Skip to main content
Erschienen in: Colloid and Polymer Science 11/2014

01.11.2014 | Original Contribution

Preparation and characterization of composite membranes with Brønsted acidic ionic liquid

verfasst von: Yi Yang, Hejun Gao, Fei Lu, Liqiang Zheng

Erschienen in: Colloid and Polymer Science | Ausgabe 11/2014

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Poly-(vinyl alcohol) (PVA) proton-conducting composite membranes were prepared using succinic acid (SA) as a cross-linking agent and Brønsted acidic ionic liquid (BAIL) as a proton source. The incorporated BAILs resulted in a relatively high proton conductivity compared with PVA/SA membrane without BAILs. The proton conductivities of PVA/SA/BAIL composite membranes increased versus the BAIL content. In addition, the optimal resultant proton conductivity of PVA/SA/BAIL composite membrane under dry condition could reach 0.4 mS/cm at 140 °C, which was higher than that of PVA/sulfosuccinic acid (SSA) composite membrane (0.032 mS/cm), PVA/SSA/5-aminotetrazole membrane (0.022 mS/cm at 130 °C), and PVA/chlorosulfonic acid/glutaraldehyde membrane (0.0585 mS/cm at 90 °C) measured at the same condition. It was notable that the PVA/SA/BAIL composite membranes could reach high thermal stability up to 150 °C, which was higher than that of traditional PVA membranes (below 80 °C).

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Hill ML, Kim YS, Einsla BR, McGrath JE (2006) Zirconium hydrogen phosphate/disulfonated poly(arylene ether sulfone) copolymer composite membranes for proton exchange membrane fuel cells. J Membr Sci 283:102–108CrossRef Hill ML, Kim YS, Einsla BR, McGrath JE (2006) Zirconium hydrogen phosphate/disulfonated poly(arylene ether sulfone) copolymer composite membranes for proton exchange membrane fuel cells. J Membr Sci 283:102–108CrossRef
2.
Zurück zum Zitat Kreuer KD (2001) On the development of proton conducting polymer membranes for hydrogen and methanol fuel cells. J Membr Sci 185:29–39CrossRef Kreuer KD (2001) On the development of proton conducting polymer membranes for hydrogen and methanol fuel cells. J Membr Sci 185:29–39CrossRef
3.
Zurück zum Zitat Sumner JJ, Creager SE, Ma JJ, DesMarteau DD (1998) Proton conductivity in Nafion®117 and in a novel bis[(perfluoroalkyl)sulfonyl]imide ionomer membrane. J Electrochem Sci 145:107–110CrossRef Sumner JJ, Creager SE, Ma JJ, DesMarteau DD (1998) Proton conductivity in Nafion®117 and in a novel bis[(perfluoroalkyl)sulfonyl]imide ionomer membrane. J Electrochem Sci 145:107–110CrossRef
4.
Zurück zum Zitat Jung JH, Sridhar V, Oh IK (2010) Electro-active nano-composite actuator based on fullerene-reinforced Nafion. Compos Sci Technol 70:584–592CrossRef Jung JH, Sridhar V, Oh IK (2010) Electro-active nano-composite actuator based on fullerene-reinforced Nafion. Compos Sci Technol 70:584–592CrossRef
5.
Zurück zum Zitat Godino MP, Barragán VM, Villaluenga JPG, Izquierdo-Gil MA, Ruiz-Bauzá C, Seoane B (2010) Liquid transport through sulfonated cation-exchange membranes for different water-alcohol solutions. Chem Eng J 162:643–648CrossRef Godino MP, Barragán VM, Villaluenga JPG, Izquierdo-Gil MA, Ruiz-Bauzá C, Seoane B (2010) Liquid transport through sulfonated cation-exchange membranes for different water-alcohol solutions. Chem Eng J 162:643–648CrossRef
6.
