Skip to main content
Erschienen in: Journal of Materials Engineering and Performance 9/2021

28.07.2021

Probability and Statistical Modeling: Ti-6Al-4V Produced via Directed Energy Deposition

verfasst von: Peter C. Collins, D. Gary Harlow

Erschienen in: Journal of Materials Engineering and Performance | Ausgabe 9/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Additive manufacturing is a complex multi-parameter process. Electron beam additive manufacturing of titanium (Ti-6Al-4V), which consists of a multitude of layers of deposited metal, exhibits significant variability in many key aspects including composition, microstructure, and mechanical properties. When establishing methods to predict material properties of these builds, it is necessary to consider both geometry and microstructure. Specifically, the material property of interest is the yield stress. The constitutive equation that is used to predict the yield stress of specimens subjected to stress relief annealing in the α+β phase field has been developed previously. The yield stress equation contains random variables which are modeled with appropriate cumulative distribution functions that characterize their statistical observations. Subsequently, these distributions functions are incorporated into the physically based model using standard simulation techniques. The main purpose of this integrated modeling and statistical analysis is to begin to characterize the yield stress, especially in the extreme lower tail which is critical for high reliability estimation and prediction. To manage uncertainty and improve the estimation of the yield stress, an established methodology for calibration of the distribution function for the yield stress using experimental data is applied.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Fußnoten
1
According to the seminal publications on the concept of Materials State by E. Lindgren and J. Aldrin, they define Materials State Awareness (MSA) as “Digitally Enabled Reliable Nondestructive Quantitative Materials / Damage Characterization Regardless of Scale”
 
Literatur
1.
Zurück zum Zitat A.S. Wu, D.W. Brown, M. Kumar, G.F. Gallegos and W.E. King, An Experimental Investigation into Additive Manufacturing-Induced Residual Stresses in 316L Stainless Steel, Metall. and Mater. Trans. A., 2014, 45(13), p 6260–6270. CrossRef A.S. Wu, D.W. Brown, M. Kumar, G.F. Gallegos and W.E. King, An Experimental Investigation into Additive Manufacturing-Induced Residual Stresses in 316L Stainless Steel, Metall. and Mater. Trans. A., 2014, 45(13), p 6260–6270. CrossRef
2.
Zurück zum Zitat S.A. Khairallah, A.T. Anderson, A. Rubenchik and W.E. King, Laser Powder-Bed Fusion Additive Manufacturing: Physics of Complex Melt Flow and Formation Mechanisms of Pores, Spatter, and Denudation Zones, Acta Mater., 2016, 108, p 36–45. CrossRef S.A. Khairallah, A.T. Anderson, A. Rubenchik and W.E. King, Laser Powder-Bed Fusion Additive Manufacturing: Physics of Complex Melt Flow and Formation Mechanisms of Pores, Spatter, and Denudation Zones, Acta Mater., 2016, 108, p 36–45. CrossRef
3.
Zurück zum Zitat L. Adler, Z. Fu, C. Koerner, Electron Beam Based Additive Manufacturing of Fe3Al Based Iron Aluminides–Processing Window, Microstructure and Properties, Mater. Sci. Eng. A (2020) 139369. L. Adler, Z. Fu, C. Koerner, Electron Beam Based Additive Manufacturing of Fe3Al Based Iron Aluminides–Processing Window, Microstructure and Properties, Mater. Sci. Eng. A (2020) 139369.
4.
Zurück zum Zitat C. Körner, Additive Manufacturing of Metallic Components by Selective Electron Beam Melting—A Review, Int. Mater. Rev., 2016, 61(5), p 361–377. CrossRef C. Körner, Additive Manufacturing of Metallic Components by Selective Electron Beam Melting—A Review, Int. Mater. Rev., 2016, 61(5), p 361–377. CrossRef
5.
