Skip to main content
Erschienen in: Metallurgical and Materials Transactions A 10/2011

01.10.2011

Processing and Characterization of Cu-Al-Ni Shape Memory Alloy Strips Prepared from Prealloyed Powder by Hot Densification Rolling of Powder Preforms

verfasst von: S. K. Vajpai, R. K. Dube, S. Sangal

Erschienen in: Metallurgical and Materials Transactions A | Ausgabe 10/2011

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The present work deals with the preparation of near-full density Cu-Al-Ni shape memory alloy (SMA) strips from argon-atomized prealloyed powder via a powder metallurgy (PM) route comprising cold die compaction to prepare powder preforms, sintering, and hot densification rolling of unsheathed sintered powder preforms under protective atmosphere at 1273 K (1000 °C). It has been shown that argon-atomized spherical Cu-Al-Ni SMA powder consisted of very fine equiaxed grains and no appreciable grain growth occurred during sintering at 1273 K (1000 °C). It also has been shown that no appreciable densification occurred during sintering, and densification was primarily achieved by hot rolling. The densification behavior of the sintered powder preforms during hot rolling was discussed. The hot-rolled Cu-Al-Ni strips were heat-treated at 1223 K (950 °C) for 60 minutes and water quenched. The heat-treated strips consisted of equiaxed grains with average size approximately 90 μm. The heat-treated Cu-Al-Ni SMA strips consisted of self-accommodated \( \beta_{1}^{'} \) martensite primarily, and showed smooth \( \beta_{1} \Rightarrow \beta_{1}^{'} \) transformation behavior coupled with a very low hysteresis (≈25 K (25 °C)). The heat-treated strips exhibited an extremely good combination of mechanical properties with fracture strength of 530 MPa and 12.3 pct fracture strain. The mode of fracture in the finished strip was primarily void-coalescence-type ductile together with some brittle transgranular type. The shape memory tests showed almost 100 pct one-way shape recovery after 100 bending-unconstrained heating cycles at 4 pct applied prestrain, exhibiting good stability of Cu-Al-Ni strips under thermomechanical actuation cycling. The two-way shape memory strain was found approximately 0.45 pct after 15 training cycles at 4 pct training strain.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat P.K. Kumar and D.C. Lagoudas: in Shape Memory Alloys—Modeling and Engineering Applications, D.C. Lagoudas, ed., Springer Science, New York, NY, 2008. P.K. Kumar and D.C. Lagoudas: in Shape Memory Alloys—Modeling and Engineering Applications, D.C. Lagoudas, ed., Springer Science, New York, NY, 2008.
2.
Zurück zum Zitat J.V. Humbeeck and S. Kustove: Smart Mater. Struct., 2005, vol. 14, pp. 5171–85.CrossRef J.V. Humbeeck and S. Kustove: Smart Mater. Struct., 2005, vol. 14, pp. 5171–85.CrossRef
3.
4.
Zurück zum Zitat Z.C. Lin, W. Yu, R.H. Zee, and B.A. Chin: Intermetallics, 2000, vol. 8, pp. 605–11.CrossRef Z.C. Lin, W. Yu, R.H. Zee, and B.A. Chin: Intermetallics, 2000, vol. 8, pp. 605–11.CrossRef
5.
Zurück zum Zitat C.M. Wayman: J. Met., 1990, June, pp. 129–37. C.M. Wayman: J. Met., 1990, June, pp. 129–37.
6.
Zurück zum Zitat J. Font, E. Cesari, J. Muntasell, and J. Pons: Mater. Sci. Eng. A, 2003, vol. 354, pp. 207–11.CrossRef J. Font, E. Cesari, J. Muntasell, and J. Pons: Mater. Sci. Eng. A, 2003, vol. 354, pp. 207–11.CrossRef
7.
Zurück zum Zitat L. Delaey: in Phase Transformation in Materials, P. Haasen, ed., VCH, Weinheim, 1991. L. Delaey: in Phase Transformation in Materials, P. Haasen, ed., VCH, Weinheim, 1991.