Zurück zum Zitat Baek JS, Park JS, Sekhon SS, Yang TH, Shul YG, Choi JH (2010) Preparation and characterisation of non-aqueous proton-conducting membranes with the low content of ionic liquids. Fuel Cells 10:762–769CrossRef Baek JS, Park JS, Sekhon SS, Yang TH, Shul YG, Choi JH (2010) Preparation and characterisation of non-aqueous proton-conducting membranes with the low content of ionic liquids. Fuel Cells 10:762–769CrossRef
7.
Zurück zum Zitat Neves LA, Sebastião PJ, Coelhoso IM, Crespo JG (2011) Proton NMR relaxometry study of Nafion membranes modified with ionic liquid cations. J Phys Chem B 115:8713–8723CrossRef Neves LA, Sebastião PJ, Coelhoso IM, Crespo JG (2011) Proton NMR relaxometry study of Nafion membranes modified with ionic liquid cations. J Phys Chem B 115:8713–8723CrossRef
8.
Zurück zum Zitat Li Q, He R, Jensen JO, Bjerrum JN (2003) Approaches and recent development of polymer electrolyte membranes for fuel cells operating above 100 ˚C. J Chem Mater 15:4896–4915CrossRef Li Q, He R, Jensen JO, Bjerrum JN (2003) Approaches and recent development of polymer electrolyte membranes for fuel cells operating above 100 ˚C. J Chem Mater 15:4896–4915CrossRef
9.
Zurück zum Zitat Bouchet R, Siebert E (1999) Proton conduction in acid doped polybenzimidazole. Solid State Ionics 118:287–299CrossRef Bouchet R, Siebert E (1999) Proton conduction in acid doped polybenzimidazole. Solid State Ionics 118:287–299CrossRef
10.
Zurück zum Zitat Suarez S, Kodiweera NKAC, Stallworth P, Yu S, Greenbaum SG, Benicewicz BC (2012) Multinuclear NMR study of the effect of acid concentration on ion transport in phosphoric acid doped poly(benzimidazole) membranes. J Phys Chem B 116:12545–12551CrossRef Suarez S, Kodiweera NKAC, Stallworth P, Yu S, Greenbaum SG, Benicewicz BC (2012) Multinuclear NMR study of the effect of acid concentration on ion transport in phosphoric acid doped poly(benzimidazole) membranes. J Phys Chem B 116:12545–12551CrossRef
11.
Zurück zum Zitat Tanaka R, Yamamoto H, Kawamura S, Iwase T (1995) Proton conducting behavior of poly(ethylenimine)-H3PO4 systems. Electrochim Acta 40:2421–2424CrossRef Tanaka R, Yamamoto H, Kawamura S, Iwase T (1995) Proton conducting behavior of poly(ethylenimine)-H3PO4 systems. Electrochim Acta 40:2421–2424CrossRef
12.
Zurück zum Zitat Donoso P, Gorecki W, Berthier C, Defendini F, Poinsignon C, Armand MB (1988) NMR, conductivity and neutron scattering investigation of ionic dynamics in the anhydrous polymer protonic conductor PEO(H3PO4)x. Solid State Ionics 28:969–974CrossRef Donoso P, Gorecki W, Berthier C, Defendini F, Poinsignon C, Armand MB (1988) NMR, conductivity and neutron scattering investigation of ionic dynamics in the anhydrous polymer protonic conductor PEO(H3PO4)x. Solid State Ionics 28:969–974CrossRef
13.
Zurück zum Zitat Oliveira L, José NM, Boaventura J, Iglesias M, Mattedi S (2011) Proton conducting polymer membrane using the ionic liquid 2-hydroxyethylammonium lactate for ethanol fuel cells. AIP Conf Proc 1400:149–153CrossRef Oliveira L, José NM, Boaventura J, Iglesias M, Mattedi S (2011) Proton conducting polymer membrane using the ionic liquid 2-hydroxyethylammonium lactate for ethanol fuel cells. AIP Conf Proc 1400:149–153CrossRef
14.