Zurück zum Zitat M.R. Rolchigo and R. LeSar, Application of Alloy Solidification Theory to Cellular Automata Modeling of Near-Rapid Constrained Solidification, Comput. Mater. Sci., 2019, 163, p 148–161. CrossRef M.R. Rolchigo and R. LeSar, Application of Alloy Solidification Theory to Cellular Automata Modeling of Near-Rapid Constrained Solidification, Comput. Mater. Sci., 2019, 163, p 148–161. CrossRef
6.
Zurück zum Zitat R.R. Dehoff, M.M. Kirka, W.J. Sames, H. Bilheux, A.S. Tremsin, L.E. Lowe and S.S. Babu, Site Specific Control of Crystallographic Grain Orientation Through Electron Beam Additive Manufacturing, Mater. Sci. Technol., 2015, 31(8), p 931–938. CrossRef R.R. Dehoff, M.M. Kirka, W.J. Sames, H. Bilheux, A.S. Tremsin, L.E. Lowe and S.S. Babu, Site Specific Control of Crystallographic Grain Orientation Through Electron Beam Additive Manufacturing, Mater. Sci. Technol., 2015, 31(8), p 931–938. CrossRef
7.
Zurück zum Zitat M.J. Bermingham, D.H. StJohn, J. Krynen, S. Tedman-Jones and M.S. Dargusch, Promoting the Columnar to Equiaxed Transition and Grain Refinement of Titanium Alloys During Additive Manufacturing, Acta Mater., 2019, 168, p 261–274. CrossRef M.J. Bermingham, D.H. StJohn, J. Krynen, S. Tedman-Jones and M.S. Dargusch, Promoting the Columnar to Equiaxed Transition and Grain Refinement of Titanium Alloys During Additive Manufacturing, Acta Mater., 2019, 168, p 261–274. CrossRef
8.
Zurück zum Zitat D. Zhang, D. Qiu, M.A. Gibson, Y. Zheng, H.L. Fraser, D.H. StJohn and M.A. Easton, Additive Manufacturing of Ultrafine-Grained High-Strength Titanium Alloys, Nature, 2019, 576(7785), p 91–95. CrossRef D. Zhang, D. Qiu, M.A. Gibson, Y. Zheng, H.L. Fraser, D.H. StJohn and M.A. Easton, Additive Manufacturing of Ultrafine-Grained High-Strength Titanium Alloys, Nature, 2019, 576(7785), p 91–95. CrossRef
9.
Zurück zum Zitat J.H. Martin, B.D. Yahata, J.M. Hundley, J.A. Mayer, T.A. Schaedler and T.M. Pollock, 3D Printing of High-Strength Aluminium Alloys, Nature, 2017, 549(7672), p 365–369. CrossRef J.H. Martin, B.D. Yahata, J.M. Hundley, J.A. Mayer, T.A. Schaedler and T.M. Pollock, 3D Printing of High-Strength Aluminium Alloys, Nature, 2017, 549(7672), p 365–369. CrossRef
10.
Zurück zum Zitat P.C. Collins, D.A. Brice, P. Samimi, I. Ghamarian and H.L. Fraser, Microstructural Control of Additively Manufactured Metallic Materials, Annu. Rev. Mater. Res., 2016, 46, p 63–91. CrossRef P.C. Collins, D.A. Brice, P. Samimi, I. Ghamarian and H.L. Fraser, Microstructural Control of Additively Manufactured Metallic Materials, Annu. Rev. Mater. Res., 2016, 46, p 63–91. CrossRef
11.
Zurück zum Zitat R. Banerjee, P.C. Collins, D. Bhattacharyya, S. Banerjee and H.L. Fraser, Microstructural Evolution in Laser Deposited Compositionally Graded α/β Titanium-Vanadium Alloys, Acta Mater., 2003, 51(11), p 3277–3292. CrossRef R. Banerjee, P.C. Collins, D. Bhattacharyya, S. Banerjee and H.L. Fraser, Microstructural Evolution in Laser Deposited Compositionally Graded α/β Titanium-Vanadium Alloys, Acta Mater., 2003, 51(11), p 3277–3292. CrossRef
12.
