Skip to main content
Erschienen in: Journal of Materials Engineering and Performance 9/2016

28.06.2016

Preparation of Shape-Controlled Graphene/Co3O4 Composites for Supercapacitors

verfasst von: Jun Chen, Ningna Chen, Xiaomiao Feng, Wenhua Hou

Erschienen in: Journal of Materials Engineering and Performance | Ausgabe 9/2016

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Graphene/Co3O4 nanocomposites with different morphologies were fabricated by hydrothermal method. The morphology of nanocomposites was characterized by scanning electron microscopy. These composites could be used as the electrode materials for supercapacitors. The eletrochemical behavior of the composite was tested by cyclic voltammetry and galvanostatic charge-discharge measurements in 1.0 mol/L KOH solution. The results showed that the graphene/Co3O4 nanopetal composite exhibited excellent electrochemical performance. The specific capacitance value could reach up to 714 F/g at a scan rate of 2 mV/s. Besides, the capacitance of the graphene/Co3O4 nanopetal composite was 841 F/g at a current density of 0.1 A/g. After galvanostatic charge-discharge 1000 laps at the current density of 0.4 A/g, the specific capacitance could keep 96.7% of original capacitive value, demonstrating its good cycling stability.

Graphical Abstract

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat M.F. El-Kady, V. Strong, S. Dubin, and R.B. Kaner, Laser Scribing of High-Performance and Flexible Graphene-Based Electrochemical Capacitors, Science, 2012, 335, p 1326–1330CrossRef M.F. El-Kady, V. Strong, S. Dubin, and R.B. Kaner, Laser Scribing of High-Performance and Flexible Graphene-Based Electrochemical Capacitors, Science, 2012, 335, p 1326–1330CrossRef
2.
Zurück zum Zitat A. Ghosh, E.J. Ra, M. Jin, H.K. Jeong, T.H. Kim, C. Biswas, and Y.H. Lee, High Pseudocapacitance from Ultrathin V2O5 Films Electrodeposited on Self-Standing Carbon-Nanofiber Paper, Adv. Funct. Mater., 2011, 21, p 2541–2547CrossRef A. Ghosh, E.J. Ra, M. Jin, H.K. Jeong, T.H. Kim, C. Biswas, and Y.H. Lee, High Pseudocapacitance from Ultrathin V2O5 Films Electrodeposited on Self-Standing Carbon-Nanofiber Paper, Adv. Funct. Mater., 2011, 21, p 2541–2547CrossRef
3.
Zurück zum Zitat M.J. Zhi, A. Manivannan, F.K. Meng, and N.Q. Wu, Highly Conductive Electrospun Carbon Nanofiber/MnO2 Coaxial Nano-Cables for High Energy and Power Density Supercapacitors, J. Power Sources, 2012, 208, p 345–353CrossRef M.J. Zhi, A. Manivannan, F.K. Meng, and N.Q. Wu, Highly Conductive Electrospun Carbon Nanofiber/MnO2 Coaxial Nano-Cables for High Energy and Power Density Supercapacitors, J. Power Sources, 2012, 208, p 345–353CrossRef
4.
Zurück zum Zitat J.Y. Kim, K.H. Kim, S.B. Yoon, H.K. Kim, S.H. Park, and K.B. Kim, In Situ Chemical Synthesis of Ruthenium Oxide/Reduced Graphene Oxide Nanocomposites for Electrochemical Capacitor Applications, Nanoscale, 2013, 5, p 6804–6811CrossRef J.Y. Kim, K.H. Kim, S.B. Yoon, H.K. Kim, S.H. Park, and K.B. Kim, In Situ Chemical Synthesis of Ruthenium Oxide/Reduced Graphene Oxide Nanocomposites for Electrochemical Capacitor Applications, Nanoscale, 2013, 5, p 6804–6811CrossRef
5.
Zurück zum Zitat Y. Chen, X. Zhang, D. Zhang, P. Yu, and Y.W. Ma, High Performance Supercapacitors Based on Reduced Graphene Oxide in Aqueous and Ionic Liquid Electrolytes, Carbon, 2011, 49, p 573–580CrossRef Y. Chen, X. Zhang, D. Zhang, P. Yu, and Y.W. Ma, High Performance Supercapacitors Based on Reduced Graphene Oxide in Aqueous and Ionic Liquid Electrolytes, Carbon, 2011, 49, p 573–580CrossRef
6.
