Skip to main content
Erschienen in: Polymer Bulletin 7/2024

13.10.2023 | ORIGINAL PAPER

Preparation and properties of rapidly plasticized poly (butylene succinate)/mechanically activated cassava starch biocomposite

verfasst von: Yinhong Li, Zhengxin Li, Shuai Sheng, Yan Li, Jin-Rong Zhong, Jinlin Tan, Yue-Fei Zhang

Erschienen in: Polymer Bulletin | Ausgabe 7/2024

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Overcoming limitations of poly (butylene succinate) (PBS) and enabling non-toxic, rapid production could lay the foundation for expanding applications in various fields. In this work, mechanically activated cassava starch (ACS) was used to augment the toughness of PBS and reduce the plasticization time of starch. The composite was prepared by melt blending PBS with two types of activated cassava starch particles (native starch and ACS) and acetyl tributyl citrate (ATBC) as a non-toxic plasticizer. X-ray diffractometer (XRD), Fourier transform infrared spectrometer (FTIR), scanning electronic microscope (SEM), and differential scanning calorimetry (DSC) were used to investigate the structural changes, compatibility, and dispersibility of ACS particles in PBS. The results showed that under high-speed shear and grinding, the hydrogen bonds within ACS molecules were severely disrupted and the amorphous regions increased, leading to improved compatibility with PBS. Under the plasticization of ATBC, the cross-section of ACS composites was smoother. DSC results showed that addition of ACS significantly reduced crystallinity of PBS/ACS composites. Mechanical properties results showed that impact strength and elongation at break of PBS/ACS-12A were, respectively, increased by 125% and over 5 times compared with that of PBS. Water absorption test and contact angle test demonstrate a significant improvement in the water resistance of PBS/ACS. This study provides a simple and feasible method for preparing low-cost PBS biocomposites, and their extensions are expected to further replace general-purpose plastics in daily application.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Liu G-C, Zhang W-Q, Wang X-L, Wang Y-Z (2017) Synthesis and performances of poly (butylene-succinate) with enhanced viscosity and crystallization rate via introducing a small amount of diacetylene groups. Chin Chem Lett 28(2):354–357 Liu G-C, Zhang W-Q, Wang X-L, Wang Y-Z (2017) Synthesis and performances of poly (butylene-succinate) with enhanced viscosity and crystallization rate via introducing a small amount of diacetylene groups. Chin Chem Lett 28(2):354–357
2.
Zurück zum Zitat Luyt AS, Malik SS (2019) Can biodegradable plastics solve plastic solid waste accumulation? Plastics to energy. Elsevier, Norwich, pp 403–423 Luyt AS, Malik SS (2019) Can biodegradable plastics solve plastic solid waste accumulation? Plastics to energy. Elsevier, Norwich, pp 403–423
3.
Zurück zum Zitat Zhang S, He Y, Yin Y, Jiang G (2019) Fabrication of innovative thermoplastic starch bio-elastomer to achieve high toughness poly (butylene succinate) composites. Carbohydr Polym 206:827–836PubMed Zhang S, He Y, Yin Y, Jiang G (2019) Fabrication of innovative thermoplastic starch bio-elastomer to achieve high toughness poly (butylene succinate) composites. Carbohydr Polym 206:827–836PubMed
4.
Zurück zum Zitat Zhu C, Zhang Z, Liu Q, Wang Z, Jin J (2003) Synthesis and biodegradation of aliphatic polyesters from dicarboxylic acids and diols. J Appl Polym Sci 90(4):982–990 Zhu C, Zhang Z, Liu Q, Wang Z, Jin J (2003) Synthesis and biodegradation of aliphatic polyesters from dicarboxylic acids and diols. J Appl Polym Sci 90(4):982–990
5.