Zurück zum Zitat J.J. Lewandowski, M. Seifi, Metal Additive Manufacturing: a Review of Mechanical Properties. Annu. Rev. Mater. Res. 46 (2016). J.J. Lewandowski, M. Seifi, Metal Additive Manufacturing: a Review of Mechanical Properties. Annu. Rev. Mater. Res. 46 (2016).
13.
Zurück zum Zitat B. Hayes, B. Martin, B. Welk, S. Kuhr, T. Ales, A. Baker, C.V. Haden, D.G. Harlow, H.L. Fraser and P.C. Collins, Predicting Tensile Properties of Ti-6Al-4V Produced Via Directed Energy Deposition, Acta Mater., 2017, 133, p 120–133. CrossRef B. Hayes, B. Martin, B. Welk, S. Kuhr, T. Ales, A. Baker, C.V. Haden, D.G. Harlow, H.L. Fraser and P.C. Collins, Predicting Tensile Properties of Ti-6Al-4V Produced Via Directed Energy Deposition, Acta Mater., 2017, 133, p 120–133. CrossRef
14.
Zurück zum Zitat R. Banerjee, D. Bhattacharyya, P.C. Collins, G.B. Viswanathan and H.L. Fraser, Precipitation of Grain Boundary α in a Laser Deposited Compositionally Graded Ti–8Al–xV Alloy–an Orientation Microscopy Study, Acta Mater., 2004, 52(2), p 377–385. CrossRef R. Banerjee, D. Bhattacharyya, P.C. Collins, G.B. Viswanathan and H.L. Fraser, Precipitation of Grain Boundary α in a Laser Deposited Compositionally Graded Ti–8Al–xV Alloy–an Orientation Microscopy Study, Acta Mater., 2004, 52(2), p 377–385. CrossRef
15.
Zurück zum Zitat A.R. Reichardt, P. Dillon, J.P. Borgonia, A.A. Shapiro, B.W. McEnerney, T. Momose and P. Hosemann, Development and Characterization of Ti-6Al-4V to 304L Stainless Steel Gradient Components Fabricated with Laser Deposition Additive Manufacturing, Mater. Des., 2016, 104, p 404–413. CrossRef A.R. Reichardt, P. Dillon, J.P. Borgonia, A.A. Shapiro, B.W. McEnerney, T. Momose and P. Hosemann, Development and Characterization of Ti-6Al-4V to 304L Stainless Steel Gradient Components Fabricated with Laser Deposition Additive Manufacturing, Mater. Des., 2016, 104, p 404–413. CrossRef
16.
Zurück zum Zitat L. Yan, Y. Chen and F. Liou, Additive Manufacturing of Functionally Graded Metallic Materials Using Laser Metal Deposition, Addit. Manuf., 2020, 31, p 100901. L. Yan, Y. Chen and F. Liou, Additive Manufacturing of Functionally Graded Metallic Materials Using Laser Metal Deposition, Addit. Manuf., 2020, 31, p 100901.
17.
Zurück zum Zitat C. Zhang, F. Chen, Z. Huang, M. Jia, G. Chen, Y. Ye, Y. Lin, W. Liu, B. Chen, Q. Shen, L. Zhang, Additive Manufacturing of Functionally Graded Materials: A Review. Mater. Sci. Eng.. A 764 (2019), 138209. C. Zhang, F. Chen, Z. Huang, M. Jia, G. Chen, Y. Ye, Y. Lin, W. Liu, B. Chen, Q. Shen, L. Zhang, Additive Manufacturing of Functionally Graded Materials: A Review. Mater. Sci. Eng.. A 764 (2019), 138209.
18.