8.
Zurück zum Zitat T. Tadaki: in Shape Memory Materials, K. Otsuka and C.M. Wauman, eds., Cambridge University Press, Cambridge, United Kingdom, 1998. T. Tadaki: in Shape Memory Materials, K. Otsuka and C.M. Wauman, eds., Cambridge University Press, Cambridge, United Kingdom, 1998.
9.
Zurück zum Zitat S. Miyazaki, K. Otsuka, H. Sakamoto, and K. Shimizu: Trans. Jpn. Inst. Met., 1981, vol. 22, pp. 244–52. S. Miyazaki, K. Otsuka, H. Sakamoto, and K. Shimizu: Trans. Jpn. Inst. Met., 1981, vol. 22, pp. 244–52.
10.
Zurück zum Zitat S.W. Husain and P.C. Clapp: J. Mater. Sci., 1987, vol. 22, pp. 2351–56.CrossRef S.W. Husain and P.C. Clapp: J. Mater. Sci., 1987, vol. 22, pp. 2351–56.CrossRef
11.
Zurück zum Zitat G.N. Sure and L.C. Brown: Metall. Trans. A, 1984, vol. 15A, pp. 1613–21. G.N. Sure and L.C. Brown: Metall. Trans. A, 1984, vol. 15A, pp. 1613–21.
12.
Zurück zum Zitat J.S. Lee and C.M. Wayman: Trans. Jpn. Inst. Met., 1986, vol. 27, pp. 584–91. J.S. Lee and C.M. Wayman: Trans. Jpn. Inst. Met., 1986, vol. 27, pp. 584–91.
13.
14.
Zurück zum Zitat Y. Gao, M. Zhu, and J.K.L. Lai: J. Mater. Sci., 1998, vol. 33, pp. 3579–84.CrossRef Y. Gao, M. Zhu, and J.K.L. Lai: J. Mater. Sci., 1998, vol. 33, pp. 3579–84.CrossRef
15.
Zurück zum Zitat S. Bhattacharya, A. Bhuniya, and M.K. Banerjee: Mater. Sci. Technol., 1993, vol. 9, pp. 654–58. S. Bhattacharya, A. Bhuniya, and M.K. Banerjee: Mater. Sci. Technol., 1993, vol. 9, pp. 654–58.
16.
Zurück zum Zitat K. Adachi, K. Shoji, and Y. Hamada: ISIJ Int., 1989, vol. 29, pp. 378–87.CrossRef K. Adachi, K. Shoji, and Y. Hamada: ISIJ Int., 1989, vol. 29, pp. 378–87.CrossRef
17.
Zurück zum Zitat J.W. Kim, D.W. Roh, E.S. Lee, and Y.G. Kim: Metall. Trans. A, 1990, vol. 21A, pp. 741–44. J.W. Kim, D.W. Roh, E.S. Lee, and Y.G. Kim: Metall. Trans. A, 1990, vol. 21A, pp. 741–44.
18.
Zurück zum Zitat D.W. Roh, J.W. Kim, T.J. Cho, and Y.G. Kim: Mater. Sci. Eng. A, 1991, vol. A136, pp. 12–23. D.W. Roh, J.W. Kim, T.J. Cho, and Y.G. Kim: Mater. Sci. Eng. A, 1991, vol. A136, pp. 12–23.
19.
Zurück zum Zitat M. Sharma, S.K. Vajpai, and R.K. Dube: Metall. Mater. Trans. A, 2010, vol. 41A, pp. 2905–13.CrossRef M. Sharma, S.K. Vajpai, and R.K. Dube: Metall. Mater. Trans. A, 2010, vol. 41A, pp. 2905–13.CrossRef
20.
Zurück zum Zitat Z. Xiao, Z. Li, M. Fan, M. Luo, S. Gong, and N. Tang: Trans. Nonferrous Met. Soc. China, 2007, vol. 17, pp. 1422–27.CrossRef Z. Xiao, Z. Li, M. Fan, M. Luo, S. Gong, and N. Tang: Trans. Nonferrous Met. Soc. China, 2007, vol. 17, pp. 1422–27.CrossRef
21.
Zurück zum Zitat S.M. Tang, C.Y. Chung, and W.G. Liu: J. Mater. Process Technol., 1997, vol. 63, pp. 307–12.CrossRef S.M. Tang, C.Y. Chung, and W.G. Liu: J. Mater. Process Technol., 1997, vol. 63, pp. 307–12.CrossRef
22.
Zurück zum Zitat Z. Li, Z.Y. Pan, N. Tang, Y.B. Ziang, N. Liu, M. Fang, and M. Zheng: Mater. Sci. Eng. A, 2006, vol. 417, pp. 225–29.CrossRef Z. Li, Z.Y. Pan, N. Tang, Y.B. Ziang, N. Liu, M. Fang, and M. Zheng: Mater. Sci. Eng. A, 2006, vol. 417, pp. 225–29.CrossRef
23.
Zurück zum Zitat Z. Xiao, Z. Li, M. Fang, S. Xiong, X. Sheng, and M. Zhou: Mater. Sci. Eng. A, 2008, vol. 488, pp. 266–72.CrossRef Z. Xiao, Z. Li, M. Fang, S. Xiong, X. Sheng, and M. Zhou: Mater. Sci. Eng. A, 2008, vol. 488, pp. 266–72.CrossRef
24.
Zurück zum Zitat T.W. Duerig, J. Albert, and G.H. Gessinger: J. Met., 1982, Dec., pp. 14–20. T.W. Duerig, J. Albert, and G.H. Gessinger: J. Met., 1982, Dec., pp. 14–20.