Zurück zum Zitat Jacquel N, Freyermouth F, Fenouillot F, Rousseau A, Pascault JP, Fuertes P, Saint-Loup R (2011) Synthesis and properties of poly (butylene succinate): efficiency of different transesterification catalysts. J Polym Sci Part A Polym Chem 49(24):5301–5312 Jacquel N, Freyermouth F, Fenouillot F, Rousseau A, Pascault JP, Fuertes P, Saint-Loup R (2011) Synthesis and properties of poly (butylene succinate): efficiency of different transesterification catalysts. J Polym Sci Part A Polym Chem 49(24):5301–5312
6.
Zurück zum Zitat Zakharova E, Lavilla C, Alla A, de Ilarduya AM, Muñoz-Guerra S (2014) Modification of properties of poly (butylene succinate) by copolymerization with tartaric acid-based monomers. Eur Polym J 61:263–273 Zakharova E, Lavilla C, Alla A, de Ilarduya AM, Muñoz-Guerra S (2014) Modification of properties of poly (butylene succinate) by copolymerization with tartaric acid-based monomers. Eur Polym J 61:263–273
7.
Zurück zum Zitat Jin HJ, Kim DS, Kim MN, Lee IM, Lee HS, Yoon JS (2001) Synthesis and properties of poly (butylene succinate) with N-hexenyl side branches. J Appl Polym Sci 81(9):2219–2226 Jin HJ, Kim DS, Kim MN, Lee IM, Lee HS, Yoon JS (2001) Synthesis and properties of poly (butylene succinate) with N-hexenyl side branches. J Appl Polym Sci 81(9):2219–2226
8.
Zurück zum Zitat Shi K, Bai Z, Su T, Wang Z (2019) Selective enzymatic degradation and porous morphology of poly (butylene succinate)/poly (lactic acid) blends. Int J Biol Macromol 126:436–442PubMed Shi K, Bai Z, Su T, Wang Z (2019) Selective enzymatic degradation and porous morphology of poly (butylene succinate)/poly (lactic acid) blends. Int J Biol Macromol 126:436–442PubMed
9.
Zurück zum Zitat Jiang L, Zhang J (2017) Biodegradable and biobased polymers. Applied plastics engineering handbook. Elsevier, Norwich, pp 127–143 Jiang L, Zhang J (2017) Biodegradable and biobased polymers. Applied plastics engineering handbook. Elsevier, Norwich, pp 127–143
10.
Zurück zum Zitat Abushammala H, Mao J (2020) Impact of the surface properties of cellulose nanocrystals on the crystallization kinetics of poly (butylene succinate). Crystals 10(3):196 Abushammala H, Mao J (2020) Impact of the surface properties of cellulose nanocrystals on the crystallization kinetics of poly (butylene succinate). Crystals 10(3):196
11.
Zurück zum Zitat Savitha K, Paghadar BR, Kumar MS, Jagadish R (2022) Polybutylene succinate, a potential bio-degradable polymer: synthesis, copolymerization and bio-degradation. Polym Chem 13(24):3562–3612 Savitha K, Paghadar BR, Kumar MS, Jagadish R (2022) Polybutylene succinate, a potential bio-degradable polymer: synthesis, copolymerization and bio-degradation. Polym Chem 13(24):3562–3612
12.
Zurück zum Zitat Aliotta L, Seggiani M, Lazzeri A, Gigante V, Cinelli P (2022) A brief review of poly (butylene succinate)(PBS) and its main copolymers: synthesis, blends, composites, biodegradability, and applications. Polymers 14(4):844PubMedPubMedCentral Aliotta L, Seggiani M, Lazzeri A, Gigante V, Cinelli P (2022) A brief review of poly (butylene succinate)(PBS) and its main copolymers: synthesis, blends, composites, biodegradability, and applications. Polymers 14(4):844PubMedPubMedCentral
13.
Zurück zum Zitat Freitas PA, González-Martínez C, Chiralt A (2023) Using rice straw fractions to develop reinforced, active PLA-starch bilayers for meat preservation. Food Chem 405:134990PubMed Freitas PA, González-Martínez C, Chiralt A (2023) Using rice straw fractions to develop reinforced, active PLA-starch bilayers for meat preservation. Food Chem 405:134990PubMed
14.