Zurück zum Zitat S. Nag, R. Banerjee and H.L. Fraser, A Novel Combinatorial Approach for Understanding Microstructural Evolution and Its Relationship to Mechanical Properties in Metallic Biomaterials, Acta Biomater., 2007, 3(3), p 369–376. CrossRef S. Nag, R. Banerjee and H.L. Fraser, A Novel Combinatorial Approach for Understanding Microstructural Evolution and Its Relationship to Mechanical Properties in Metallic Biomaterials, Acta Biomater., 2007, 3(3), p 369–376. CrossRef
19.
Zurück zum Zitat M.J. Matthews, G. Guss, S.A. Khairallah, A.M. Rubenchik, P.J. Depond and W.E. King, Denudation of Metal Powder Layers in Laser Powder Bed Fusion Processes, Acta Mater., 2016, 114, p 33–42. CrossRef M.J. Matthews, G. Guss, S.A. Khairallah, A.M. Rubenchik, P.J. Depond and W.E. King, Denudation of Metal Powder Layers in Laser Powder Bed Fusion Processes, Acta Mater., 2016, 114, p 33–42. CrossRef
20.
Zurück zum Zitat A.A. Martin, N.P. Calta, S.A. Khairallah, J. Wang, P.J. Depond, A.Y. Fong, V. Thampy, G.M. Guss, A.M. Kiss, K.H. Stone and C.J. Tassone, Dynamics of Pore Formation During Laser Powder Bed Fusion Additive Manufacturing, Nat. Commun., 2019, 10(1), p 1–10. CrossRef A.A. Martin, N.P. Calta, S.A. Khairallah, J. Wang, P.J. Depond, A.Y. Fong, V. Thampy, G.M. Guss, A.M. Kiss, K.H. Stone and C.J. Tassone, Dynamics of Pore Formation During Laser Powder Bed Fusion Additive Manufacturing, Nat. Commun., 2019, 10(1), p 1–10. CrossRef
21.
Zurück zum Zitat C.L.A. Leung, S. Marussi, R.C. Atwood, M. Towrie, P.J. Withers and P.D. Lee, In situ X-ray Imaging of Defect and Molten Pool Dynamics in Laser Additive Manufacturing, Nat. Commun., 2018, 9(1), p 1–9. CrossRef C.L.A. Leung, S. Marussi, R.C. Atwood, M. Towrie, P.J. Withers and P.D. Lee, In situ X-ray Imaging of Defect and Molten Pool Dynamics in Laser Additive Manufacturing, Nat. Commun., 2018, 9(1), p 1–9. CrossRef
22.
Zurück zum Zitat N.D. Parab, C. Zhao, R. Cunningham, L.I. Escano, K. Fezzaa, W. Everhart, A.D. Rollett, L. Chen and T. Sun, Ultrafast X-ray Imaging of Laser–Metal Additive Manufacturing Processes, J. Synchrotron Radiat., 2018, 25(5), p 1467–1477. CrossRef N.D. Parab, C. Zhao, R. Cunningham, L.I. Escano, K. Fezzaa, W. Everhart, A.D. Rollett, L. Chen and T. Sun, Ultrafast X-ray Imaging of Laser–Metal Additive Manufacturing Processes, J. Synchrotron Radiat., 2018, 25(5), p 1467–1477. CrossRef
23.
Zurück zum Zitat Z. Wang, A.D. Stoica, D. Ma and A.M. Beese, Stress Relaxation Behavior and Mechanisms in Ti-6Al-4V Determined Via in situ Neutron Diffraction: Application to Additive Manufacturing, Mater. Sci. Eng., A, 2017, 707, p 585–592. CrossRef Z. Wang, A.D. Stoica, D. Ma and A.M. Beese, Stress Relaxation Behavior and Mechanisms in Ti-6Al-4V Determined Via in situ Neutron Diffraction: Application to Additive Manufacturing, Mater. Sci. Eng., A, 2017, 707, p 585–592. CrossRef
24.
