Skip to main content
Erschienen in: Clean Technologies and Environmental Policy 7/2014

01.10.2014 | Original paper

Pretreatment methods for gasification of biomass and Fischer–Tropsch crude production integrated with a pulp and paper mill

verfasst von: Johan Isaksson, Anders Åsblad, Thore Berntsson

Erschienen in: Clean Technologies and Environmental Policy | Ausgabe 7/2014

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this paper, the influence on the system performance and greenhouse gas (GHG) emissions of different biomass pretreatment methods before gasification and Fischer–Tropsch (FT) crude production was evaluated. Entrained flow gasification has the benefit of producing a practically tar-free synthesis gas with nearly complete carbon conversion. This gasifier type requires a relatively dry fuel, with small particle size, at high pressure. The size can be acquired by milling, which is energy intensive and feeding is challenging. Torrefaction of biomass facilitates milling; it thus requires less electricity, however, the torrefaction process requires heat. Pyrolysis decomposes the biomass into gaseous, liquid, and solid parts, respectively. This further makes feeding easier, but comes with a greater heat demand than torrefaction. The impact of the different pretreatment methods on the overall energy system has been evaluated using process integration methodology. The results show that the excess heat from an FT process with a biomass input of 300 MWHHV can replace the bark boiler in a large chemical pulp and paper mill, producing 350,000 tonnes of bleached paperboard annually. With the preconditions given for this study, thermal pretreatment of biomass may be beneficial in terms of wood-to-FT crude efficiency, with efficiencies up to 68 %, assuming 40 % electrical efficiency. Pretreatment using pyrolysis performed the best in regards to GHG emissions, if CO2 from acid gas removal was vented, while milling, with an annual reduction of around 700,000 tonnes of CO2,eq, had the best results if the CO2 was captured and sequestrated.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Aspen Tech (2010) Aspen Plus v7.2. Houston Aspen Tech (2010) Aspen Plus v7.2. Houston
Zurück zum Zitat Axelsson E, Harvey S (2010) Scenarios for assessing profitability and carbon balances of energy investments in industry. The Alliance for Global Sustainability, Gothenburg Axelsson E, Harvey S (2010) Scenarios for assessing profitability and carbon balances of energy investments in industry. The Alliance for Global Sustainability, Gothenburg
Zurück zum Zitat Bossel U (2003) Well-to-wheel studies, heating values, and the energy conservation principle. European Fuel Cell Forum, Oberrohrdorf Bossel U (2003) Well-to-wheel studies, heating values, and the energy conservation principle. European Fuel Cell Forum, Oberrohrdorf
Zurück zum Zitat Brau JF, Morandin M, Berntsson T (2013) Hydrogen for oil refining via biomass indirect steam gasification: energy and environmental targets. Clean Technol Environ 15(3):501–512. doi:10.1007/s10098-013-0591-9 CrossRef Brau JF, Morandin M, Berntsson T (2013) Hydrogen for oil refining via biomass indirect steam gasification: energy and environmental targets. Clean Technol Environ 15(3):501–512. doi:10.​1007/​s10098-013-0591-9 CrossRef
Zurück zum Zitat European Commission (2011) A roadmap for moving to a competitive low carbon economy in 2050. European Commission, Brussels, Belgium European Commission (2011) A roadmap for moving to a competitive low carbon economy in 2050. European Commission, Brussels, Belgium
