Skip to main content
Erschienen in: Journal of Polymer Research 9/2016

01.09.2016 | ORIGINAL PAPER

Preparation and properties of bio-based polyurethane foams from natural rubber and polycaprolactone diol

verfasst von: Suwat Rattanapan, Pamela Pasetto, Jean-François Pilard, Varaporn Tanrattanakul

Erschienen in: Journal of Polymer Research | Ausgabe 9/2016

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Bio-based polyurethane foam (PUF) was synthesized by a one-shot polymerization using hydroxyl telechelic natural rubber (HTNR) and polycaprolactone (PCL) diols as a soft segment. The effect of HTNR/PCL diol molar ratio (1/0, 1/0.5, 1/1 and 0.5/1) on the foam formation rate and physical and mechanical properties of the resulting PUF was investigated. The formation of urethane linkage and cross-linked structure were confirmed by FTIR analysis. The foams observed by scanning electron microscope revealed to have almost closed cells. The molar ratio of HTNR/PCL diol affected the foam formation rate, the average diameter of cell, the regularity of cell shape, the elongation at break and the compressive strength. The foam density slightly changed with this molar ratio whereas the specific tensile strength of all samples was in the same range. All PUFs showed relatively high compression set. The biodegradability was assessed according to a modified Sturm test. Low density polyethylene and sodium benzoate were used as a negative and positive control sample, respectively. PUF samples showed an induction time of 33 days in which the percentage of biodegradation was ~7–11 %. At the end of testing (60 days), the highest degradation (45.6 %) was found in the sample containing 1/0.5 of HTNR/PCL diol molar ratio.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Chan-Chan LH, Solis-Correa R, Vargas-Coronado RF, Cervantes-Uc JM, Cauich-Rodriguez JV, Quintana P, Bartolo-Perez P (2010) Degradation studies on segmented polyurethanes prepared with HMDI, PCL and different chain extenders. Acta Biomater 6:2035–2044CrossRef Chan-Chan LH, Solis-Correa R, Vargas-Coronado RF, Cervantes-Uc JM, Cauich-Rodriguez JV, Quintana P, Bartolo-Perez P (2010) Degradation studies on segmented polyurethanes prepared with HMDI, PCL and different chain extenders. Acta Biomater 6:2035–2044CrossRef
2.
Zurück zum Zitat Asefnejad A, Khorasani MT, Behnamghader A, Farsadzadeh B, Bonakdar S (2011) Manufacturing of biodegradable polyurethane scaffolds based on polycaprolactone using a phase separation method: physical properties and in vitro assay. Int J Nanomedicine 6:2375–2384CrossRef Asefnejad A, Khorasani MT, Behnamghader A, Farsadzadeh B, Bonakdar S (2011) Manufacturing of biodegradable polyurethane scaffolds based on polycaprolactone using a phase separation method: physical properties and in vitro assay. Int J Nanomedicine 6:2375–2384CrossRef
3.
Zurück zum Zitat Tsou CH, Lee HT, Tsai HA, Cheng HJ, Suen MC (2013) Synthesis and properties of biodegradable polycaprolactone/polyurethanes by using 2,6-pyridinedimethanol as a chain extender. Polym Degrad Stab 98:643–650CrossRef Tsou CH, Lee HT, Tsai HA, Cheng HJ, Suen MC (2013) Synthesis and properties of biodegradable polycaprolactone/polyurethanes by using 2,6-pyridinedimethanol as a chain extender. Polym Degrad Stab 98:643–650CrossRef
4.
Zurück zum Zitat Güney A, Hasirci N (2014) Properties and phase segregation of crosslinked PCL-based polyurethanes. J Appl Polym Sci 131:1–13CrossRef Güney A, Hasirci N (2014) Properties and phase segregation of crosslinked PCL-based polyurethanes. J Appl Polym Sci 131:1–13CrossRef
5.