Zurück zum Zitat D.C. Zhang, X. Zhang, Y. Chen, P. Yu, C.H. Wang, and Y.W. Ma, Enhanced Capacitance and Rate Capability of Graphene/Polypyrrole Composite as Electrode Material for Supercapacitors, J. Power Sources, 2011, 196, p 5990–5996CrossRef D.C. Zhang, X. Zhang, Y. Chen, P. Yu, C.H. Wang, and Y.W. Ma, Enhanced Capacitance and Rate Capability of Graphene/Polypyrrole Composite as Electrode Material for Supercapacitors, J. Power Sources, 2011, 196, p 5990–5996CrossRef
7.
Zurück zum Zitat S. Chen, J.W. Zhu, X.D. Wu, Q.F. Han, and X. Wang, Graphene Oxide-MnO2 Nanocomposites for Supercapacitors, ACS Nano, 2010, 4, p 2822–2830CrossRef S. Chen, J.W. Zhu, X.D. Wu, Q.F. Han, and X. Wang, Graphene Oxide-MnO2 Nanocomposites for Supercapacitors, ACS Nano, 2010, 4, p 2822–2830CrossRef
8.
Zurück zum Zitat L.L. Zhang and X.S. Zhao, Carbon-Based Materials as Supercapacitor Electrodes, Chem. Soc. Rev., 2009, 38, p 2520–2531CrossRef L.L. Zhang and X.S. Zhao, Carbon-Based Materials as Supercapacitor Electrodes, Chem. Soc. Rev., 2009, 38, p 2520–2531CrossRef
9.
Zurück zum Zitat Y. Ohno, K. Maehashi, Y. Yamashiro, and K. Matsumoto, Electrolyte-Gated Graphene Field-Effect Transistors for Detecting pH and Protein Adsorption, Nano Lett., 2009, 9, p 3318–3322CrossRef Y. Ohno, K. Maehashi, Y. Yamashiro, and K. Matsumoto, Electrolyte-Gated Graphene Field-Effect Transistors for Detecting pH and Protein Adsorption, Nano Lett., 2009, 9, p 3318–3322CrossRef
10.
Zurück zum Zitat A. Gutés, C. Carraro, and R. Maboudian, Single-Layer CVD-Grown Graphene Decorated with Metal Nanoparticles as a Promising Biosensing Platform, Biosens. Bioelectron., 2012, 33, p 56–59CrossRef A. Gutés, C. Carraro, and R. Maboudian, Single-Layer CVD-Grown Graphene Decorated with Metal Nanoparticles as a Promising Biosensing Platform, Biosens. Bioelectron., 2012, 33, p 56–59CrossRef
11.
Zurück zum Zitat Y.Y. Guo, Y.J. Han, S.M. Shuang, and C. Dong, Rational Synthesis of Graphene-Metal Coordination Polymer Composite Nanosheet as Enhanced Materials for Electrochemical Biosensing, J. Mater. Chem., 2012, 22, p 13166–13173CrossRef Y.Y. Guo, Y.J. Han, S.M. Shuang, and C. Dong, Rational Synthesis of Graphene-Metal Coordination Polymer Composite Nanosheet as Enhanced Materials for Electrochemical Biosensing, J. Mater. Chem., 2012, 22, p 13166–13173CrossRef
12.
Zurück zum Zitat L. Jiang, S.Q. Gu, Y.P. Ding, D.X. Ye, Z. Zhang, and F.F. Zhang, Amperometric Sensor Based on Tricobalt Tetroxide Nanoparticles-Graphene Nanocomposite Film Modified Glassy Carbon Electrode for Determination of Tyrosine, Colloid Surf. B, 2013, 107, p 146–151CrossRef L. Jiang, S.Q. Gu, Y.P. Ding, D.X. Ye, Z. Zhang, and F.F. Zhang, Amperometric Sensor Based on Tricobalt Tetroxide Nanoparticles-Graphene Nanocomposite Film Modified Glassy Carbon Electrode for Determination of Tyrosine, Colloid Surf. B, 2013, 107, p 146–151CrossRef
13.
Zurück zum Zitat W. Du, R.M. Liu, Y.W. Jiang, Q.Y. Lu, Y.Z. Fan, and F. Gao, Facile Synthesis of Hollow Co3O4 Boxes for High Capacity Supercapacitor, J. Power Sources, 2013, 227, p 101–105CrossRef W. Du, R.M. Liu, Y.W. Jiang, Q.Y. Lu, Y.Z. Fan, and F. Gao, Facile Synthesis of Hollow Co3O4 Boxes for High Capacity Supercapacitor, J. Power Sources, 2013, 227, p 101–105CrossRef
14.
