Skip to main content
Erschienen in: Metals and Materials International 4/2021

18.03.2020

Mechanical, Wear and Thermal Behaviors of Graphene Reinforced Titanium Composites

verfasst von: Mevlüt Gürbüz, Tuğba Mutuk, Pınar Uyan

Erschienen in: Metals and Materials International | Ausgabe 4/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this study, the effects of graphene content (0.15, 0.30, 0.45 and 0.60 wt%) on the mechanical, tribological and thermal properties of titanium matrix composites were investigated. The experimental results showed that the highest ultimate compressive strength (845 MPa), tensile strength (613 MPa), lowest mass loss (0.6 mg for 10 N), and lowest wear rate (WR = 286 × 10−5 mm3/Nm for10 N) were obtained for Ti-0.15GNPs compared with pure titanium (652 MPa, 413 MPa, 1 mg and 5 × 10−5 mm3/Nm, respectively). The wear rate of composites deteriorates with increasing applied load. From the thermal analysis results, the best thermal conductivity (16 W/mK) and diffusivity (7.1 mm2/s) were performed for Ti-0.30GNPs composites at room temperature. The thermal behavior of the composites was decreased with increasing graphene content and temperature. It concluded that graphene is an effective reinforcement to develop the mechanical, wear and thermal behavior of titanium matrix composites.

Graphic Abstract

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat M. Vakili-Azghandi, M. Roknian, J.A. Szpunar, S.M. Mousavizade, Surface modification of pure titanium via friction stir processing: microstructure evolution and dry sliding wear performance. J. Alloy. Compd. 816, 152557 (2020)CrossRef M. Vakili-Azghandi, M. Roknian, J.A. Szpunar, S.M. Mousavizade, Surface modification of pure titanium via friction stir processing: microstructure evolution and dry sliding wear performance. J. Alloy. Compd. 816, 152557 (2020)CrossRef
2.
Zurück zum Zitat N. Joy, S. Prakash, A. Krishnamoorty, A. Antony, Experimental investigation and analysis of drilling in Grade 5 Titanium alloy (Ti-6Al-4 V). Mater. Today Proc. 21, 335–339 (2020)CrossRef N. Joy, S. Prakash, A. Krishnamoorty, A. Antony, Experimental investigation and analysis of drilling in Grade 5 Titanium alloy (Ti-6Al-4 V). Mater. Today Proc. 21, 335–339 (2020)CrossRef
3.
Zurück zum Zitat N. Li, C. Cui, S. Liu, L. Zhao, S. Liu, Fabrication of the Ti5Si3/Ti composite inoculants and its refining mechanism on pure titanium. Met. Mater. Int. 23(2), 397–404 (2017)CrossRef N. Li, C. Cui, S. Liu, L. Zhao, S. Liu, Fabrication of the Ti5Si3/Ti composite inoculants and its refining mechanism on pure titanium. Met. Mater. Int. 23(2), 397–404 (2017)CrossRef
4.
Zurück zum Zitat Y. Kim, P. Yadav, J. Hahn, X. Xiao, D.B. Lee, Oxidation of titanium matrix composites reinforced with (TiB + TiC) particulates. Met. Mater. Int. 25, 627–632 (2019)CrossRef Y. Kim, P. Yadav, J. Hahn, X. Xiao, D.B. Lee, Oxidation of titanium matrix composites reinforced with (TiB + TiC) particulates. Met. Mater. Int. 25, 627–632 (2019)CrossRef
5.
Zurück zum Zitat D.E. Alman, J.A. Hawk, The abrasive wear of sintered titanium matrix-ceramic particle reinforced composites. Wear 225–229, 629–639 (1999)CrossRef D.E. Alman, J.A. Hawk, The abrasive wear of sintered titanium matrix-ceramic particle reinforced composites. Wear 225–229, 629–639 (1999)CrossRef
6.
Zurück zum Zitat F.M. Kgoete, A.P.I. Popoola, O.S.I. Fayomi, Influence of spark plasma sintering on microstructure and corrosion behaviour of Ti-6Al-4V alloy reinforced with micron-sized Si3N4 powder. Def. Technol. 14(5), 403–407 (2018)CrossRef F.M. Kgoete, A.P.I. Popoola, O.S.I. Fayomi, Influence of spark plasma sintering on microstructure and corrosion behaviour of Ti-6Al-4V alloy reinforced with micron-sized Si3N4 powder. Def. Technol. 14(5), 403–407 (2018)CrossRef
7.