Zurück zum Zitat Akay O, Altinkok C, Acik G, Yuce H, Ege GK (2021) A bio-based and non-toxic polyurethane film derived from luffa cylindrica cellulose and ʟ-Lysine diisocyanate ethyl ester. Eur Polym J 161:110856 Akay O, Altinkok C, Acik G, Yuce H, Ege GK (2021) A bio-based and non-toxic polyurethane film derived from luffa cylindrica cellulose and ʟ-Lysine diisocyanate ethyl ester. Eur Polym J 161:110856
15.
Zurück zum Zitat Hararak B, Wanmolee W, Wijaranakul P, Prakymoramas N, Winotapun C, Kraithong W, Nakason K (2023) Physicochemical properties of lignin nanoparticles from softwood and their potential application in sustainable pre-harvest bagging as transparent UV-shielding films. Int J Biol Macromol 229:575–588PubMed Hararak B, Wanmolee W, Wijaranakul P, Prakymoramas N, Winotapun C, Kraithong W, Nakason K (2023) Physicochemical properties of lignin nanoparticles from softwood and their potential application in sustainable pre-harvest bagging as transparent UV-shielding films. Int J Biol Macromol 229:575–588PubMed
16.
Zurück zum Zitat Park H, Oh J, Park Y, Kim S, Kim J (2022) Environmentally sustainable particulate filter fabricated via induced phase separation of bioderived fungal chitin and poly (lactic acid). Acs appl polym mater 5(1):452–462 Park H, Oh J, Park Y, Kim S, Kim J (2022) Environmentally sustainable particulate filter fabricated via induced phase separation of bioderived fungal chitin and poly (lactic acid). Acs appl polym mater 5(1):452–462
17.
Zurück zum Zitat Zeeman SC, Kossmann J, Smith AM (2010) Starch: its metabolism, evolution, and biotechnological modification in plants. Annu Rev Plant Biol 61:209–234PubMed Zeeman SC, Kossmann J, Smith AM (2010) Starch: its metabolism, evolution, and biotechnological modification in plants. Annu Rev Plant Biol 61:209–234PubMed
18.
Zurück zum Zitat Sankri A, Arhaliass A, Dez I, Gaumont AC, Grohens Y, Lourdin D, Pillin I, Rolland-Sabaté A, Leroy E (2010) Thermoplastic starch plasticized by an ionic liquid. Carbohydr Polym 82(2):256–263 Sankri A, Arhaliass A, Dez I, Gaumont AC, Grohens Y, Lourdin D, Pillin I, Rolland-Sabaté A, Leroy E (2010) Thermoplastic starch plasticized by an ionic liquid. Carbohydr Polym 82(2):256–263
19.
Zurück zum Zitat Qiao X, Tang Z, Sun K (2011) Plasticization of corn starch by polyol mixtures. Carbohydr Polym 83(2):659–664 Qiao X, Tang Z, Sun K (2011) Plasticization of corn starch by polyol mixtures. Carbohydr Polym 83(2):659–664
20.
Zurück zum Zitat Schmitt H, Guidez A, Prashantha K, Soulestin J, Lacrampe M, Krawczak P (2015) Studies on the effect of storage time and plasticizers on the structural variations in thermoplastic starch. Carbohydr Polym 115:364–372PubMed Schmitt H, Guidez A, Prashantha K, Soulestin J, Lacrampe M, Krawczak P (2015) Studies on the effect of storage time and plasticizers on the structural variations in thermoplastic starch. Carbohydr Polym 115:364–372PubMed
21.
Zurück zum Zitat Copeland L, Blazek J, Salman H, Tang MC (2009) Form and functionality of starch. Food Hydrocoll 23(6):1527–1534 Copeland L, Blazek J, Salman H, Tang MC (2009) Form and functionality of starch. Food Hydrocoll 23(6):1527–1534
22.
Zurück zum Zitat Lourdin D, Putaux J-L, Potocki-Véronèse G, Chevigny C, Rolland-Sabaté A, and Buléon A (2015) Crystalline structure in starch. Starch: Metabolism and Structure: 61-90. Lourdin D, Putaux J-L, Potocki-Véronèse G, Chevigny C, Rolland-Sabaté A, and Buléon A (2015) Crystalline structure in starch. Starch: Metabolism and Structure: 61-90.