Zurück zum Zitat N. Parab, C. Zhao, R. Cunningham, L.I. Escano, K. Fezzaa, A. Rollett, L. Chen and T. Sun, In situ Characterization of Laser Powder Bed Fusion Using High-Speed Synchrotron X-ray Imaging Technique, Microsc. Microanal., 2019, 25(S2), p 2566–2567. CrossRef N. Parab, C. Zhao, R. Cunningham, L.I. Escano, K. Fezzaa, A. Rollett, L. Chen and T. Sun, In situ Characterization of Laser Powder Bed Fusion Using High-Speed Synchrotron X-ray Imaging Technique, Microsc. Microanal., 2019, 25(S2), p 2566–2567. CrossRef
25.
Zurück zum Zitat H. Taheri, M.R.B.M. Shoaib, L.W. Koester, T.A. Bigelow, P.C. Collins and L.J. Bond, Powder-Based Additive Manufacturing-a Review of Types of defects, generation mechanisms, detection, property evaluation and metrology, Int. J. f Addit. Subtract. Mater. Manuf., 2017, 1(2), p 172–209. H. Taheri, M.R.B.M. Shoaib, L.W. Koester, T.A. Bigelow, P.C. Collins and L.J. Bond, Powder-Based Additive Manufacturing-a Review of Types of defects, generation mechanisms, detection, property evaluation and metrology, Int. J. f Addit. Subtract. Mater. Manuf., 2017, 1(2), p 172–209.
26.
Zurück zum Zitat J.L. McNeil, K. Sisco, C. Frederick, M. Massey, K. Carver, F. List, C. Qiu, M. Mader, S. Sundarraj and S.S. Babu, In-Situ Monitoring for Defect Identification in Nickel Alloy Complex Geometries Fabricated by L-PBF Additive Manufacturing, Metall. and Mater. Trans. A., 2020, 51(12), p 6528–6545. CrossRef J.L. McNeil, K. Sisco, C. Frederick, M. Massey, K. Carver, F. List, C. Qiu, M. Mader, S. Sundarraj and S.S. Babu, In-Situ Monitoring for Defect Identification in Nickel Alloy Complex Geometries Fabricated by L-PBF Additive Manufacturing, Metall. and Mater. Trans. A., 2020, 51(12), p 6528–6545. CrossRef
27.
Zurück zum Zitat E.A. Lindgren, US Air Force perspective on validated NDE–Past, present, and future, AIP Conference Proceedings, 1706: 1, p. 020002. AIP Publishing LLC, 2016. E.A. Lindgren, US Air Force perspective on validated NDE–Past, present, and future, AIP Conference Proceedings, 1706: 1, p. 020002. AIP Publishing LLC, 2016.
28.
Zurück zum Zitat J.C. Aldrin, E.A. Lindgren, The Need and Approach for Characterization-US Air Force Perspectives on Materials State Awareness, AIP Conference Proceedings, 1949:1, p. 020004. AIP Publishing LLC, 2018. J.C. Aldrin, E.A. Lindgren, The Need and Approach for Characterization-US Air Force Perspectives on Materials State Awareness, AIP Conference Proceedings, 1949:1, p. 020004. AIP Publishing LLC, 2018.
29.
Zurück zum Zitat D.G. Harlow, Probabilistic Property Prediction, Eng. Fract. Mech., 2007, 74, p 2943–2951. CrossRef D.G. Harlow, Probabilistic Property Prediction, Eng. Fract. Mech., 2007, 74, p 2943–2951. CrossRef
30.
Zurück zum Zitat A. Baker, P.C. Collins and J.C. Williams, New Nomenclatures for Heat-Treatments of Additively Manufactured Titanium Alloys, JOM, 2017, 69, p 1221–1227. CrossRef A. Baker, P.C. Collins and J.C. Williams, New Nomenclatures for Heat-Treatments of Additively Manufactured Titanium Alloys, JOM, 2017, 69, p 1221–1227. CrossRef
31.