Zurück zum Zitat Gerdes K, Skone T (2009) Consideration of crude oil source in evaluating transportation fuel GHG emissions. Department of Energy, National Energy Technology Laboratory, USA Gerdes K, Skone T (2009) Consideration of crude oil source in evaluating transportation fuel GHG emissions. Department of Energy, National Energy Technology Laboratory, USA
Zurück zum Zitat Gode J, Martinsson F, Hagberg L, Öman A, Höglund J, Palm D (2011) Miljöfaktaboken 2011. Värmeforsk service AB, Stockholm, Sweden Gode J, Martinsson F, Hagberg L, Öman A, Höglund J, Palm D (2011) Miljöfaktaboken 2011. Värmeforsk service AB, Stockholm, Sweden
Zurück zum Zitat Hancsók J, Eller Z, Pölczmann G, Varga Z, Holló A, Varga G (2014) Sustainable production of bioparaffins in a crude oil refinery. Clean Technol Environ. doi:10.1007/s10098-014-0743-6 Hancsók J, Eller Z, Pölczmann G, Varga Z, Holló A, Varga G (2014) Sustainable production of bioparaffins in a crude oil refinery. Clean Technol Environ. doi:10.​1007/​s10098-014-0743-6
Zurück zum Zitat Hannula I, Kurkela E (2012) Liquid transportation fuels via large-scale fluidised-bed gasification of lignocellulosic biomass. VTT Technology 91, Espoo, Finland Hannula I, Kurkela E (2012) Liquid transportation fuels via large-scale fluidised-bed gasification of lignocellulosic biomass. VTT Technology 91, Espoo, Finland
Zurück zum Zitat Isaksson J, Pettersson K, Mahmoudkhani M, Åsblad A, Berntsson T (2012) Integration of biomass gasification with a Scandinavian mechanical pulp and paper mill—consequences for mass and energy balances and global CO2 emissions. Energy 44(1):420–428. doi:10.1016/j.energy.2012.06.013 CrossRef Isaksson J, Pettersson K, Mahmoudkhani M, Åsblad A, Berntsson T (2012) Integration of biomass gasification with a Scandinavian mechanical pulp and paper mill—consequences for mass and energy balances and global CO2 emissions. Energy 44(1):420–428. doi:10.​1016/​j.​energy.​2012.​06.​013 CrossRef
Zurück zum Zitat Liu G, Larson ED, Williams RH, Kreutz TG, Guo X (2011) Online Supporting Material for: making Fischer–Tropsch fuels and electricity from coal and biomass: performance and cost analysis. Energy Fuels 25:415–437. doi:10.1021/ef101184e CrossRef Liu G, Larson ED, Williams RH, Kreutz TG, Guo X (2011) Online Supporting Material for: making Fischer–Tropsch fuels and electricity from coal and biomass: performance and cost analysis. Energy Fuels 25:415–437. doi:10.​1021/​ef101184e CrossRef
Zurück zum Zitat Ljungstedt H, Pettersson K, Harvey S (2013) Evaluation of opportunities for heat integration of biomass-based Fischer–Tropsch crude production at Scandinavian kraft pulp and paper mill sites. Energy 62:349–361. doi:10.1016/j.energy.2013.09.048 CrossRef Ljungstedt H, Pettersson K, Harvey S (2013) Evaluation of opportunities for heat integration of biomass-based Fischer–Tropsch crude production at Scandinavian kraft pulp and paper mill sites. Energy 62:349–361. doi:10.​1016/​j.​energy.​2013.​09.​048 CrossRef
Zurück zum Zitat Lundberg V, Bood J, Nilsson L, Axelsson E, Berntsson T, Svensson E (2014) Converting a kraft pulp mill into a multi-product biorefinery: techno-economic analysis of a case mill. Clean Technol Environ. doi:10.1007/s10098-014-0741-8 Lundberg V, Bood J, Nilsson L, Axelsson E, Berntsson T, Svensson E (2014) Converting a kraft pulp mill into a multi-product biorefinery: techno-economic analysis of a case mill. Clean Technol Environ. doi:10.​1007/​s10098-014-0741-8
Zurück zum Zitat McHale & Associates Inc (2010) Biomass technology review. Biomass Power Association, Portland McHale & Associates Inc (2010) Biomass technology review. Biomass Power Association, Portland