23.
Zurück zum Zitat Vamadevan V, Bertoft E (2015) Structure-function relationships of starch components. Starch Stärke 67(1–2):55–68 Vamadevan V, Bertoft E (2015) Structure-function relationships of starch components. Starch Stärke 67(1–2):55–68
24.
Zurück zum Zitat Zeng J-B, Jiao L, Li Y-D, Srinivasan M, Li T, Wang Y-Z (2011) Bio-based blends of starch and poly (butylene succinate) with improved miscibility, mechanical properties, and reduced water absorption. Carbohydr Polym 83(2):762–768 Zeng J-B, Jiao L, Li Y-D, Srinivasan M, Li T, Wang Y-Z (2011) Bio-based blends of starch and poly (butylene succinate) with improved miscibility, mechanical properties, and reduced water absorption. Carbohydr Polym 83(2):762–768
25.
Zurück zum Zitat Li J, Luo X, Lin X, Zhou Y (2013) Comparative study on the blends of PBS/thermoplastic starch prepared from waxy and normal corn starches. Starch Stärke 65(9–10):831–839 Li J, Luo X, Lin X, Zhou Y (2013) Comparative study on the blends of PBS/thermoplastic starch prepared from waxy and normal corn starches. Starch Stärke 65(9–10):831–839
26.
Zurück zum Zitat Wang W, Zhang G, Zhang W, Guo W, Wang J (2013) Processing and thermal behaviors of poly (butylene succinate) blends with highly-filled starch and glycerol. J Polym Environ 21:46–53 Wang W, Zhang G, Zhang W, Guo W, Wang J (2013) Processing and thermal behaviors of poly (butylene succinate) blends with highly-filled starch and glycerol. J Polym Environ 21:46–53
27.
Zurück zum Zitat Abbott AP, Abolibda TZ, Davis SJ, Emmerling F, Lourdin D, Leroy E, Wise WR (2014) Glycol based plasticisers for salt modified starch. RSC Adv 4(76):40421–40427 Abbott AP, Abolibda TZ, Davis SJ, Emmerling F, Lourdin D, Leroy E, Wise WR (2014) Glycol based plasticisers for salt modified starch. RSC Adv 4(76):40421–40427
28.
Zurück zum Zitat Zhang Y, and Rempel C (2012) Retrogradation and antiplasticization of thermoplastic starch. Thermoplastic Elastomers. 118119 Zhang Y, and Rempel C (2012) Retrogradation and antiplasticization of thermoplastic starch. Thermoplastic Elastomers. 118119
29.
Zurück zum Zitat Mohammadi Nafchi A, Moradpour M, Saeidi M, Alias AK (2013) Thermoplastic starches: properties, challenges, and prospects. Starch Stärke 65(1–2):61–72 Mohammadi Nafchi A, Moradpour M, Saeidi M, Alias AK (2013) Thermoplastic starches: properties, challenges, and prospects. Starch Stärke 65(1–2):61–72
30.
Zurück zum Zitat Alonso-González M, Felix M, Guerrero A, Romero A (2021) Rice bran-based bioplastics: effects of the mixing temperature on starch plastification and final properties. Int J Biol Macromol 188:932–940PubMed Alonso-González M, Felix M, Guerrero A, Romero A (2021) Rice bran-based bioplastics: effects of the mixing temperature on starch plastification and final properties. Int J Biol Macromol 188:932–940PubMed
31.
Zurück zum Zitat Suchao-in K, Koombhongse P, Chirachanchai S (2014) Starch grafted poly (butylene succinate) via conjugating reaction and its role on enhancing the compatibility. Carbohydr Polym 102:95–102 Suchao-in K, Koombhongse P, Chirachanchai S (2014) Starch grafted poly (butylene succinate) via conjugating reaction and its role on enhancing the compatibility. Carbohydr Polym 102:95–102
32.