Zurück zum Zitat E.P. Randviir, D.A.C. Brownson, C.E. Banks, A decade of graphene research: production, applications and outlook. Mater. Today 17(9), 426–432 (2014)CrossRef E.P. Randviir, D.A.C. Brownson, C.E. Banks, A decade of graphene research: production, applications and outlook. Mater. Today 17(9), 426–432 (2014)CrossRef
8.
Zurück zum Zitat V. Singh, D. Joung, L. Zhai, S. Das, S.I. Khondaker, S. Seal, Graphene based materials: past, present and future. Prog. Mater. Sci. 56(8), 1179–1271 (2011)CrossRef V. Singh, D. Joung, L. Zhai, S. Das, S.I. Khondaker, S. Seal, Graphene based materials: past, present and future. Prog. Mater. Sci. 56(8), 1179–1271 (2011)CrossRef
11.
Zurück zum Zitat D.M. Chen, P.M. Shenai, Y. Zhao, Tight binding description on the band gap opening of pyrene-dispersed graphene. Phys. Chem. Chem. Phys. 4, 1515–1520 (2013) D.M. Chen, P.M. Shenai, Y. Zhao, Tight binding description on the band gap opening of pyrene-dispersed graphene. Phys. Chem. Chem. Phys. 4, 1515–1520 (2013)
12.
Zurück zum Zitat A.H. Castro Neto, F. Guinea, N.M.R. Peres, K.S. Novoselov, A.K. Geim, Rev. Mod. Phys. 81(1), 109–162 (2009)CrossRef A.H. Castro Neto, F. Guinea, N.M.R. Peres, K.S. Novoselov, A.K. Geim, Rev. Mod. Phys. 81(1), 109–162 (2009)CrossRef
13.
Zurück zum Zitat Y. Zhu, S. Murali, W. Cai, X. Li, J.W. Suk, J.R. Potts, R.S. Ruoff, Graphene and graphene oxide: synthesis, properties, and applications. Adv. Mater. 22(35), 3906–3924 (2010)CrossRef Y. Zhu, S. Murali, W. Cai, X. Li, J.W. Suk, J.R. Potts, R.S. Ruoff, Graphene and graphene oxide: synthesis, properties, and applications. Adv. Mater. 22(35), 3906–3924 (2010)CrossRef
14.
Zurück zum Zitat J. Wang, Z. Li, G. Fan, H. Pan, Z. Chen, D. Zhang, Reinforcement with graphene nanosheets in aluminium matrix composites. Scr. Mater. 66(8), 594–597 (2012)CrossRef J. Wang, Z. Li, G. Fan, H. Pan, Z. Chen, D. Zhang, Reinforcement with graphene nanosheets in aluminium matrix composites. Scr. Mater. 66(8), 594–597 (2012)CrossRef
15.
Zurück zum Zitat L. Chen, H. Konishi, A. Fehrenbacher, C. Ma, J. Xu, H. Choi, H. Xu, F.E. Pfefferkorn, X. Li, Novel nanoprocessing route for bulk graphene nanoplatelets reinforced metal matrix nanocomposites. Scr. Mater. 67(1), 29–32 (2012)CrossRef L. Chen, H. Konishi, A. Fehrenbacher, C. Ma, J. Xu, H. Choi, H. Xu, F.E. Pfefferkorn, X. Li, Novel nanoprocessing route for bulk graphene nanoplatelets reinforced metal matrix nanocomposites. Scr. Mater. 67(1), 29–32 (2012)CrossRef
16.
Zurück zum Zitat S. Li, B. Sun, H. Imai, T. Mimoto, K. Kondoh, Powder metallurgy titanium metal matrix composites reinforced with carbon nanotubes and graphite. Compos. Part A Appl. Sci. 48, 57–66 (2013)CrossRef S. Li, B. Sun, H. Imai, T. Mimoto, K. Kondoh, Powder metallurgy titanium metal matrix composites reinforced with carbon nanotubes and graphite. Compos. Part A Appl. Sci. 48, 57–66 (2013)CrossRef
17.