Zurück zum Zitat Kébir N, Morandi G, Campistron I, Laguerre A, Pilard JF (2005) Synthesis of well defined amino telechelic cis-1,4-oligoisoprenes from carbonyl telechelic oligomers; first studies of their potentialities as polyurethane or polyurea materials precursors. Polymer 46:6844–6854CrossRef Kébir N, Morandi G, Campistron I, Laguerre A, Pilard JF (2005) Synthesis of well defined amino telechelic cis-1,4-oligoisoprenes from carbonyl telechelic oligomers; first studies of their potentialities as polyurethane or polyurea materials precursors. Polymer 46:6844–6854CrossRef
6.
Zurück zum Zitat Kebir N, Campistron I, Laguerre A, Pilard JF, Bunel C, Jouenne T (2007) Use of telechelic cis-1,4-polyisoprene cationomers in the synthesis of antibacterial ionic polyurethanes and copolyurethanes bearing ammonium groups. Biomaterials 28:4200–4208CrossRef Kebir N, Campistron I, Laguerre A, Pilard JF, Bunel C, Jouenne T (2007) Use of telechelic cis-1,4-polyisoprene cationomers in the synthesis of antibacterial ionic polyurethanes and copolyurethanes bearing ammonium groups. Biomaterials 28:4200–4208CrossRef
7.
Zurück zum Zitat Kébir N, Campistron I, Laguerre A, Pilard JF, Bunel C, Couvercelle JP, Gondard C (2005) Use of hydroxytelechelic cis-1,4-polyisoprene (HTPI) in the synthesis of polyurethanes (PUs). Part 1. Influence of molecular weight and chemical modification of HTPI on the mechanical and thermal properties of PUs. Polymer 46:6869–6877CrossRef Kébir N, Campistron I, Laguerre A, Pilard JF, Bunel C, Couvercelle JP, Gondard C (2005) Use of hydroxytelechelic cis-1,4-polyisoprene (HTPI) in the synthesis of polyurethanes (PUs). Part 1. Influence of molecular weight and chemical modification of HTPI on the mechanical and thermal properties of PUs. Polymer 46:6869–6877CrossRef
8.
Zurück zum Zitat Saetung A, Kaenhin L, Klinpituksa P, Rungvichaniwat A, Tulyapitak T, Munleh S, Campistron I, Pilard JF (2012) Synthesis, characteristic, and properties of waterborne polyurethane based on natural rubber. J Appl Polym Sci 124:2742–2752CrossRef Saetung A, Kaenhin L, Klinpituksa P, Rungvichaniwat A, Tulyapitak T, Munleh S, Campistron I, Pilard JF (2012) Synthesis, characteristic, and properties of waterborne polyurethane based on natural rubber. J Appl Polym Sci 124:2742–2752CrossRef
9.
Zurück zum Zitat Burel F, Feldman A, Bunel C (2005) Hydrogenated hydroxy-terminated polyisoprene (HHTPI) based urethane network: network properties. Polymer 46:483–489CrossRef Burel F, Feldman A, Bunel C (2005) Hydrogenated hydroxy-terminated polyisoprene (HHTPI) based urethane network: network properties. Polymer 46:483–489CrossRef
10.
Zurück zum Zitat Panwiriyarat W, Tanrattanakul V, Pilard JF, Khaokong C (2011) Synthesis and characterization of block copolymer from natural rubber, toluene-2,4-diisocyanate and poly(ε-caprolactone) diol - based polyurethane. Mater Sci Forum 695:316–319CrossRef Panwiriyarat W, Tanrattanakul V, Pilard JF, Khaokong C (2011) Synthesis and characterization of block copolymer from natural rubber, toluene-2,4-diisocyanate and poly(ε-caprolactone) diol - based polyurethane. Mater Sci Forum 695:316–319CrossRef
11.