Zurück zum Zitat Wu X, He G, Gu S, Hu Z, Yan X (2010) The state of water in the series of sulfonated poly (phthalazinone ether sulfone ketone) (SPPESK) proton exchange membranes. Chem Eng J 156:578–581CrossRef Wu X, He G, Gu S, Hu Z, Yan X (2010) The state of water in the series of sulfonated poly (phthalazinone ether sulfone ketone) (SPPESK) proton exchange membranes. Chem Eng J 156:578–581CrossRef
15.
Zurück zum Zitat Wu X, He G, Yu L, Li X (2014) Electrochemical hydrogen pump with SPEEK/CrPSSA semi-interpenetrating polymer network proton exchange membrane for H2/CO2 separation. ACS Sustain Chem Eng 2:75–79CrossRef Wu X, He G, Yu L, Li X (2014) Electrochemical hydrogen pump with SPEEK/CrPSSA semi-interpenetrating polymer network proton exchange membrane for H2/CO2 separation. ACS Sustain Chem Eng 2:75–79CrossRef
16.
Zurück zum Zitat Bozkurt A, Meyer WH (2001) Proton conducting blends of poly(4-vinylimidazole) with phosphoric acid. Solid State Ionics 138:259–265CrossRef Bozkurt A, Meyer WH (2001) Proton conducting blends of poly(4-vinylimidazole) with phosphoric acid. Solid State Ionics 138:259–265CrossRef
17.
Zurück zum Zitat Park JS, Park JW, Ruckenstein E (2001) A dynamic mechanical and thermal analysis of unplasticized and plasticized poly(vinyl alcohol)/methylcellulose blends. J Appl Polym Sci 80:1825–1834CrossRef Park JS, Park JW, Ruckenstein E (2001) A dynamic mechanical and thermal analysis of unplasticized and plasticized poly(vinyl alcohol)/methylcellulose blends. J Appl Polym Sci 80:1825–1834CrossRef
18.
Zurück zum Zitat Fu J, Qiao JL, Lv H, Ma JX, Yuan XZ, Wang HJ (2010) Alkali doped poly(vinyl alcohol) (PVA) for anion-exchange membrane fuel cells: ionic conductivity, chemical stability and FT-IR characterizations. ECS Trans 25:15–23CrossRef Fu J, Qiao JL, Lv H, Ma JX, Yuan XZ, Wang HJ (2010) Alkali doped poly(vinyl alcohol) (PVA) for anion-exchange membrane fuel cells: ionic conductivity, chemical stability and FT-IR characterizations. ECS Trans 25:15–23CrossRef
19.
Zurück zum Zitat Bartholome C, Miaudet P, Derré A, Maugey M, Roubeau O, Zakri C, Poulin P (2008) Influence of surface functionalization on the thermal and electrical properties of nanotube-PVA composites. Compos Sci Technol 68:2568–2573CrossRef Bartholome C, Miaudet P, Derré A, Maugey M, Roubeau O, Zakri C, Poulin P (2008) Influence of surface functionalization on the thermal and electrical properties of nanotube-PVA composites. Compos Sci Technol 68:2568–2573CrossRef
20.
Zurück zum Zitat Boroglu MS, Celik SU, Bozkurt A, Boz I (2012) Fabrication and characterization of anhydrous polymer electrolyte membranes based on sulfonated poly(vinyl alcohol) and benzimidazole. Polym Sci Ser A 54:231–239CrossRef Boroglu MS, Celik SU, Bozkurt A, Boz I (2012) Fabrication and characterization of anhydrous polymer electrolyte membranes based on sulfonated poly(vinyl alcohol) and benzimidazole. Polym Sci Ser A 54:231–239CrossRef
21.
Zurück zum Zitat Lannoy CF, Jassby D, Davis D, Wiesner MR (2012) A highly electrically conductive polymer-multiwalled carbon nanotube nanocomposite membrane. J Membr Sci 415–416:718–724CrossRef Lannoy CF, Jassby D, Davis D, Wiesner MR (2012) A highly electrically conductive polymer-multiwalled carbon nanotube nanocomposite membrane. J Membr Sci 415–416:718–724CrossRef
22.