Zurück zum Zitat S. Vijayakumar, S. Nagamuthu, and G. Muralidharan, Supercapacitor Studies on NiO Nanoflakes Synthesized Through a Microwave Route, ACS Appl. Mater. Interface, 2013, 5, p 2188–2196CrossRef S. Vijayakumar, S. Nagamuthu, and G. Muralidharan, Supercapacitor Studies on NiO Nanoflakes Synthesized Through a Microwave Route, ACS Appl. Mater. Interface, 2013, 5, p 2188–2196CrossRef
15.
Zurück zum Zitat X.Y. Li, J. Shao, J. Li, L. Zhang, Q.T. Qu, and H.H. Zheng, Ordered Mesoporous MoO2 as a High-Performance Anode Material for Aqueous Supercapacitors, J. Power Sources, 2013, 237, p 80–83CrossRef X.Y. Li, J. Shao, J. Li, L. Zhang, Q.T. Qu, and H.H. Zheng, Ordered Mesoporous MoO2 as a High-Performance Anode Material for Aqueous Supercapacitors, J. Power Sources, 2013, 237, p 80–83CrossRef
16.
Zurück zum Zitat J.C. Deng, L.T. Kang, G.L. Bai, Y. Li, P.Y. Li, X.G. Liu, Y.Z. Yang, F. Gao, and W. Liang, Solution Combustion Synthesis of Cobalt Oxides (Co3O4 and Co3O4/CoO) Nanoparticles as Supercapacitor Electrode Materials, Electrochim. Acta, 2014, 132, p 127–135CrossRef J.C. Deng, L.T. Kang, G.L. Bai, Y. Li, P.Y. Li, X.G. Liu, Y.Z. Yang, F. Gao, and W. Liang, Solution Combustion Synthesis of Cobalt Oxides (Co3O4 and Co3O4/CoO) Nanoparticles as Supercapacitor Electrode Materials, Electrochim. Acta, 2014, 132, p 127–135CrossRef
17.
Zurück zum Zitat S. Vijayakumar, A.K. Ponnalagi, S. Nagamuthu, and G. Muralidharan, Microwave Assisted Synthesis of Co3O4 Nanoparticles for High-Performance Supercapacitors, Electrochim. Acta, 2013, 106, p 500–505CrossRef S. Vijayakumar, A.K. Ponnalagi, S. Nagamuthu, and G. Muralidharan, Microwave Assisted Synthesis of Co3O4 Nanoparticles for High-Performance Supercapacitors, Electrochim. Acta, 2013, 106, p 500–505CrossRef
18.
Zurück zum Zitat S.K. Meher and G.R. Rao, Ultralayered Co3O4 for High-Performance Supercapacitor Applications, J. Phys. Chem. C, 2011, 115, p 15646–15654CrossRef S.K. Meher and G.R. Rao, Ultralayered Co3O4 for High-Performance Supercapacitor Applications, J. Phys. Chem. C, 2011, 115, p 15646–15654CrossRef
19.
Zurück zum Zitat G.X. Wang, X.P. Shen, J. Horvat, B. Wang, H. Liu, D. Wexler, and J. Yao, Hydrothermal Synthesis and Optical, Magnetic, and Supercapacitance Properties of Nanoporous Cobalt Oxide Nanorods, J. Phys. Chem. C, 2009, 113, p 4357–4361CrossRef G.X. Wang, X.P. Shen, J. Horvat, B. Wang, H. Liu, D. Wexler, and J. Yao, Hydrothermal Synthesis and Optical, Magnetic, and Supercapacitance Properties of Nanoporous Cobalt Oxide Nanorods, J. Phys. Chem. C, 2009, 113, p 4357–4361CrossRef
20.
Zurück zum Zitat J. Xu, L. Gao, J.Y. Cao, W.C. Wang, and Z.D. Chen, Preparation and Electrochemical Capacitance of Cobalt Oxide (Co3O4) Nanotubes as Supercapacitor Material, Electrochim. Acta, 2010, 56, p 732–736CrossRef J. Xu, L. Gao, J.Y. Cao, W.C. Wang, and Z.D. Chen, Preparation and Electrochemical Capacitance of Cobalt Oxide (Co3O4) Nanotubes as Supercapacitor Material, Electrochim. Acta, 2010, 56, p 732–736CrossRef
21.