Zurück zum Zitat S. Kar, T. Searles, E. Lee, G.B. Viswanathan, H.L. Fraser, J. Tiley and R. Banerjee, Modeling the Tensile Properties in β-processed α/β Ti Alloys, Metall. Mater. Trans. A, 2006, 37, p 559–566. CrossRef S. Kar, T. Searles, E. Lee, G.B. Viswanathan, H.L. Fraser, J. Tiley and R. Banerjee, Modeling the Tensile Properties in β-processed α/β Ti Alloys, Metall. Mater. Trans. A, 2006, 37, p 559–566. CrossRef
32.
Zurück zum Zitat P.C. Collins, S. Koduri, B. Welk, J. Tiley and H.L. Fraser, Metall Mater Trans A, 2013, 44, p 1441. CrossRef P.C. Collins, S. Koduri, B. Welk, J. Tiley and H.L. Fraser, Metall Mater Trans A, 2013, 44, p 1441. CrossRef
33.
Zurück zum Zitat P.C. Collins, C.V. Haden, I. Ghamarian, B.J. Hayes, T. Ales, G. Penso, V. Dixit and D.G. Harlow, Progress Toward an Integration of Process-Structure-Property-Performance Models for “Three-Dimensional (3-D) Printing” of Titanium Alloys, JOM, 2014, 66, p 1299–1309. CrossRef P.C. Collins, C.V. Haden, I. Ghamarian, B.J. Hayes, T. Ales, G. Penso, V. Dixit and D.G. Harlow, Progress Toward an Integration of Process-Structure-Property-Performance Models for “Three-Dimensional (3-D) Printing” of Titanium Alloys, JOM, 2014, 66, p 1299–1309. CrossRef
34.
Zurück zum Zitat C.V. Haden, P.C. Collins and D.G. Harlow, Yield Strength Prediction of Titanium Alloys, JOM, 2015, 67, p 1357–1361. CrossRef C.V. Haden, P.C. Collins and D.G. Harlow, Yield Strength Prediction of Titanium Alloys, JOM, 2015, 67, p 1357–1361. CrossRef
35.
Zurück zum Zitat I. Ghamarian, B. Hayes, P. Samimi, B.A. Welk, H.L. Fraser and P.C. Collins, Mater Sci Eng A, 2016, 660, p 172. CrossRef I. Ghamarian, B. Hayes, P. Samimi, B.A. Welk, H.L. Fraser and P.C. Collins, Mater Sci Eng A, 2016, 660, p 172. CrossRef
36.
Zurück zum Zitat W.Q. Meeker and L.A. Escobar, Statistical Methods for Reliability Data, Wiley, New York, 1998. W.Q. Meeker and L.A. Escobar, Statistical Methods for Reliability Data, Wiley, New York, 1998.
37.
39.
Zurück zum Zitat C.J. Willmont, K. Matsuura and S.M. Robeson, Atmos Environ, 2009, 43, p 749. CrossRef C.J. Willmont, K. Matsuura and S.M. Robeson, Atmos Environ, 2009, 43, p 749. CrossRef
40.
Zurück zum Zitat R.E. Barlow, F. Proschan, Statistical Theory of Reliability and Life Testing: Probability Models. Silver Springs, MD: To Begin With; 1981. R.E. Barlow, F. Proschan, Statistical Theory of Reliability and Life Testing: Probability Models. Silver Springs, MD: To Begin With; 1981.
Metadaten
Titel
Probability and Statistical Modeling: Ti-6Al-4V Produced via Directed Energy Deposition
verfasst von
Peter C. Collins
D. Gary Harlow
Publikationsdatum
28.07.2021
Verlag
Springer US
Erschienen in
Journal of Materials Engineering and Performance / Ausgabe 9/2021
Print ISSN: 1059-9495
Elektronische ISSN: 1544-1024
DOI
https://doi.org/10.1007/s11665-021-06062-y

Weitere Artikel der Ausgabe 9/2021

Journal of Materials Engineering and Performance 9/2021 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.