Zurück zum Zitat Qiao JL, Fu J, Liu LL, Liu YY, Sheng JW (2012) Highly stable hydroxyl anion conducting membranes poly(vinyl alcohol)/poly(acrylamide-co-diallyldimethylammonium chloride) (PVA/PAADDA) for alkaline fuel cells: Effect of cross-linking. Int J Hydrog Energy 37:4580–4589CrossRef Qiao JL, Fu J, Liu LL, Liu YY, Sheng JW (2012) Highly stable hydroxyl anion conducting membranes poly(vinyl alcohol)/poly(acrylamide-co-diallyldimethylammonium chloride) (PVA/PAADDA) for alkaline fuel cells: Effect of cross-linking. Int J Hydrog Energy 37:4580–4589CrossRef
23.
Zurück zum Zitat Liu CP, Dai CA, Chao CY, Chang SJ (2014) Novel proton exchange membrane based on crosslinked poly(vinyl alcohol) for direct methanol fuel cells. J Power Sources 249:285–298CrossRef Liu CP, Dai CA, Chao CY, Chang SJ (2014) Novel proton exchange membrane based on crosslinked poly(vinyl alcohol) for direct methanol fuel cells. J Power Sources 249:285–298CrossRef
24.
Zurück zum Zitat Erdemi H, Akbey Ü, Meyer WH (2010) Conductivity behavior and solid state NMR investigation of imidazolium-based polymeric ionic liquids. Solid State Ionics 181:1586–1595CrossRef Erdemi H, Akbey Ü, Meyer WH (2010) Conductivity behavior and solid state NMR investigation of imidazolium-based polymeric ionic liquids. Solid State Ionics 181:1586–1595CrossRef
25.
Zurück zum Zitat Ven EVD, Chairuna A, Merle G, Benito SP, Borneman Z, Nijmeijer K (2013) Ionic liquid doped polybenzimidazole membranes for high temperature peroton exchange membrane fuel cell applications. J Power Sources 222:202–209CrossRef Ven EVD, Chairuna A, Merle G, Benito SP, Borneman Z, Nijmeijer K (2013) Ionic liquid doped polybenzimidazole membranes for high temperature peroton exchange membrane fuel cell applications. J Power Sources 222:202–209CrossRef
26.
Zurück zum Zitat Ye H, Huang J, Xu JJ, Kodiweera NKAC, Jayakody JRP, Greenbaum SG (2008) New membranes based on ionic liquids for PEM fuel cells at elevated temperatures. J Power Sources 178:651–660CrossRef Ye H, Huang J, Xu JJ, Kodiweera NKAC, Jayakody JRP, Greenbaum SG (2008) New membranes based on ionic liquids for PEM fuel cells at elevated temperatures. J Power Sources 178:651–660CrossRef
27.
Zurück zum Zitat Tao FR, Song HL, Chou LJ (2011) Hydrolysis of cellulose in SO3H-functionalized ionic liquids. Bioresource Technol 102:9000–9006CrossRef Tao FR, Song HL, Chou LJ (2011) Hydrolysis of cellulose in SO3H-functionalized ionic liquids. Bioresource Technol 102:9000–9006CrossRef
28.
Zurück zum Zitat Ohno H, Yoshizawa M, Ogihara W (2003) A new type of polymer gel electrolyte: zwitterionic liquid/polar polymer mixture. Electrochim Acta 48:2079–2083CrossRef Ohno H, Yoshizawa M, Ogihara W (2003) A new type of polymer gel electrolyte: zwitterionic liquid/polar polymer mixture. Electrochim Acta 48:2079–2083CrossRef
29.
Zurück zum Zitat Kore R, Srivastava R (2012) Influence of -SO3H functionalization (N-SO3H or N-R-SO3H, where R=alkyl/benzyl) on the activity of Brönsted acidic ionic liquids in the hydration reaction. Tetrahedron Lett 53:3245–3249CrossRef Kore R, Srivastava R (2012) Influence of -SO3H functionalization (N-SO3H or N-R-SO3H, where R=alkyl/benzyl) on the activity of Brönsted acidic ionic liquids in the hydration reaction. Tetrahedron Lett 53:3245–3249CrossRef
30.