Zurück zum Zitat Suttiruengwong S, Sotho K, Seadan M (2014) Effect of glycerol and reactive compatibilizers on poly (butylene succinate)/starch blends. J Renew Mater 2(1):85–92 Suttiruengwong S, Sotho K, Seadan M (2014) Effect of glycerol and reactive compatibilizers on poly (butylene succinate)/starch blends. J Renew Mater 2(1):85–92
33.
Zurück zum Zitat Liu D, Qi Z, Zhang Y, Xu J, Guo B (2015) Poly (butylene succinate)(PBS)/ionic liquid plasticized starch blends: preparation, characterization, and properties. Starch Stärke 67(9–10):802–809 Liu D, Qi Z, Zhang Y, Xu J, Guo B (2015) Poly (butylene succinate)(PBS)/ionic liquid plasticized starch blends: preparation, characterization, and properties. Starch Stärke 67(9–10):802–809
34.
Zurück zum Zitat Xu J, Chen Y, Tian Y, Yang Z, Zhao Z, Du W, Zhang X (2021) Effect of ionic liquid 1-buyl-3-methylimidazolium halide on the structure and tensile property of PBS/corn starch blends. Int J Biol Macromol 172:170–177PubMed Xu J, Chen Y, Tian Y, Yang Z, Zhao Z, Du W, Zhang X (2021) Effect of ionic liquid 1-buyl-3-methylimidazolium halide on the structure and tensile property of PBS/corn starch blends. Int J Biol Macromol 172:170–177PubMed
35.
Zurück zum Zitat Fang K, He W, Jiang Y, Li K, Li J (2020) Preparation, characterization and physicochemical properties of cassava starch-ferulic acid complexes by mechanical activation. Int J Biol Macromol 160:482–488PubMed Fang K, He W, Jiang Y, Li K, Li J (2020) Preparation, characterization and physicochemical properties of cassava starch-ferulic acid complexes by mechanical activation. Int J Biol Macromol 160:482–488PubMed
36.
Zurück zum Zitat Acik G (2019) Soybean oil modified bio-based poly (vinyl alcohol) s via ring-opening polymerization. J Polym Environ 27(11):2618–2623 Acik G (2019) Soybean oil modified bio-based poly (vinyl alcohol) s via ring-opening polymerization. J Polym Environ 27(11):2618–2623
37.
Zurück zum Zitat Wang M, Song X, Jiang J, Xia J, Ding H, Li M (2018) Plasticization and thermal behavior of hydroxyl and nitrogen rich group-containing tung-oil-based ester plasticizers for PVC. New J Chem 42(4):2422–2431 Wang M, Song X, Jiang J, Xia J, Ding H, Li M (2018) Plasticization and thermal behavior of hydroxyl and nitrogen rich group-containing tung-oil-based ester plasticizers for PVC. New J Chem 42(4):2422–2431
38.
Zurück zum Zitat Halloran MW, Danielczak L, Nicell JA, Leask RL, Marić M (2022) Highly flexible polylactide food packaging plasticized with nontoxic, biosourced glycerol plasticizers. Acs Appl Polym Mater 4(5):3608–3617 Halloran MW, Danielczak L, Nicell JA, Leask RL, Marić M (2022) Highly flexible polylactide food packaging plasticized with nontoxic, biosourced glycerol plasticizers. Acs Appl Polym Mater 4(5):3608–3617
39.
Zurück zum Zitat Ouajai S, Shanks RA (2009) Biocomposites of cellulose acetate butyrate with modified hemp cellulose fibres. Macromol Mater Eng 294(3):213–221 Ouajai S, Shanks RA (2009) Biocomposites of cellulose acetate butyrate with modified hemp cellulose fibres. Macromol Mater Eng 294(3):213–221
40.
Zurück zum Zitat Pang C, Shanks RA, Daver F (2015) Characterization of kenaf fiber composites prepared with tributyl citrate plasticized cellulose acetate. Compos Part A Appl S 70:52–58 Pang C, Shanks RA, Daver F (2015) Characterization of kenaf fiber composites prepared with tributyl citrate plasticized cellulose acetate. Compos Part A Appl S 70:52–58
41.
