Skip to main content
Erschienen in: Metals and Materials International 4/2021

19.11.2020

Probing the Mechanism of Friction Stir Welding with ALE Based Finite Element Simulations and Its Application to Strength Prediction of Welded Aluminum

verfasst von: Dongjoon Myung, Wooram Noh, Ji-Hoon Kim, Jinhak Kong, Sung-Tae Hong, Myoung-Gyu Lee

Erschienen in: Metals and Materials International | Ausgabe 4/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this study, a simulation-based examination on the deformation mechanism in the friction stir welding (FSW) process is conducted, which may not be efficiently feasible by experiment due to severe deformation and rotation of material flow near a tool pin. To overcome the severity of distortion of plastically deforming finite element meshes in the Lagrange formulation, and an over-simplified elastic-plasticity constitutive law and contact assumption in the Eulerian formulation, the arbitrary Lagrangian–Eulerian (ALE) formulation is employed for the finite element simulations. Superior accuracy in predicting the temperature profiles and distributions of the friction stir welded aluminum alloy workpiece could be obtained compared to the results of Eulerian based simulations. In particular, the ALE based simulations could predict the sharper gradient of temperature decrease as the distance from the welding zone increases, while the Eulerian based model gives more uniform profiles. The second objective of the study is to investigate the coupling of simulation-based temperature histories into the strength prediction model, which is formulated on the basis of precipitation kinetics and precipitate-dislocation interaction. The calculated yield strength distribution is also in better agreement with experiment than that by the Eulerian based model. Finally, the mechanism of the FSW process is studied by thoroughly examining the frictional and material flow behavior of the aluminum alloy in the welded zone. It is suggested that the initially high rate of temperature increase is attributed to frictional heat due to slipping of material on the tool surface, and the subsequent saturated temperature is the result of sequential repetitive activations of the sticking and slipping modes of the softened material. The sticking mode is the main source of plastically dissipated heat by the large plastic deformation around the rotating tool pin. The present integrated finite element simulation and microstructure-based strength prediction model may provide an efficient tool for the design of the FSW process.

Graphic Abstract

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Fußnoten
1
In the modeling of heat generation by plastic deformation, the Eulerian based simulation with FLUENT software by Kim et al. [15] used a conversion factor 1.0, but the interfacial friction heat was neglected.
 