Zurück zum Zitat Morancho JM, Salla JM, Cadenato A, Fernández-Francos X, Ramis X, Colomer P, Calventus Y, Ruíz R (2011) Kinetic studies of the degradation of poly(vinyl alcohol)-based proton-conducting membranes at low temperatures. Thermochim Acta 521:139–147CrossRef Morancho JM, Salla JM, Cadenato A, Fernández-Francos X, Ramis X, Colomer P, Calventus Y, Ruíz R (2011) Kinetic studies of the degradation of poly(vinyl alcohol)-based proton-conducting membranes at low temperatures. Thermochim Acta 521:139–147CrossRef
31.
Zurück zum Zitat Boroglu MS, Celik SU, Bozkurt A, Boz I (2013) Proton-conducting blend membranes of crosslinked poly(vinyl alcohol)-sulfosuccinic acid ester and poly(1-vinyl-1,2,4-triazole) for high temperature fuel cells. Polym Eng Sci 53:153–158CrossRef Boroglu MS, Celik SU, Bozkurt A, Boz I (2013) Proton-conducting blend membranes of crosslinked poly(vinyl alcohol)-sulfosuccinic acid ester and poly(1-vinyl-1,2,4-triazole) for high temperature fuel cells. Polym Eng Sci 53:153–158CrossRef
32.
Zurück zum Zitat Boroglu MS, Celik SU, Bozkurt A, Boz I (2011) Synthesis and proton conductivity studies of 5-aminotetrazole-doped sulfonated polymer electrolyte membranes. Polym Compos 32:1625–1632CrossRef Boroglu MS, Celik SU, Bozkurt A, Boz I (2011) Synthesis and proton conductivity studies of 5-aminotetrazole-doped sulfonated polymer electrolyte membranes. Polym Compos 32:1625–1632CrossRef
33.
Zurück zum Zitat Anis A, Al-Zahrani SM (2012) Sulfonated PVA/PBI based crosslinked composites towards anhydrous proton conductive polymer electrolyte membranes for fuel cells. Int J Electrochem Sci 7:9174–9185 Anis A, Al-Zahrani SM (2012) Sulfonated PVA/PBI based crosslinked composites towards anhydrous proton conductive polymer electrolyte membranes for fuel cells. Int J Electrochem Sci 7:9174–9185
34.
Zurück zum Zitat Boroglu MS, Celik SU, Bozkurt A, Boz I (2011) The synthesis and characterization of anhydrous proton conducting membranes based on sulfonated poly(vinyl alcohol) and imidazole. J Membr Sci 375:157–164CrossRef Boroglu MS, Celik SU, Bozkurt A, Boz I (2011) The synthesis and characterization of anhydrous proton conducting membranes based on sulfonated poly(vinyl alcohol) and imidazole. J Membr Sci 375:157–164CrossRef
35.
Zurück zum Zitat Tsaia CE, Linb CW, Ricka J, Hwanga BJ (2011) Poly(styrene sulfonic acid)/poly(vinyl alcohol) copolymers with semi-interpenetrating networks as highly sulfonated proton-conducting membranes. J Power Sources 196:5470–5477CrossRef Tsaia CE, Linb CW, Ricka J, Hwanga BJ (2011) Poly(styrene sulfonic acid)/poly(vinyl alcohol) copolymers with semi-interpenetrating networks as highly sulfonated proton-conducting membranes. J Power Sources 196:5470–5477CrossRef
36.
Zurück zum Zitat Gao L, Wang L, Qi T, Chu J, Qu J (2009) Preparation and characterization of titanium tetrachloride-based ionic liquids. J Electrochem Soc 156:49–55CrossRef Gao L, Wang L, Qi T, Chu J, Qu J (2009) Preparation and characterization of titanium tetrachloride-based ionic liquids. J Electrochem Soc 156:49–55CrossRef
37.