Zurück zum Zitat Panwiriyarat W, Tanrattanakul V, Pilard JF, Pasetto P, Khaokong C (2013) Physical and thermal properties of polyurethane from isophorone diisocyanate, natural rubber and poly(ε-caprolactone) with high NCO:OH content. Adv Sci Lett 19:1016–1020CrossRef Panwiriyarat W, Tanrattanakul V, Pilard JF, Pasetto P, Khaokong C (2013) Physical and thermal properties of polyurethane from isophorone diisocyanate, natural rubber and poly(ε-caprolactone) with high NCO:OH content. Adv Sci Lett 19:1016–1020CrossRef
12.
Zurück zum Zitat Panwiriyarat W, Tanrattanakul V, Pilard JF, Pasetto P, Khaokong C (2013) Effect of the diisocyanate structure and the molecular weight of diols on bio-based polyurethanes. J Appl Polym Sci 130:453–462CrossRef Panwiriyarat W, Tanrattanakul V, Pilard JF, Pasetto P, Khaokong C (2013) Effect of the diisocyanate structure and the molecular weight of diols on bio-based polyurethanes. J Appl Polym Sci 130:453–462CrossRef
13.
Zurück zum Zitat Panwiriyarat W, Tanrattanakul V, Pilard JF, Pasetto P, Khaokong C (2013) Preparation and properties of bio-based polyurethane containing polycaprolactone and natural rubber. J Polym Environ 21:807–815CrossRef Panwiriyarat W, Tanrattanakul V, Pilard JF, Pasetto P, Khaokong C (2013) Preparation and properties of bio-based polyurethane containing polycaprolactone and natural rubber. J Polym Environ 21:807–815CrossRef
14.
Zurück zum Zitat Gorna K, Gogolewski S (2003) Preparation, degradation, and calcification of biodegradable polyurethane foams for bone graft substitutes. J Biomed Mater Res A 67:813–827CrossRef Gorna K, Gogolewski S (2003) Preparation, degradation, and calcification of biodegradable polyurethane foams for bone graft substitutes. J Biomed Mater Res A 67:813–827CrossRef
15.
Zurück zum Zitat Campanella A, Bonnaillie LM, Wool RP (2009) Polyurethane foams from soyoil-based polyols. J Appl Polym Sci 112:2567–2578CrossRef Campanella A, Bonnaillie LM, Wool RP (2009) Polyurethane foams from soyoil-based polyols. J Appl Polym Sci 112:2567–2578CrossRef
16.
Zurück zum Zitat Firdaus FE (2011) Chain extender on property relationships of polyurethane derived from soybean oil. World Acad Sci Eng Technol 5:175–178 Firdaus FE (2011) Chain extender on property relationships of polyurethane derived from soybean oil. World Acad Sci Eng Technol 5:175–178
17.
Zurück zum Zitat Sin LC (2008) Rigid and flexible polyurethane foams production from palm oil-based polyol. Dissertation, University of malaya, Kuala lumpur, Malaysia Sin LC (2008) Rigid and flexible polyurethane foams production from palm oil-based polyol. Dissertation, University of malaya, Kuala lumpur, Malaysia
18.
Zurück zum Zitat Stirna U, Sevastyanova I, Misane M, Cabulis U, Beverteb I (2006) Structure and properties of polyurethane foams obtained from rapeseed oil polyols. Proc Est Acad Sci, Chem 55:101–110 Stirna U, Sevastyanova I, Misane M, Cabulis U, Beverteb I (2006) Structure and properties of polyurethane foams obtained from rapeseed oil polyols. Proc Est Acad Sci, Chem 55:101–110
19.
Zurück zum Zitat Tan S, Abraham T, Ference D, Macosko CW (2011) Rigid polyurethane foams from a soybean oil-based polyol. Polymer 52:2840–2846CrossRef Tan S, Abraham T, Ference D, Macosko CW (2011) Rigid polyurethane foams from a soybean oil-based polyol. Polymer 52:2840–2846CrossRef
20.