Zurück zum Zitat Y.Y. Gao, S.L. Chen, D.X. Cao, G.L. Wang, and J.L. Yin, Electrochemical Capacitance of Co3O4 Nanowire Arrays Supported on Nickel Foam, J. Power Sources, 2010, 195, p 1757–1760CrossRef Y.Y. Gao, S.L. Chen, D.X. Cao, G.L. Wang, and J.L. Yin, Electrochemical Capacitance of Co3O4 Nanowire Arrays Supported on Nickel Foam, J. Power Sources, 2010, 195, p 1757–1760CrossRef
22.
Zurück zum Zitat W. Zhou, J. Liu, T. Chen, K.S. Tan, X. Jia, Z. Luo, C. Cong, H. Yang, C.M. Li, and T. Yu, Fabrication of Co3O4-Reduced Graphene Oxide Scrolls for High-Performance Supercapacitor Electrodes, Phys. Chem. Chem. Phys., 2011, 13, p 14462–14465CrossRef W. Zhou, J. Liu, T. Chen, K.S. Tan, X. Jia, Z. Luo, C. Cong, H. Yang, C.M. Li, and T. Yu, Fabrication of Co3O4-Reduced Graphene Oxide Scrolls for High-Performance Supercapacitor Electrodes, Phys. Chem. Chem. Phys., 2011, 13, p 14462–14465CrossRef
23.
Zurück zum Zitat X.W. Wang, S.Q. Liu, H.Y. Wang, F.Y. Tu, D. Fang, and Y.H. Li, Facile and Green Synthesis of Co3O4 Nanoplates/Graphene Nanosheets Composite for Supercapacitor, J. Solid State Electrochem., 2012, 16, p 3593–3602CrossRef X.W. Wang, S.Q. Liu, H.Y. Wang, F.Y. Tu, D. Fang, and Y.H. Li, Facile and Green Synthesis of Co3O4 Nanoplates/Graphene Nanosheets Composite for Supercapacitor, J. Solid State Electrochem., 2012, 16, p 3593–3602CrossRef
24.
Zurück zum Zitat G.Y. He, J.H. Li, H.Q. Chen, J. Shi, X.Q. Sun, S. Chen, and X. Wang, Hydrothermal Preparation of Co3O4@Graphene Nanocomposite for Supercapacitor with Enhanced Capacitive Performance, Mater. Lett., 2012, 82, p 61–63CrossRef G.Y. He, J.H. Li, H.Q. Chen, J. Shi, X.Q. Sun, S. Chen, and X. Wang, Hydrothermal Preparation of Co3O4@Graphene Nanocomposite for Supercapacitor with Enhanced Capacitive Performance, Mater. Lett., 2012, 82, p 61–63CrossRef
25.
Zurück zum Zitat X.C. Dong, H. Xu, X.W. Wang, Y.X. Huang, M.B. Chan-Park, H. Zhang, L.H. Wang, W. Huang, and P. Chen, 3D Graphene-Cobalt Oxide Electrode for High-Performance Supercapacitor and Enzymeless Glucose Detection, ACS Nano, 2012, 6, p 3206–3213CrossRef X.C. Dong, H. Xu, X.W. Wang, Y.X. Huang, M.B. Chan-Park, H. Zhang, L.H. Wang, W. Huang, and P. Chen, 3D Graphene-Cobalt Oxide Electrode for High-Performance Supercapacitor and Enzymeless Glucose Detection, ACS Nano, 2012, 6, p 3206–3213CrossRef
26.
Zurück zum Zitat J. Yan, T. Wei, W.M. Qiao, B. Shao, Q.K. Zhao, L.J. Zhang, and Z.J. Fan, Rapid Microwave-Assisted Synthesis of Graphene Nanosheet/Co3O4 Composite for Supercapacitors, Electrochim. Acta, 2010, 55, p 6973–6978CrossRef J. Yan, T. Wei, W.M. Qiao, B. Shao, Q.K. Zhao, L.J. Zhang, and Z.J. Fan, Rapid Microwave-Assisted Synthesis of Graphene Nanosheet/Co3O4 Composite for Supercapacitors, Electrochim. Acta, 2010, 55, p 6973–6978CrossRef
27.