Zurück zum Zitat Aliotta L, Canesi I, Lazzeri A (2021) Study on the preferential distribution of acetyl tributyl citrate in poly (lactic) acid-poly (butylene adipate-co-terephthalate) blends. Polym Test 98:107163 Aliotta L, Canesi I, Lazzeri A (2021) Study on the preferential distribution of acetyl tributyl citrate in poly (lactic) acid-poly (butylene adipate-co-terephthalate) blends. Polym Test 98:107163
42.
Zurück zum Zitat Umemura RT, Felisberti MI (2021) Plasticization of poly (3-hydroxybutyrate) with triethyl citrate: thermal and mechanical properties, morphology, and kinetics of crystallization. J Appl Polym Sci 138(10):49990 Umemura RT, Felisberti MI (2021) Plasticization of poly (3-hydroxybutyrate) with triethyl citrate: thermal and mechanical properties, morphology, and kinetics of crystallization. J Appl Polym Sci 138(10):49990
43.
Zurück zum Zitat Zhang Z, Zhao S, Xiong S (2010) Morphology and physicochemical properties of mechanically activated rice starch. Carbohydr Polym 79(2):341–348 Zhang Z, Zhao S, Xiong S (2010) Morphology and physicochemical properties of mechanically activated rice starch. Carbohydr Polym 79(2):341–348
44.
Zurück zum Zitat Zhang Y, Li W, Huang M, Xu X, Jiang M, Hu H, Huang Z, Liang J, Qin Y (2021) Non-digesting strategy for efficient bioconversion of cassava to bioethanol via mechanical activation and metal salts pretreatment. Renew Energy 169:95–103 Zhang Y, Li W, Huang M, Xu X, Jiang M, Hu H, Huang Z, Liang J, Qin Y (2021) Non-digesting strategy for efficient bioconversion of cassava to bioethanol via mechanical activation and metal salts pretreatment. Renew Energy 169:95–103
45.
Zurück zum Zitat Huang Z-Q, Lu J-P, Li X-H, Tong Z-F (2007) Effect of mechanical activation on physico-chemical properties and structure of cassava starch. Carbohydr Polym 68(1):128–135 Huang Z-Q, Lu J-P, Li X-H, Tong Z-F (2007) Effect of mechanical activation on physico-chemical properties and structure of cassava starch. Carbohydr Polym 68(1):128–135
46.
Zurück zum Zitat Zdanowicz M, Jędrzejewski R, Pilawka R (2019) Deep eutectic solvents as simultaneous plasticizing and crosslinking agents for starch. Int J Biol Macromol 129:1040–1046PubMed Zdanowicz M, Jędrzejewski R, Pilawka R (2019) Deep eutectic solvents as simultaneous plasticizing and crosslinking agents for starch. Int J Biol Macromol 129:1040–1046PubMed
47.
Zurück zum Zitat Bangar S P, Singh A, Ashogbon A O, and Bobade H (2023) Ball-milling: A sustainable and green approach for starch modification. Int J Biol Macromol 237 Bangar S P, Singh A, Ashogbon A O, and Bobade H (2023) Ball-milling: A sustainable and green approach for starch modification. Int J Biol Macromol 237
48.
Zurück zum Zitat Lv Y, Zhang L, Li M, He X, Hao L, Dai Y (2019) Physicochemical properties and digestibility of potato starch treated by ball milling with tea polyphenols. Int J Biol Macromol 129:207–213PubMed Lv Y, Zhang L, Li M, He X, Hao L, Dai Y (2019) Physicochemical properties and digestibility of potato starch treated by ball milling with tea polyphenols. Int J Biol Macromol 129:207–213PubMed
49.