Zurück zum Zitat McKeough P, Kurkela E (2008) Process evaluations and design studies in the UCG project 2004–2007. VTT, Espoo McKeough P, Kurkela E (2008) Process evaluations and design studies in the UCG project 2004–2007. VTT, Espoo
Zurück zum Zitat Noureldin MMB, Bao B, Elbashir NO, El-Halwagi MM (2014) Benchmarking, insights, and potential for improvement of Fischer–Tropsch-based biomass-to-liquid technology. Clean Technol Environ 16(1):37–44. doi:10.1007/s10098-013-0589-3 CrossRef Noureldin MMB, Bao B, Elbashir NO, El-Halwagi MM (2014) Benchmarking, insights, and potential for improvement of Fischer–Tropsch-based biomass-to-liquid technology. Clean Technol Environ 16(1):37–44. doi:10.​1007/​s10098-013-0589-3 CrossRef
Zurück zum Zitat Prins MJ (2005) Thermodynamic analysis of biomass gasification and torrefaction. Technische Universiteit Eindhoven, Eindhoven Prins MJ (2005) Thermodynamic analysis of biomass gasification and torrefaction. Technische Universiteit Eindhoven, Eindhoven
Zurück zum Zitat Qin K, Arendt Jensen P, Lin W, Degn Jensen A (2012) Biomass gasification behavior in an entrained flow reactor: gas product distribution and soot formation. Energ Fuel 26:5992–6002. doi:10.1021/ef300960x CrossRef Qin K, Arendt Jensen P, Lin W, Degn Jensen A (2012) Biomass gasification behavior in an entrained flow reactor: gas product distribution and soot formation. Energ Fuel 26:5992–6002. doi:10.​1021/​ef300960x CrossRef
Zurück zum Zitat Sydkraft (2001) Värnamo demonstration plant: a demonstration plant for biofuel-fired combined heat and power generation based on pressurized gasification. Sydkraft, Trelleborg, Sweden Sydkraft (2001) Värnamo demonstration plant: a demonstration plant for biofuel-fired combined heat and power generation based on pressurized gasification. Sydkraft, Trelleborg, Sweden
Zurück zum Zitat Tapasvi D, Khalil R, Skreiberg Ø, Tran K-Q, Grønli M (2012) Torrefaction of Norwegian Birch and Spruce: an experimental study using macro-TGA. Energy Fuel 26:5232–5240. doi:10.1021/ef300993q CrossRef Tapasvi D, Khalil R, Skreiberg Ø, Tran K-Q, Grønli M (2012) Torrefaction of Norwegian Birch and Spruce: an experimental study using macro-TGA. Energy Fuel 26:5232–5240. doi:10.​1021/​ef300993q CrossRef
Zurück zum Zitat van der Drift A, Boerrigter H, Coda B, Cieplik MK, Hemmes K (2004) Entrained flow gasification of biomass—ash behaviour, feeding issues, and system analyses. ECN, Petten van der Drift A, Boerrigter H, Coda B, Cieplik MK, Hemmes K (2004) Entrained flow gasification of biomass—ash behaviour, feeding issues, and system analyses. ECN, Petten
Zurück zum Zitat van Dijk KM, van Dijk R, van Eekhout VJL, van Hulst H, Schipper W, Stam JH (1995) Methanol from natural gas—conceptual design & comparison of processes. Delft University of Technology, Delft van Dijk KM, van Dijk R, van Eekhout VJL, van Hulst H, Schipper W, Stam JH (1995) Methanol from natural gas—conceptual design & comparison of processes. Delft University of Technology, Delft
Metadaten
Titel
Pretreatment methods for gasification of biomass and Fischer–Tropsch crude production integrated with a pulp and paper mill
verfasst von
Johan Isaksson
Anders Åsblad
Thore Berntsson
Publikationsdatum
01.10.2014
Verlag
Springer Berlin Heidelberg
Erschienen in
Clean Technologies and Environmental Policy / Ausgabe 7/2014
Print ISSN: 1618-954X
Elektronische ISSN: 1618-9558
DOI
https://doi.org/10.1007/s10098-014-0815-7

Weitere Artikel der Ausgabe 7/2014

Clean Technologies and Environmental Policy 7/2014 Zur Ausgabe