Zurück zum Zitat S. Huang, Y.H. Jin, and M.Q. Jia, Preparation of Graphene/Co3O4 Composites by Hydrothermal Method and Their Electrochemical Properties, Electrochim. Acta, 2013, 95, p 139–145CrossRef S. Huang, Y.H. Jin, and M.Q. Jia, Preparation of Graphene/Co3O4 Composites by Hydrothermal Method and Their Electrochemical Properties, Electrochim. Acta, 2013, 95, p 139–145CrossRef
28.
Zurück zum Zitat X. Wang, X.L. Wu, Y.G. Guo, Y.T. Zhong, X.Q. Cao, Y. Ma, and J.N. Yao, Synthesis and Lithium Storage Properties of Co3O4 Nanosheet-Assembled Multishelled Hollow Spheres, Adv. Funct. Mater., 2010, 20, p 1680–1686CrossRef X. Wang, X.L. Wu, Y.G. Guo, Y.T. Zhong, X.Q. Cao, Y. Ma, and J.N. Yao, Synthesis and Lithium Storage Properties of Co3O4 Nanosheet-Assembled Multishelled Hollow Spheres, Adv. Funct. Mater., 2010, 20, p 1680–1686CrossRef
29.
Zurück zum Zitat D. Li, M.B. Muller, S. Gilje, R.B. Kaner, and G.G. Wallace, Processable Aqueous Dispersions of Graphene Nanosheets, Nat. Nanotechnol., 2008, 3, p 101–105CrossRef D. Li, M.B. Muller, S. Gilje, R.B. Kaner, and G.G. Wallace, Processable Aqueous Dispersions of Graphene Nanosheets, Nat. Nanotechnol., 2008, 3, p 101–105CrossRef
30.
Zurück zum Zitat M.Y. Wang, J.R. Huang, M. Wang, D.G. Zhang, W.M. Zhang, W.H. Li, and J. Chen, Co3O4 Nanorods Decorated Reduced Graphene Oxide Composite for Oxygen Reduction Reaction in Alkaline Electrolyte, Electrochem. Commun., 2013, 34, p 299–303CrossRef M.Y. Wang, J.R. Huang, M. Wang, D.G. Zhang, W.M. Zhang, W.H. Li, and J. Chen, Co3O4 Nanorods Decorated Reduced Graphene Oxide Composite for Oxygen Reduction Reaction in Alkaline Electrolyte, Electrochem. Commun., 2013, 34, p 299–303CrossRef
31.
Zurück zum Zitat X.C. Jiang, Y.L. Wang, T. Herricks, and Y.N. Xia, Ethylene Glycol-Mediated Synthesis of Metal Oxide Nanowires, J. Mater. Chem., 2004, 14, p 695–703CrossRef X.C. Jiang, Y.L. Wang, T. Herricks, and Y.N. Xia, Ethylene Glycol-Mediated Synthesis of Metal Oxide Nanowires, J. Mater. Chem., 2004, 14, p 695–703CrossRef
32.
Zurück zum Zitat E. Beach, S. Brown, K. Shqau, M. Mottern, Z. Warchol, and P. Morris, Solvothermal Synthesis of Nanostructured NiO, ZnO and Co3O4 Microspheres, Mater. Lett., 2008, 62, p 1957–1960CrossRef E. Beach, S. Brown, K. Shqau, M. Mottern, Z. Warchol, and P. Morris, Solvothermal Synthesis of Nanostructured NiO, ZnO and Co3O4 Microspheres, Mater. Lett., 2008, 62, p 1957–1960CrossRef
33.
Zurück zum Zitat G.S. Wang, Y. Wu, Y.Z. Wei, X.J. Zhang, Y. Li, L.D. Li, B. Wen, P.G. Yin, L. Guo, and M.S. Cao, Fabrication of Reduced Graphene Oxide (RGO)/Co3O4 Nanohybrid Particles and a RGO/Co3O4/Poly(vinylidene fluoride) Composite with Enhanced Wave-Absorption Properties, Chem. Plus Chem., 2014, 79, p 375–381 G.S. Wang, Y. Wu, Y.Z. Wei, X.J. Zhang, Y. Li, L.D. Li, B. Wen, P.G. Yin, L. Guo, and M.S. Cao, Fabrication of Reduced Graphene Oxide (RGO)/Co3O4 Nanohybrid Particles and a RGO/Co3O4/Poly(vinylidene fluoride) Composite with Enhanced Wave-Absorption Properties, Chem. Plus Chem., 2014, 79, p 375–381
34.