Zurück zum Zitat K. Kondoh, T. Thererujirapapong, H. Imai, J. Umeda, B. Fugetsu, Characteristics of powder metallurgy pure titanium matrix composite reinforced with multi-wall carbon nanotubes. Compos. Sci. Technol. 69(7–8), 1077–1081 (2009)CrossRef K. Kondoh, T. Thererujirapapong, H. Imai, J. Umeda, B. Fugetsu, Characteristics of powder metallurgy pure titanium matrix composite reinforced with multi-wall carbon nanotubes. Compos. Sci. Technol. 69(7–8), 1077–1081 (2009)CrossRef
18.
Zurück zum Zitat T. Threrujirapapong, K. Kondoh, H. Imai, J. Umeda, B. Fugetsu, Mechanical properties of a titanium matrix composite reinforced with low cost carbon black via powder metallurgy processing. Mater. Trans. 50, 2757–2762 (2009)CrossRef T. Threrujirapapong, K. Kondoh, H. Imai, J. Umeda, B. Fugetsu, Mechanical properties of a titanium matrix composite reinforced with low cost carbon black via powder metallurgy processing. Mater. Trans. 50, 2757–2762 (2009)CrossRef
19.
Zurück zum Zitat F. Wang, Z. Zhang, Y. Sun, Y. Liu, Z. Hu, H. Wang, A.V. Korznikov, E. Korznikova, Z. Liu, S. Osamu, Rapid and low temperature spark plasma sintering synthesis of novel carbon nanotube reinforced titanium matrix composites. Carbon 95, 396–407 (2015)CrossRef F. Wang, Z. Zhang, Y. Sun, Y. Liu, Z. Hu, H. Wang, A.V. Korznikov, E. Korznikova, Z. Liu, S. Osamu, Rapid and low temperature spark plasma sintering synthesis of novel carbon nanotube reinforced titanium matrix composites. Carbon 95, 396–407 (2015)CrossRef
20.
Zurück zum Zitat X.N. Mu, H.N. Cai, H.M. Zhang, Q.B. Fan, F.C. Wang, Z.H. Zhang, Y. Wu, Y.X. Ge, S. Chang, R. Shi, Y. Zhou, D.D. Wang, Uniform dispersion of multi-layer graphene reinforced pure titanium matrixcomposites viaflake powder metallurgy. Mater. Sci. Eng. A Struct. 725, 541–548 (2018)CrossRef X.N. Mu, H.N. Cai, H.M. Zhang, Q.B. Fan, F.C. Wang, Z.H. Zhang, Y. Wu, Y.X. Ge, S. Chang, R. Shi, Y. Zhou, D.D. Wang, Uniform dispersion of multi-layer graphene reinforced pure titanium matrixcomposites viaflake powder metallurgy. Mater. Sci. Eng. A Struct. 725, 541–548 (2018)CrossRef
21.
Zurück zum Zitat Y. Song, Y. Chen, W.W. Liu, W.L. Li, Y.G. Wang, D. Zhao, X.B. Liu, Microscopic mechanical properties of titanium composites containing multi-layer graphene nanofillers. Mater. Des. 109, 256–263 (2016)CrossRef Y. Song, Y. Chen, W.W. Liu, W.L. Li, Y.G. Wang, D. Zhao, X.B. Liu, Microscopic mechanical properties of titanium composites containing multi-layer graphene nanofillers. Mater. Des. 109, 256–263 (2016)CrossRef
22.
Zurück zum Zitat X.N. Mu, H.M. Zhang, H.N. Cai, Q.B. Fan, Z.H. Zhang, Y. Wu, Z.J. Fu, D.H. Yu, Microstructure evolution and superior tensile properties of low content graphene nanoplatelets reinforced pure Ti matrix composites. Mater. Sci. Eng. A Struct. 687, 164–174 (2017)CrossRef X.N. Mu, H.M. Zhang, H.N. Cai, Q.B. Fan, Z.H. Zhang, Y. Wu, Z.J. Fu, D.H. Yu, Microstructure evolution and superior tensile properties of low content graphene nanoplatelets reinforced pure Ti matrix composites. Mater. Sci. Eng. A Struct. 687, 164–174 (2017)CrossRef
23.