Literatur
1.
Zurück zum Zitat W.M. Thomas, E.D. Nicholas, J.C. Needham, M.G. Murch, P. Templesmith, C.J. Dawes, U.S. Patent 5,460,317 (1991) W.M. Thomas, E.D. Nicholas, J.C. Needham, M.G. Murch, P. Templesmith, C.J. Dawes, U.S. Patent 5,460,317 (1991)
2.
4.
Zurück zum Zitat H.J. Liu, H. Fujii, M. Maeda, K. Nogi, J. Mater. Process. Tech. 142, 692 (2003)CrossRef H.J. Liu, H. Fujii, M. Maeda, K. Nogi, J. Mater. Process. Tech. 142, 692 (2003)CrossRef
5.
Zurück zum Zitat L. Commin, M. Dumont, J.E. Masse, L. Barrallier, Acta Mater. 57, 326 (2009)CrossRef L. Commin, M. Dumont, J.E. Masse, L. Barrallier, Acta Mater. 57, 326 (2009)CrossRef
6.
7.
Zurück zum Zitat N. Afrin, D.L. Chen, X. Cao, M. Jahazi, Mater. Sci. Eng. A 472, 179 (2008)CrossRef N. Afrin, D.L. Chen, X. Cao, M. Jahazi, Mater. Sci. Eng. A 472, 179 (2008)CrossRef
8.
Zurück zum Zitat Y. Zhang, Y.S. Sato, H. Kokawa, S.H.C. Park, S. Hirano, Mater. Sci. Eng. A 485, 448 (2008)CrossRef Y. Zhang, Y.S. Sato, H. Kokawa, S.H.C. Park, S. Hirano, Mater. Sci. Eng. A 485, 448 (2008)CrossRef
9.
Zurück zum Zitat H. Uzun, C. Dalle Donne, A. Argagnotto, T. Ghidini, C. Gambaro, Mater. Des. 26, 41 (2005)CrossRef H. Uzun, C. Dalle Donne, A. Argagnotto, T. Ghidini, C. Gambaro, Mater. Des. 26, 41 (2005)CrossRef
11.
Zurück zum Zitat P. Xue, D.R. Ni, D. Wang, B.L. Xiao, Z.Y. Ma, Mater. Sci. Eng. A 528, 4683 (2011)CrossRef P. Xue, D.R. Ni, D. Wang, B.L. Xiao, Z.Y. Ma, Mater. Sci. Eng. A 528, 4683 (2011)CrossRef
12.
Zurück zum Zitat T. Watanabe, H. Takayama, A. Yanagisawa, J. Mater. Process. Tech. 178, 342 (2006)CrossRef T. Watanabe, H. Takayama, A. Yanagisawa, J. Mater. Process. Tech. 178, 342 (2006)CrossRef
13.
Zurück zum Zitat M. Habibnia, M. Shakeri, S. Nourouzi, M.K.B. Givi, Int. J. Adv. Manuf. Tech. 76, 819 (2015)CrossRef M. Habibnia, M. Shakeri, S. Nourouzi, M.K.B. Givi, Int. J. Adv. Manuf. Tech. 76, 819 (2015)CrossRef
14.
Zurück zum Zitat H. Schmidt, J. Hattel, Model. Simul. Mater. Sci. Eng. 13, 77 (2005)CrossRef H. Schmidt, J. Hattel, Model. Simul. Mater. Sci. Eng. 13, 77 (2005)CrossRef
15.
Zurück zum Zitat J.H. Kim, F. Barlat, C. Kim, K. Chung, Met. Mater. Int. 15, 125 (2009)CrossRef J.H. Kim, F. Barlat, C. Kim, K. Chung, Met. Mater. Int. 15, 125 (2009)CrossRef
17.
Zurück zum Zitat W.D. Lockwood, B. Tomaz, A.P. Reynolds, Mater. Sci. Eng. A 323, 348 (2002)CrossRef W.D. Lockwood, B. Tomaz, A.P. Reynolds, Mater. Sci. Eng. A 323, 348 (2002)CrossRef
18.
Zurück zum Zitat D. Kim, W. Lee, J. Kim, C. Kim, K. Chung, Int. J. Mech. Sci. 52, 612 (2010)CrossRef D. Kim, W. Lee, J. Kim, C. Kim, K. Chung, Int. J. Mech. Sci. 52, 612 (2010)CrossRef
19.
20.
Zurück zum Zitat V. Soundararajan, S. Zekovic, R. Kovacevic, Int. J. Mach. Tools Manuf. 45, 1577 (2005)CrossRef V. Soundararajan, S. Zekovic, R. Kovacevic, Int. J. Mach. Tools Manuf. 45, 1577 (2005)CrossRef
21.
Zurück zum Zitat G. Buffa, J. Hua, R. Shivpuri, L. Fratini, Mater. Sci. Eng. A 419, 389 (2006)CrossRef G. Buffa, J. Hua, R. Shivpuri, L. Fratini, Mater. Sci. Eng. A 419, 389 (2006)CrossRef
22.
23.
Zurück zum Zitat X.X. Zhang, B.L. Xia, Z.Y. Ma, Metall. Mater. Trans. A 42, 3218 (2011)CrossRef X.X. Zhang, B.L. Xia, Z.Y. Ma, Metall. Mater. Trans. A 42, 3218 (2011)CrossRef
24.