Zurück zum Zitat Zhang QG, Sun SS, Pitula S, Liu Q, Welz-Biermann U, Zhang JJ (2011) Electrical conductivity of solutions of ionic liquids with methanol, ethanol, acetonitrile, and propylene carbonate. J Chem Eng Data 56:4659–4664CrossRef Zhang QG, Sun SS, Pitula S, Liu Q, Welz-Biermann U, Zhang JJ (2011) Electrical conductivity of solutions of ionic liquids with methanol, ethanol, acetonitrile, and propylene carbonate. J Chem Eng Data 56:4659–4664CrossRef
38.
Zurück zum Zitat Martineza M, Molmeretb Y, Cointeauxa L, Iojoiua C, Leprêtrea JC, Kissib NE, Judeinsteinc P, Sancheza JY (2010) Proton-conducting ionic liquid-based proton exchange membrane fuel cell membranes: the key role of ionomer-ionic liquid interaction. J Power Sources 195:5829–5839CrossRef Martineza M, Molmeretb Y, Cointeauxa L, Iojoiua C, Leprêtrea JC, Kissib NE, Judeinsteinc P, Sancheza JY (2010) Proton-conducting ionic liquid-based proton exchange membrane fuel cell membranes: the key role of ionomer-ionic liquid interaction. J Power Sources 195:5829–5839CrossRef
39.
Zurück zum Zitat Lin BC, Qiu LH, Lu JM, Yan F (2010) Cross-linked alkaline ionic liquid-based polymer electrolytes for alkaline fuel cell applications. Chem Mater 22:6718–6725CrossRef Lin BC, Qiu LH, Lu JM, Yan F (2010) Cross-linked alkaline ionic liquid-based polymer electrolytes for alkaline fuel cell applications. Chem Mater 22:6718–6725CrossRef
40.
Zurück zum Zitat Yang JS, Che QT, Zhou L, He RH, Savinell RF (2011) Studies of a high temperature proton exchange membrane based on incorporating an ionic liquid cation 1-butyl-3-methylimidazolium into a Nafion matrix. Electrochim Acta 56:5940–5946CrossRef Yang JS, Che QT, Zhou L, He RH, Savinell RF (2011) Studies of a high temperature proton exchange membrane based on incorporating an ionic liquid cation 1-butyl-3-methylimidazolium into a Nafion matrix. Electrochim Acta 56:5940–5946CrossRef
41.
Zurück zum Zitat Zhang L, Chae SR, Hendren Z, Park JS, Wiesner MR (2012) Recent advances in proton exchange membranes for fuel cell applications. Chem Eng J 204–206:87–97CrossRef Zhang L, Chae SR, Hendren Z, Park JS, Wiesner MR (2012) Recent advances in proton exchange membranes for fuel cell applications. Chem Eng J 204–206:87–97CrossRef
42.
Zurück zum Zitat Li QF, Pan C, Jensen JO, Noye P, Bjerrum NJ (2007) Cross-linked polybenzimidazole membranes for fuel cells. Chem Mater 19:350–352CrossRef Li QF, Pan C, Jensen JO, Noye P, Bjerrum NJ (2007) Cross-linked polybenzimidazole membranes for fuel cells. Chem Mater 19:350–352CrossRef
43.
Zurück zum Zitat Bosnjakovic A, Schlick S (2004) Nafion perfluorinated membranes treated in fenton media: radical species detected by ESR spectroscopy. J Phys Chem B 108:4332–4337CrossRef Bosnjakovic A, Schlick S (2004) Nafion perfluorinated membranes treated in fenton media: radical species detected by ESR spectroscopy. J Phys Chem B 108:4332–4337CrossRef
44.