Zurück zum Zitat T. Mutuk, M. Gürbüz, Effect of process parameters on hardness and microstructure of graphene reinforced titanium composites. J. Compos. Mater. 52(4), 543–551 (2017) T. Mutuk, M. Gürbüz, Effect of process parameters on hardness and microstructure of graphene reinforced titanium composites. J. Compos. Mater. 52(4), 543–551 (2017)
24.
Zurück zum Zitat A. Kelly, Composites for the 1990s. Philos. Trans. R. Soc. 322, 409–423 (1987) A. Kelly, Composites for the 1990s. Philos. Trans. R. Soc. 322, 409–423 (1987)
25.
Zurück zum Zitat G.R. Sharp, T.A. Loftin, Applications of high thermal conductivity composites to electronicsand spacecraft thermal design, Report, Tech Memo 102434 (National Aeronautics and Space Administration, Washington, DC, 1990) G.R. Sharp, T.A. Loftin, Applications of high thermal conductivity composites to electronicsand spacecraft thermal design, Report, Tech Memo 102434 (National Aeronautics and Space Administration, Washington, DC, 1990)
26.
Zurück zum Zitat A. Saboori, M. Pavese, C. Badini, P. Fino, Microstructure and thermal conductivity of Al-graphene composites fabricated by powder metallurgy and hot rolling Techniques. Acta Met. Sin. (Engl. Lett.) 30(7), 675–687 (2017)CrossRef A. Saboori, M. Pavese, C. Badini, P. Fino, Microstructure and thermal conductivity of Al-graphene composites fabricated by powder metallurgy and hot rolling Techniques. Acta Met. Sin. (Engl. Lett.) 30(7), 675–687 (2017)CrossRef
28.
Zurück zum Zitat Z. Cao, X. Wang, J. Li, Y. Wu, H. Zhang, J. Guo, S. Wang, Reinforcement with graphene nanoflakes in titanium matrix composites. J. Alloy Compd. 696, 498–502 (2017)CrossRef Z. Cao, X. Wang, J. Li, Y. Wu, H. Zhang, J. Guo, S. Wang, Reinforcement with graphene nanoflakes in titanium matrix composites. J. Alloy Compd. 696, 498–502 (2017)CrossRef
29.
Zurück zum Zitat M. Rashad, F. Pan, A. Tang, Y. Lu, M. Asif, S. Hussain, J. She, J. Gou, J. Mao, Effect of of graphene nanoplatelets (GNPs) addition on strength and ductility of magnesium–titanium alloys. J. Magnes. Alloys 1(3), 242–248 (2013)CrossRef M. Rashad, F. Pan, A. Tang, Y. Lu, M. Asif, S. Hussain, J. She, J. Gou, J. Mao, Effect of of graphene nanoplatelets (GNPs) addition on strength and ductility of magnesium–titanium alloys. J. Magnes. Alloys 1(3), 242–248 (2013)CrossRef
30.
Zurück zum Zitat M. Rashad, F. Pan, H. Hu, M. Asif, S. Hussain, J. She, Enhanced tensile properties of magnesium composites reinforced with graphene nanoplatelets. Mater. Sci. Eng. A Struct. 630, 36–44 (2015)CrossRef M. Rashad, F. Pan, H. Hu, M. Asif, S. Hussain, J. She, Enhanced tensile properties of magnesium composites reinforced with graphene nanoplatelets. Mater. Sci. Eng. A Struct. 630, 36–44 (2015)CrossRef
31.
Zurück zum Zitat F.H. Latief, E.M. Sherif, Effects of sintering temperature and graphite addition on the mechanical properties of aluminum. J. Ind. Eng. Chem. 18(6), 2129–2134 (2012)CrossRef F.H. Latief, E.M. Sherif, Effects of sintering temperature and graphite addition on the mechanical properties of aluminum. J. Ind. Eng. Chem. 18(6), 2129–2134 (2012)CrossRef
32.