Zurück zum Zitat X.X. Zhang, B.L. Xia, Z.Y. Ma, Metall. Mater. Trans. A 42, 3229 (2011)CrossRef X.X. Zhang, B.L. Xia, Z.Y. Ma, Metall. Mater. Trans. A 42, 3229 (2011)CrossRef
25.
Zurück zum Zitat M. Assidi, L. Fourment, S. Guerdoux, T. Nelson, Int. J. Mach. Tools Manuf. 50, 143 (2010)CrossRef M. Assidi, L. Fourment, S. Guerdoux, T. Nelson, Int. J. Mach. Tools Manuf. 50, 143 (2010)CrossRef
27.
28.
Zurück zum Zitat C. Genevois, A. Deschamps, A. Denquin, B. Doisneau-cottignies, Acta Mater. 52, 2447 (2005)CrossRef C. Genevois, A. Deschamps, A. Denquin, B. Doisneau-cottignies, Acta Mater. 52, 2447 (2005)CrossRef
29.
Zurück zum Zitat G.R. Johnson, W.H. Cook, in Proceedings of the 7th International Symposium on Ballistics, The Hague, Netherlands, April 19-21, 1983, A constitutive model and data for metals subjected to large strains, high strain rates and high temperature (1983), pp. 541–547 G.R. Johnson, W.H. Cook, in Proceedings of the 7th International Symposium on Ballistics, The Hague, Netherlands, April 19-21, 1983, A constitutive model and data for metals subjected to large strains, high strain rates and high temperature (1983), pp. 541–547
30.
Zurück zum Zitat S.H. Cha, M.S. Shin, H.J. Lee, J.B. Kim, Trans. Mater. Process. 19, 167 (2010)CrossRef S.H. Cha, M.S. Shin, H.J. Lee, J.B. Kim, Trans. Mater. Process. 19, 167 (2010)CrossRef
31.
Zurück zum Zitat P. Carlone, G.S. Palazzo, Metallogr. Microstruct. Anal. 2, 213 (2013)CrossRef P. Carlone, G.S. Palazzo, Metallogr. Microstruct. Anal. 2, 213 (2013)CrossRef
32.
Zurück zum Zitat S.K. Khanna, X. Long, W.D. Porter, H. Wang, C.K. Liu, M. Radovic, E. Lara-Curzio, Sci. Technol. Weld. Joi. 10, 82 (2005)CrossRef S.K. Khanna, X. Long, W.D. Porter, H. Wang, C.K. Liu, M. Radovic, E. Lara-Curzio, Sci. Technol. Weld. Joi. 10, 82 (2005)CrossRef
33.
Zurück zum Zitat Z. Zhang, J.T. Chen, Z.W. Zhang, H.W. Zhang, J. Mater. Sci. 46, 5815 (2011)CrossRef Z. Zhang, J.T. Chen, Z.W. Zhang, H.W. Zhang, J. Mater. Sci. 46, 5815 (2011)CrossRef
36.
Zurück zum Zitat M.J. Peel, A. Steuwer, P.J. Withers, T. Dickerson, Q. Shi, H. Shercliff, Metall. Mater. Trans. A 37, 2183 (2006)CrossRef M.J. Peel, A. Steuwer, P.J. Withers, T. Dickerson, Q. Shi, H. Shercliff, Metall. Mater. Trans. A 37, 2183 (2006)CrossRef
37.
Zurück zum Zitat J.R. Cahoon, W.H. Broughton, A.R. Kutzak, Metall. Trans. 2, 1979 (1971) J.R. Cahoon, W.H. Broughton, A.R. Kutzak, Metall. Trans. 2, 1979 (1971)
38.
Zurück zum Zitat S. Tutunchilar, M. Haghpanahi, M.K.B. Givi, P. Asadi, P. Bahemmat, Mater. Design 40, 415 (2012)CrossRef S. Tutunchilar, M. Haghpanahi, M.K.B. Givi, P. Asadi, P. Bahemmat, Mater. Design 40, 415 (2012)CrossRef
Metadaten
Titel
Probing the Mechanism of Friction Stir Welding with ALE Based Finite Element Simulations and Its Application to Strength Prediction of Welded Aluminum
verfasst von
Dongjoon Myung
Wooram Noh
Ji-Hoon Kim
Jinhak Kong
Sung-Tae Hong
Myoung-Gyu Lee
Publikationsdatum
19.11.2020
Verlag
The Korean Institute of Metals and Materials
Erschienen in
Metals and Materials International / Ausgabe 4/2021
Print ISSN: 1598-9623
Elektronische ISSN: 2005-4149
DOI
https://doi.org/10.1007/s12540-020-00901-8

Weitere Artikel der Ausgabe 4/2021

Metals and Materials International 4/2021 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.