl Solution, Micro Nano Lett., 2012, 7, p 380CrossRef M. Eskandari, M. Yeganeh, and M. Motamedi, Investigation in the Corrosion Behaviour of Bulk Nanocrystalline 316L Austenitic Stainless Steel in NaCl Solution, Micro Nano Lett., 2012, 7, p 380CrossRef
20.
Zurück zum Zitat M.P. Phaniraj, D. Kim, and Y.W. Cho, Effect of Grain Boundary Characteristics on the Oxidation Behavior of Ferritic Stainless Steel, Corros. Sci., 2011, 53, p 4124CrossRef M.P. Phaniraj, D. Kim, and Y.W. Cho, Effect of Grain Boundary Characteristics on the Oxidation Behavior of Ferritic Stainless Steel, Corros. Sci., 2011, 53, p 4124CrossRef
21.
Zurück zum Zitat S.G. Chowdhury and R. Singh, The Influence of Recrystallized Structure and Texture on the Sensitization Behaviour of a Stable Austenitic Stainless Steel (AISI, 316L), Scripta Mater., 2008, 58, p 1102CrossRef S.G. Chowdhury and R. Singh, The Influence of Recrystallized Structure and Texture on the Sensitization Behaviour of a Stable Austenitic Stainless Steel (AISI, 316L), Scripta Mater., 2008, 58, p 1102CrossRef
Metadaten
Titel
Preferred Crystallographic Orientation Development in Nano/Ultrafine-Grained 316L Stainless Steel During Martensite to Austenite Reversion
verfasst von
M. Eskandari
M. A. Mohtadi-Bonab
R. Basu
M. Nezakat
A. Kermanpur
J. A. Szpunar
S. Nahar
A. H. Baghpanah
Publikationsdatum
01.02.2015
Verlag
Springer US
Erschienen in
Journal of Materials Engineering and Performance / Ausgabe 2/2015
Print ISSN: 1059-9495
Elektronische ISSN: 1544-1024
DOI
https://doi.org/10.1007/s11665-014-1340-x

Weitere Artikel der Ausgabe 2/2015

Journal of Materials Engineering and Performance 2/2015 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.