Zurück zum Zitat Tanaka R, Hirose S, Hatakeyama H (2008) Preparation and characterization of polyurethane foams using a palm oil-based polyol. Bioresour Technol 99:3810–3816CrossRef Tanaka R, Hirose S, Hatakeyama H (2008) Preparation and characterization of polyurethane foams using a palm oil-based polyol. Bioresour Technol 99:3810–3816CrossRef
21.
Zurück zum Zitat Wong CS, Badri KH (2012) Chemical analyses of palm kernel oil-based polyurethane prepolymer. Mater Sci Appl 3:78–86 Wong CS, Badri KH (2012) Chemical analyses of palm kernel oil-based polyurethane prepolymer. Mater Sci Appl 3:78–86
22.
Zurück zum Zitat Zhang L, Jeon HK, Malsam J, Herrington R, Macosko CW (2007) Substituting soybean oil-based polyol into polyurethane flexible foams. Polymer 48:6656–6667CrossRef Zhang L, Jeon HK, Malsam J, Herrington R, Macosko CW (2007) Substituting soybean oil-based polyol into polyurethane flexible foams. Polymer 48:6656–6667CrossRef
23.
Zurück zum Zitat Saetung A, Rungvichaniwat A, Campistron I, Klinpituksa P, Laguerre A, Phinyocheep P, Doutres O, Pilard JF (2010) Preparation and physico-mechanical, thermal and acoustic properties of flexible polyurethane foams based on hydroxytelechelic natural rubber. J Appl Polym Sci 117:828–837CrossRef Saetung A, Rungvichaniwat A, Campistron I, Klinpituksa P, Laguerre A, Phinyocheep P, Doutres O, Pilard JF (2010) Preparation and physico-mechanical, thermal and acoustic properties of flexible polyurethane foams based on hydroxytelechelic natural rubber. J Appl Polym Sci 117:828–837CrossRef
24.
Zurück zum Zitat Saetung A, Rungvichaniwat A, Campistron I, Klinpituksa P, Laguerre A, Phinyocheep P, Pilard JF (2010) Controlled degradation of natural rubber and modification of the obtained telechelic oligoisoprenes: preliminary study of their potentiality as polyurethane foam precursors. J Appl Polym Sci 117:1279–1289CrossRef Saetung A, Rungvichaniwat A, Campistron I, Klinpituksa P, Laguerre A, Phinyocheep P, Pilard JF (2010) Controlled degradation of natural rubber and modification of the obtained telechelic oligoisoprenes: preliminary study of their potentiality as polyurethane foam precursors. J Appl Polym Sci 117:1279–1289CrossRef
25.
Zurück zum Zitat Tran TKN, Pilard JF, Pasetto P (2015) Recycling waste tires: generation of functional oligomers and description of their use in the synthesis of polyurethane foams. J Appl Polym Sci 132:1–11CrossRef Tran TKN, Pilard JF, Pasetto P (2015) Recycling waste tires: generation of functional oligomers and description of their use in the synthesis of polyurethane foams. J Appl Polym Sci 132:1–11CrossRef
26.
Zurück zum Zitat Rattanapan S, Pasetto P, Pilard JF, Tanrattanakul V (2014) Preparation and properties of bio-based polyurethane foams from polycaprolactone diol. Proceedings of the IUPAC World Polymer Congress, Chiang Mai, Thailand, pp. 81–83 Rattanapan S, Pasetto P, Pilard JF, Tanrattanakul V (2014) Preparation and properties of bio-based polyurethane foams from polycaprolactone diol. Proceedings of the IUPAC World Polymer Congress, Chiang Mai, Thailand, pp. 81–83
27.
Zurück zum Zitat Seo WJ, Park JH, Sung YT, Hwang DH, Kim WN, Lee HS (2004) Properties of water-blown rigid polyurethane foams with reactivity of raw materials. J Appl Polym Sci 93:2334–2342CrossRef Seo WJ, Park JH, Sung YT, Hwang DH, Kim WN, Lee HS (2004) Properties of water-blown rigid polyurethane foams with reactivity of raw materials. J Appl Polym Sci 93:2334–2342CrossRef
28.