Zurück zum Zitat Y. Liang, Y. Yang, Z. Hu, Y. Zhang, Z. Li, N. An, and H. Wu, Three-Dimensional Cage-Like Co3O4 Structure Constructed by Nanowires for Supercapacitor, Int. J. Electrochem. Sci., 2016, 11, p 4092–4109 Y. Liang, Y. Yang, Z. Hu, Y. Zhang, Z. Li, N. An, and H. Wu, Three-Dimensional Cage-Like Co3O4 Structure Constructed by Nanowires for Supercapacitor, Int. J. Electrochem. Sci., 2016, 11, p 4092–4109
35.
Zurück zum Zitat C. Xu, X. Wang, J.W. Zhu, X.J. Yang, and L. Lu, Deposition of Co3O4 Nanoparticles onto Exfoliated Graphite Oxide Sheets, J. Mater. Chem., 2008, 18, p 5625–5629CrossRef C. Xu, X. Wang, J.W. Zhu, X.J. Yang, and L. Lu, Deposition of Co3O4 Nanoparticles onto Exfoliated Graphite Oxide Sheets, J. Mater. Chem., 2008, 18, p 5625–5629CrossRef
36.
Zurück zum Zitat Q. Guan, J.L. Cheng, Wang Bin, W. Ni, G.F. Gu, X.D. Li, L. Huang, G.C. Yang, and F.D. Nie, Needle-Like Co3O4 Anchored on the Graphene with Enhanced Electrochemical Performance for Aqueous Supercapacitors, ACS Appl. Mater. Interface, 2014, 6, p 7626–7632CrossRef Q. Guan, J.L. Cheng, Wang Bin, W. Ni, G.F. Gu, X.D. Li, L. Huang, G.C. Yang, and F.D. Nie, Needle-Like Co3O4 Anchored on the Graphene with Enhanced Electrochemical Performance for Aqueous Supercapacitors, ACS Appl. Mater. Interface, 2014, 6, p 7626–7632CrossRef
37.
Zurück zum Zitat H.Y. Sun, Y.G. Liu, Y.L. Yu, M. Ahmad, D. Nan, and J. Zhu, Mesoporous Co3O4 Nanosheets-3D Graphene Networks Hybrid Materials for High-Performance Lithium Ion Batteries, Electrochim. Acta, 2014, 118, p 1–9CrossRef H.Y. Sun, Y.G. Liu, Y.L. Yu, M. Ahmad, D. Nan, and J. Zhu, Mesoporous Co3O4 Nanosheets-3D Graphene Networks Hybrid Materials for High-Performance Lithium Ion Batteries, Electrochim. Acta, 2014, 118, p 1–9CrossRef
38.
Zurück zum Zitat Y.C. Si and E.T. Samulski, Exfoliated Graphene Separated by Platinum Nanoparticles, Chem. Mater., 2008, 20, p 6792–6797CrossRef Y.C. Si and E.T. Samulski, Exfoliated Graphene Separated by Platinum Nanoparticles, Chem. Mater., 2008, 20, p 6792–6797CrossRef
39.
Zurück zum Zitat R.T. Wang, X.B. Yan, J.W. Lang, Z.M. Zheng, and P. Zhang, A Hybrid Supercapacitor Based on Flower-Like Co(OH)2 and Urchin-Like VN Electrode Materials, J. Mater. Chem. A, 2014, 2, p 12724–12732CrossRef R.T. Wang, X.B. Yan, J.W. Lang, Z.M. Zheng, and P. Zhang, A Hybrid Supercapacitor Based on Flower-Like Co(OH)2 and Urchin-Like VN Electrode Materials, J. Mater. Chem. A, 2014, 2, p 12724–12732CrossRef
Metadaten
Titel
Preparation of Shape-Controlled Graphene/Co3O4 Composites for Supercapacitors
verfasst von
Jun Chen
Ningna Chen
Xiaomiao Feng
Wenhua Hou
Publikationsdatum
28.06.2016
Verlag
Springer US
Erschienen in
Journal of Materials Engineering and Performance / Ausgabe 9/2016
Print ISSN: 1059-9495
Elektronische ISSN: 1544-1024
DOI
https://doi.org/10.1007/s11665-016-2192-3

Weitere Artikel der Ausgabe 9/2016

Journal of Materials Engineering and Performance 9/2016 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.