Zurück zum Zitat Yamaguchi T, Zhou H, Nakazawa S, Hara N (2007) An extremely low methanol crossover and highly durable aromatic pore-filling electrolyte membrane for direct methanol fuel cells. Adv Mater 19:592–596CrossRef Yamaguchi T, Zhou H, Nakazawa S, Hara N (2007) An extremely low methanol crossover and highly durable aromatic pore-filling electrolyte membrane for direct methanol fuel cells. Adv Mater 19:592–596CrossRef
45.
Zurück zum Zitat Selvam L, Chen FF, Wang F (2010) Solvent effects on blue shifted improper hydrogen bond of C-H⋯O in deoxycytidine isomers. Chem Phy Lett 500:327–333CrossRef Selvam L, Chen FF, Wang F (2010) Solvent effects on blue shifted improper hydrogen bond of C-H⋯O in deoxycytidine isomers. Chem Phy Lett 500:327–333CrossRef
46.
Zurück zum Zitat Li AY (2007) Chemical origin of blue- and red shifted hydrogen bonds: Intramolecular hyperconjugation and its coupling with intermolecular hyperconjugation. J Chem Phys 126:1–9 Li AY (2007) Chemical origin of blue- and red shifted hydrogen bonds: Intramolecular hyperconjugation and its coupling with intermolecular hyperconjugation. J Chem Phys 126:1–9
47.
Zurück zum Zitat Maes AM, Pandey TP, Vandiver MA, Lundquist LK, Krosovsky A, Liberatore MW, Seifert S, Herring AM (2013) Preparation and characterization of an alkaline anion exchange membrane from chlorinated poly(propylene) aminated with branched poly(ethyleneimine). Electrochim Acta 110:260–266CrossRef Maes AM, Pandey TP, Vandiver MA, Lundquist LK, Krosovsky A, Liberatore MW, Seifert S, Herring AM (2013) Preparation and characterization of an alkaline anion exchange membrane from chlorinated poly(propylene) aminated with branched poly(ethyleneimine). Electrochim Acta 110:260–266CrossRef
48.
Zurück zum Zitat Noda A, Susan MABH, Kudo K, Mit-sushima S, Hayamizu K, Watanabe M (2003) Brønsted acid-base ionic liquids as proton-conducting nonaqueous electrolytes. J Phys Chem B 107:4024–4033CrossRef Noda A, Susan MABH, Kudo K, Mit-sushima S, Hayamizu K, Watanabe M (2003) Brønsted acid-base ionic liquids as proton-conducting nonaqueous electrolytes. J Phys Chem B 107:4024–4033CrossRef
49.
Zurück zum Zitat Matsuoka H, Nakamoto H, Susan MABH, Watanabe M (2005) Brønsted acid-base and-polybase complexes as electrolytes for fuel cells under non-humidifying conditions. Electrochim Acta 50:4015–4021CrossRef Matsuoka H, Nakamoto H, Susan MABH, Watanabe M (2005) Brønsted acid-base and-polybase complexes as electrolytes for fuel cells under non-humidifying conditions. Electrochim Acta 50:4015–4021CrossRef
50.
Zurück zum Zitat Wang JTW, Hsu SLC (2011) Enhanced high-temperature polymer electrolyte membrane for fuel cells based on polybenzimidazole and ionic liquids. Electrochim Acta 56:2842–2846CrossRef Wang JTW, Hsu SLC (2011) Enhanced high-temperature polymer electrolyte membrane for fuel cells based on polybenzimidazole and ionic liquids. Electrochim Acta 56:2842–2846CrossRef
Metadaten
Titel
Preparation and characterization of composite membranes with Brønsted acidic ionic liquid
verfasst von
Yi Yang
Hejun Gao
Fei Lu
Liqiang Zheng
Publikationsdatum
01.11.2014
Verlag
Springer Berlin Heidelberg
Erschienen in
Colloid and Polymer Science / Ausgabe 11/2014
Print ISSN: 0303-402X
Elektronische ISSN: 1435-1536
DOI
https://doi.org/10.1007/s00396-014-3324-7

Weitere Artikel der Ausgabe 11/2014

Colloid and Polymer Science 11/2014 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.