Zurück zum Zitat Piszczyk Ł, Strankowski M, Danowska M, Haponiuk JT, Gazda M (2012) Preparation and characterization of rigid polyurethane–polyglycerol nanocomposite foams. Eur Polym J 48:1726–1733CrossRef Piszczyk Ł, Strankowski M, Danowska M, Haponiuk JT, Gazda M (2012) Preparation and characterization of rigid polyurethane–polyglycerol nanocomposite foams. Eur Polym J 48:1726–1733CrossRef
29.
Zurück zum Zitat Singh H, Sharma TP, Jain AK (2007) Reactivity of the raw materials and their effects on the structure and properties of rigid polyurethane foams. J Appl Polym Sci 106:1014–1023CrossRef Singh H, Sharma TP, Jain AK (2007) Reactivity of the raw materials and their effects on the structure and properties of rigid polyurethane foams. J Appl Polym Sci 106:1014–1023CrossRef
30.
Zurück zum Zitat Organisation for economic co-operation and development (1993) OECD guidelines for testing of chemicals. CO2 evolution test. OECD 301 B, Paris, France. Organisation for economic co-operation and development (1993) OECD guidelines for testing of chemicals. CO2 evolution test. OECD 301 B, Paris, France.
31.
Zurück zum Zitat Leejarkpai T, Suwanmanee U, Rudeekit Y, Mungcharoen T (2011) Biodegradable kinetics of plastics under controlled composting conditions. Waste Manag 31:1153–1161CrossRef Leejarkpai T, Suwanmanee U, Rudeekit Y, Mungcharoen T (2011) Biodegradable kinetics of plastics under controlled composting conditions. Waste Manag 31:1153–1161CrossRef
32.
Zurück zum Zitat Jurconi B, Feher L, Doca N, Vlase T, Lazăr C, Ţibru I, Ştefănescu M (2007) Evaluation of oily soil biodegradability by means of thermoanalytical methods. J Therm Anal Calorim 88:373–375CrossRef Jurconi B, Feher L, Doca N, Vlase T, Lazăr C, Ţibru I, Ştefănescu M (2007) Evaluation of oily soil biodegradability by means of thermoanalytical methods. J Therm Anal Calorim 88:373–375CrossRef
33.
Zurück zum Zitat Sadaka F, Campistron I, Laguerre A, Pilard JF (2012) Controlled chemical degradation of natural rubber using periodic acid: application for recycling waste Tyre rubber. Polym Degrad Stab 97:816–828CrossRef Sadaka F, Campistron I, Laguerre A, Pilard JF (2012) Controlled chemical degradation of natural rubber using periodic acid: application for recycling waste Tyre rubber. Polym Degrad Stab 97:816–828CrossRef
34.
Zurück zum Zitat Khanna R, Moore M (1999) Carbamic acid: molecular structure and IR spectra. Spectrochim Acta A 55:961–967CrossRef Khanna R, Moore M (1999) Carbamic acid: molecular structure and IR spectra. Spectrochim Acta A 55:961–967CrossRef
35.
Zurück zum Zitat Dworakowska S, Bogdał D, Zaccheria F, Ravasio N (2014) The role of catalysis in the synthesis of polyurethane foams based on renewable raw materials. Catal Today 223:148–156CrossRef Dworakowska S, Bogdał D, Zaccheria F, Ravasio N (2014) The role of catalysis in the synthesis of polyurethane foams based on renewable raw materials. Catal Today 223:148–156CrossRef
36.
Zurück zum Zitat Askari F, Barikani M, Barmar M (2013) Study on thermal stability of polyurethane-urea based on polysiloxane and polycaprolactone diols. Korean J Chem Eng 30:2093–2099CrossRef Askari F, Barikani M, Barmar M (2013) Study on thermal stability of polyurethane-urea based on polysiloxane and polycaprolactone diols. Korean J Chem Eng 30:2093–2099CrossRef
37.