Zurück zum Zitat S.F. Bartolucci, J. Paras, M.A. Refiee, J. Refiee, S. Lee, D. Kapoor, N. Koratkar, Graphene–aluminum nanocomposites. Mater. Sci. Eng. A Struct. 532(27), 7933–7937 (2011)CrossRef S.F. Bartolucci, J. Paras, M.A. Refiee, J. Refiee, S. Lee, D. Kapoor, N. Koratkar, Graphene–aluminum nanocomposites. Mater. Sci. Eng. A Struct. 532(27), 7933–7937 (2011)CrossRef
33.
Zurück zum Zitat J. Wozniak, M. Kostecki, T. Cygan, M. Buczek, A. Olszyna, Self-lubricating aluminium matrix composites reinforced with 2D crystals. Compos. Part B Eng. 111, 1–9 (2017)CrossRef J. Wozniak, M. Kostecki, T. Cygan, M. Buczek, A. Olszyna, Self-lubricating aluminium matrix composites reinforced with 2D crystals. Compos. Part B Eng. 111, 1–9 (2017)CrossRef
34.
Zurück zum Zitat H. Attar, K.G. Prashanth, A.K. Chaubey, M. Calin, L.C. Zhang, S. Scudino, J. Eckert, Comparison of wear properties of commercially pure titanium prepared by selective laser melting and casting processes. Mater. Lett. 142, 38–41 (2015)CrossRef H. Attar, K.G. Prashanth, A.K. Chaubey, M. Calin, L.C. Zhang, S. Scudino, J. Eckert, Comparison of wear properties of commercially pure titanium prepared by selective laser melting and casting processes. Mater. Lett. 142, 38–41 (2015)CrossRef
35.
Zurück zum Zitat A.A. Balandin, Thermal properties of graphene, carbon nanotubes and nanostructured carbon materials. Nat. Mater. 10, 569–581 (2011)CrossRef A.A. Balandin, Thermal properties of graphene, carbon nanotubes and nanostructured carbon materials. Nat. Mater. 10, 569–581 (2011)CrossRef
36.
Zurück zum Zitat L. Kuamri, T. Zhang, G.H. Du, W.Z. Li, Q.W. Wang, A. Datye, K.H. Wu, Thermal properties of CNT-alumina nanocomposites. Compos. Sci. Technol. 68(9), 2178–2183 (2008)CrossRef L. Kuamri, T. Zhang, G.H. Du, W.Z. Li, Q.W. Wang, A. Datye, K.H. Wu, Thermal properties of CNT-alumina nanocomposites. Compos. Sci. Technol. 68(9), 2178–2183 (2008)CrossRef
37.
Zurück zum Zitat P. Miranzo, E. Garcia, C. Ramirez, J. Gonzalez-Julian, M. Belmonte, M.I. Osendi, Anisotropic thermal conductivity of silicon nitride ceramics containing carbon nanostructures. J. Eur. Ceram. Soc. 32(8), 1847–1854 (2012)CrossRef P. Miranzo, E. Garcia, C. Ramirez, J. Gonzalez-Julian, M. Belmonte, M.I. Osendi, Anisotropic thermal conductivity of silicon nitride ceramics containing carbon nanostructures. J. Eur. Ceram. Soc. 32(8), 1847–1854 (2012)CrossRef
38.
Zurück zum Zitat M. Selvakumar, T. Ramkumar, P. Chandrasekar, Thermal characterization of titanium–titanium boride composites. J. Therm. Anal. Calorim. 136(1), 419–424 (2019)CrossRef M. Selvakumar, T. Ramkumar, P. Chandrasekar, Thermal characterization of titanium–titanium boride composites. J. Therm. Anal. Calorim. 136(1), 419–424 (2019)CrossRef
Metadaten
Titel
Mechanical, Wear and Thermal Behaviors of Graphene Reinforced Titanium Composites
verfasst von
Mevlüt Gürbüz
Tuğba Mutuk
Pınar Uyan
Publikationsdatum
18.03.2020
Verlag
The Korean Institute of Metals and Materials
Erschienen in
Metals and Materials International / Ausgabe 4/2021
Print ISSN: 1598-9623
Elektronische ISSN: 2005-4149
DOI
https://doi.org/10.1007/s12540-020-00673-1

Weitere Artikel der Ausgabe 4/2021

Metals and Materials International 4/2021 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.