Zurück zum Zitat Su Y, Du H, Huo Y, Xu Y, Wang J, Wang L, Zhao S, Xiong S (2016) Characterization of cationic starch flocculants synthesized by dry process with ball milling activating method. Int J Biol Macromol 87:34–40PubMed Su Y, Du H, Huo Y, Xu Y, Wang J, Wang L, Zhao S, Xiong S (2016) Characterization of cationic starch flocculants synthesized by dry process with ball milling activating method. Int J Biol Macromol 87:34–40PubMed
50.
Zurück zum Zitat Yao S-F, Chen X-T, Ye H-M (2017) Investigation of structure and crystallization behavior of poly (butylene succinate) by fourier transform infrared spectroscopy. J Phys Chem B 121(40):9476–9485PubMed Yao S-F, Chen X-T, Ye H-M (2017) Investigation of structure and crystallization behavior of poly (butylene succinate) by fourier transform infrared spectroscopy. J Phys Chem B 121(40):9476–9485PubMed
51.
Zurück zum Zitat Meng L, Yu L, Khalid S, Liu H, Zhang S, Duan Q, Chen L (2019) Preparation, microstructure and performance of poly (lactic acid)-Poly (butylene succinate-co-butyleneadipate)-starch hybrid composites. Compos Part B Eng 177:107384 Meng L, Yu L, Khalid S, Liu H, Zhang S, Duan Q, Chen L (2019) Preparation, microstructure and performance of poly (lactic acid)-Poly (butylene succinate-co-butyleneadipate)-starch hybrid composites. Compos Part B Eng 177:107384
52.
Zurück zum Zitat Liu R, Sun W, Zhang Y, Huang Z, Hu H, Zhao M (2019) Preparation of starch dough using damaged cassava starch induced by mechanical activation to develop staple foods: application in crackers. Food Chem 271:284–290PubMed Liu R, Sun W, Zhang Y, Huang Z, Hu H, Zhao M (2019) Preparation of starch dough using damaged cassava starch induced by mechanical activation to develop staple foods: application in crackers. Food Chem 271:284–290PubMed
53.
Zurück zum Zitat He S, Qin Y, Walid E, Li L, Cui J, Ma Y (2014) Effect of ball-milling on the physicochemical properties of maize starch. Biotechnol rep 3:54–59 He S, Qin Y, Walid E, Li L, Cui J, Ma Y (2014) Effect of ball-milling on the physicochemical properties of maize starch. Biotechnol rep 3:54–59
54.
Zurück zum Zitat Iovino R, Zullo R, Rao M, Cassar L, Gianfreda L (2008) Biodegradation of poly (lactic acid)/starch/coir biocomposites under controlled composting conditions. Polym Degrad Stab 93(1):147–157 Iovino R, Zullo R, Rao M, Cassar L, Gianfreda L (2008) Biodegradation of poly (lactic acid)/starch/coir biocomposites under controlled composting conditions. Polym Degrad Stab 93(1):147–157
55.
Zurück zum Zitat Then YY, Ibrahim NA, Zainuddin N, Ariffin H, Wan Yunus WMZ (2013) Oil palm mesocarp fiber as new lignocellulosic material for fabrication of polymer/fiber biocomposites. Int J Polym Sci 2013:797452 Then YY, Ibrahim NA, Zainuddin N, Ariffin H, Wan Yunus WMZ (2013) Oil palm mesocarp fiber as new lignocellulosic material for fabrication of polymer/fiber biocomposites. Int J Polym Sci 2013:797452
Metadaten
Titel
Preparation and properties of rapidly plasticized poly (butylene succinate)/mechanically activated cassava starch biocomposite
verfasst von
Yinhong Li
Zhengxin Li
Shuai Sheng
Yan Li
Jin-Rong Zhong
Jinlin Tan
Yue-Fei Zhang
Publikationsdatum
13.10.2023
Verlag
Springer Berlin Heidelberg
Erschienen in
Polymer Bulletin / Ausgabe 7/2024
Print ISSN: 0170-0839
Elektronische ISSN: 1436-2449
DOI
https://doi.org/10.1007/s00289-023-05018-7

Weitere Artikel der Ausgabe 7/2024

Polymer Bulletin 7/2024 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.