Zurück zum Zitat Zhang XD, Bertsch LM, Macosko CW (1998) Effect of amine additives on flexible, molded foam properties. Cell Polym 17:327–349 Zhang XD, Bertsch LM, Macosko CW (1998) Effect of amine additives on flexible, molded foam properties. Cell Polym 17:327–349
38.
Zurück zum Zitat Watcharakul S, Umsakul K, Hodgson B, Chumeka W, Tanrattanakul V (2012) Biodegradation of a blended starch/natural rubber foam biopolymer and rubber gloves by Streptomyces coelicolor CH13. Electron J Biotechnol 15:1–13 Watcharakul S, Umsakul K, Hodgson B, Chumeka W, Tanrattanakul V (2012) Biodegradation of a blended starch/natural rubber foam biopolymer and rubber gloves by Streptomyces coelicolor CH13. Electron J Biotechnol 15:1–13
39.
Zurück zum Zitat Calil MR, Gaboardi F, Guedes CGF, Rosa DS (2006) Comparison of the biodegradation of poly(caprolactone), cellulose acetate and their blends by the Sturm test and selected cultured fungi. Polym Test 25:597–604CrossRef Calil MR, Gaboardi F, Guedes CGF, Rosa DS (2006) Comparison of the biodegradation of poly(caprolactone), cellulose acetate and their blends by the Sturm test and selected cultured fungi. Polym Test 25:597–604CrossRef
40.
Zurück zum Zitat Noda I, Rubingh DN (1992) Polymer Solutions, Blends, and Interfaces. Netherlands, Amsterdam Noda I, Rubingh DN (1992) Polymer Solutions, Blends, and Interfaces. Netherlands, Amsterdam
41.
Zurück zum Zitat Bolbasov EN, Rybachuk M, Golovkin AS, Antonova LV, Shesterikov EV, Malchikhina AI, Novikov VA, Anissimov YG, Tverdokhlebov SI (2014) Surface modification of poly(L-lactide) and polycaprolactone bioresorbable polymers using RF plasma discharge with sputter deposition of a hydroxyapatite target. Mater Lett 132:281–284CrossRef Bolbasov EN, Rybachuk M, Golovkin AS, Antonova LV, Shesterikov EV, Malchikhina AI, Novikov VA, Anissimov YG, Tverdokhlebov SI (2014) Surface modification of poly(L-lactide) and polycaprolactone bioresorbable polymers using RF plasma discharge with sputter deposition of a hydroxyapatite target. Mater Lett 132:281–284CrossRef
42.
Zurück zum Zitat Shah Z, Krumholz L, Aktas D, Hasan F, Khattak M, Shah A (2013) Degradation of polyester polyurethane by a newly isolated soil bacterium, Bacillus Subtilis strain MZA-75. Biodegradation 24:865–877CrossRef Shah Z, Krumholz L, Aktas D, Hasan F, Khattak M, Shah A (2013) Degradation of polyester polyurethane by a newly isolated soil bacterium, Bacillus Subtilis strain MZA-75. Biodegradation 24:865–877CrossRef
Metadaten
Titel
Preparation and properties of bio-based polyurethane foams from natural rubber and polycaprolactone diol
verfasst von
Suwat Rattanapan
Pamela Pasetto
Jean-François Pilard
Varaporn Tanrattanakul
Publikationsdatum
01.09.2016
Verlag
Springer Netherlands
Erschienen in
Journal of Polymer Research / Ausgabe 9/2016
Print ISSN: 1022-9760
Elektronische ISSN: 1572-8935
DOI
https://doi.org/10.1007/s10965-016-1081-7

Weitere Artikel der Ausgabe 9/2016

Journal of Polymer Research 9/2016 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.