25.
Zurück zum Zitat R.D. Jean, T.Y. Wu, and S.S. Leu: Scripta Metall. Mater., 1991, vol. 25, pp. 883–88.CrossRef R.D. Jean, T.Y. Wu, and S.S. Leu: Scripta Metall. Mater., 1991, vol. 25, pp. 883–88.CrossRef
26.
Zurück zum Zitat S.S. Leu, Y. Chen, and R.D. Jean: J. Mater. Sci., 1992, vol. 27, pp. 2792–98.CrossRef S.S. Leu, Y. Chen, and R.D. Jean: J. Mater. Sci., 1992, vol. 27, pp. 2792–98.CrossRef
27.
Zurück zum Zitat R.B. Parez-Saez, V. Recarte, M.L. No, O.A. Ruano, and J. San Juan: Adv. Eng. Mater., 2000, vol. 2, pp. 49–53.CrossRef R.B. Parez-Saez, V. Recarte, M.L. No, O.A. Ruano, and J. San Juan: Adv. Eng. Mater., 2000, vol. 2, pp. 49–53.CrossRef
28.
Zurück zum Zitat S. Bhargava and R.K. Dube: Metall. Trans. A, 1988, vol. 19A, pp. 1205–11. S. Bhargava and R.K. Dube: Metall. Trans. A, 1988, vol. 19A, pp. 1205–11.
29.
Zurück zum Zitat R.K. Dube and P.K. Bagdi: Metall. Trans. A, 1993, vol. 24A, pp. 1753–60. R.K. Dube and P.K. Bagdi: Metall. Trans. A, 1993, vol. 24A, pp. 1753–60.
30.
Zurück zum Zitat S.K. Vajpai and R.K. Dube: J. Mater. Sci., 2009, vol. 44, pp. 129–35.CrossRef S.K. Vajpai and R.K. Dube: J. Mater. Sci., 2009, vol. 44, pp. 129–35.CrossRef
31.
Zurück zum Zitat P.R. Swann and H.Warlimont: Acta Metall., 1963, vol. 11, pp. 511–27.CrossRef P.R. Swann and H.Warlimont: Acta Metall., 1963, vol. 11, pp. 511–27.CrossRef
32.
Zurück zum Zitat V. Recarte, R.B. Perez-Saez, E.H. Bocanegra, M.L. No, and J. San Juan: Metall. Mater. Trans. A, 2002, vol. 33A, pp. 2581–91.CrossRef V. Recarte, R.B. Perez-Saez, E.H. Bocanegra, M.L. No, and J. San Juan: Metall. Mater. Trans. A, 2002, vol. 33A, pp. 2581–91.CrossRef
33.
Zurück zum Zitat S. Miyazaki, T. Kawai, and K. Otsuka: Scripta Metall., 1982, vol. 16, pp. 431–36. S. Miyazaki, T. Kawai, and K. Otsuka: Scripta Metall., 1982, vol. 16, pp. 431–36.
34.
Zurück zum Zitat K. Mukunthan and L.C. Brown: Metall. Trans. A, 1988, vol. 19A, pp. 2921–29. K. Mukunthan and L.C. Brown: Metall. Trans. A, 1988, vol. 19A, pp. 2921–29.
35.
Zurück zum Zitat R. Lahoz, L. Gracia-Villa, and J.A. Puertolas: J. Eng. Mater. Technol., 2002, vol. 124, pp. 397–401.CrossRef R. Lahoz, L. Gracia-Villa, and J.A. Puertolas: J. Eng. Mater. Technol., 2002, vol. 124, pp. 397–401.CrossRef
37.
Zurück zum Zitat X.L. Meng, Y.F. Zheng, W. Cai, and L.C. Zhao: J. Alloy Compd., 2004, vol. 372, pp. 180–86.CrossRef X.L. Meng, Y.F. Zheng, W. Cai, and L.C. Zhao: J. Alloy Compd., 2004, vol. 372, pp. 180–86.CrossRef
38.
Zurück zum Zitat L. Wang, X. Meng, W. Cai, and L. Zhao: J. Mater. Sci. Technol., 2001, vol. 17, pp. 13–14. L. Wang, X. Meng, W. Cai, and L. Zhao: J. Mater. Sci. Technol., 2001, vol. 17, pp. 13–14.
39.
Zurück zum Zitat H. Sakamoto, K. Sugimoto, Y. Nakamura, A. Tanaka, and K. Shimizu: Mater. Trans. JIM, 1991, vol. 32, pp. 128–34. H. Sakamoto, K. Sugimoto, Y. Nakamura, A. Tanaka, and K. Shimizu: Mater. Trans. JIM, 1991, vol. 32, pp. 128–34.
Metadaten
Titel
Processing and Characterization of Cu-Al-Ni Shape Memory Alloy Strips Prepared from Prealloyed Powder by Hot Densification Rolling of Powder Preforms
verfasst von
S. K. Vajpai
R. K. Dube
S. Sangal
Publikationsdatum
01.10.2011
Verlag
Springer US
Erschienen in
Metallurgical and Materials Transactions A / Ausgabe 10/2011
Print ISSN: 1073-5623
Elektronische ISSN: 1543-1940
DOI
https://doi.org/10.1007/s11661-011-0728-6

Weitere Artikel der Ausgabe 10/2011

Metallurgical and Materials Transactions A 10/2011 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.