Skip to main content
Erschienen in: Journal of Materials Engineering and Performance 4/2016

22.02.2016

Processing and Performance of MOF (Metal Organic Framework)-Loaded PAN Nanofibrous Membrane for CO2 Adsorption

verfasst von: Wahiduzzaman, Mujibur R. Khan, Spencer Harp, Jeffrey Neumann, Quazi Nahida Sultana

Erschienen in: Journal of Materials Engineering and Performance | Ausgabe 4/2016

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The objective of this experimental study is to produce a nanofibrous membrane functionalized with adsorbent particles called metal organic framework (MOF) in order to adsorb CO2 from a gas source. Therefore, Polyacrylonitrile (PAN) was chosen as the precursor for nanofibers and HKUST-1, a Cu-based MOF, was chosen as adsorbent. The experimental process consists of electrospinning PAN solution blended with HKUST-1 to produce a nanofibrous mat as working substrates. The fibers were collected in a cylindrical canister model. SEM image of this mat showed nanofibers with the presence of small adsorbent particles, impregnated into the as-spun fibers discretely. To increase the amount of MOF particles for effectual gas adsorption, a secondary solvothermal process of producing MOF particles on the fibers was required. This process consists of multiple growth cycles of HKUST-1 particles by using a sol-gel precursor. SEM images showed uniform distribution of porous MOF particles of 2-4 µm in size on the fiber surface. Energy dispersive spectroscopy report of the fiber confirmed the presence of MOF particles through the identification of characteristic Copper elemental peaks of HKUST-1. To determine the thermal stability of the fibrous membrane, Thermogravimetric analysis of HKUST-1 consisting of PAN fiber was performed where a total weight loss of 40% between 210 and 360 °C was observed, hence proving the high-temperature durability of the synthesized membrane. BET surface area of the fiber membrane was measured as 540.73 m2/g. The fiber membrane was then placed into an experimental test bench containing a mixed gas inflow of CO2 and N2. Using non-dispersive infrared CO2 sensors connected to the inlet and outlet port of the bench, significant reduction of CO2 in concentration was measured. Comparative IR spectroscopic analysis between the gas-treated and gas untreated fiber samples showed the presence of characteristic peak in the vicinity of 2300 and 2400 cm−1 which verifies the adsorption of CO2.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat K. Mishra and S. Ramaprabhu, Nano Magnetite Decorated Multiwalled Carbon Nanotubes: A Robust Nanomaterial for Enhanced Carbon Dioxide Adsorption, Energy Environ. Sci., 2011, 4(3), p 889–895CrossRef K. Mishra and S. Ramaprabhu, Nano Magnetite Decorated Multiwalled Carbon Nanotubes: A Robust Nanomaterial for Enhanced Carbon Dioxide Adsorption, Energy Environ. Sci., 2011, 4(3), p 889–895CrossRef
2.
Zurück zum Zitat F. Akhtar, Q. Liu, N. Hedin, and L. Bergström, Strong and Binder Free Structured Zeolite Sorbents with Very High CO2-over-N2 Selectivities and High Capacities to Adsorb CO2 Rapidly, Energy Environ. Sci., 2012, 5, p 7664–7673CrossRef F. Akhtar, Q. Liu, N. Hedin, and L. Bergström, Strong and Binder Free Structured Zeolite Sorbents with Very High CO2-over-N2 Selectivities and High Capacities to Adsorb CO2 Rapidly, Energy Environ. Sci., 2012, 5, p 7664–7673CrossRef
3.
Zurück zum Zitat C.A. Grande, R. Ribeiro, E.L.G. Oliveira, and A.E. Rodrigues, Electric Swing Adsorption As Emerging CO2 Capture Technique, Energy Procedia, 2009, 1(1), p 1219–1225CrossRef C.A. Grande, R. Ribeiro, E.L.G. Oliveira, and A.E. Rodrigues, Electric Swing Adsorption As Emerging CO2 Capture Technique, Energy Procedia, 2009, 1(1), p 1219–1225CrossRef
4.
Zurück zum Zitat P. Galhotra, J.G. Navea, S.C. Larsen, and V.H. Grassian, Carbon Dioxide (C16O2 and C18O2) Adsorption in Zeolite Y Materials: Effect of Cation, Adsorbed Water and Particle Size, Energy Environ. Sci., 2009, 2(4), p 401–409CrossRef P. Galhotra, J.G. Navea, S.C. Larsen, and V.H. Grassian, Carbon Dioxide (C16O2 and C18O2) Adsorption in Zeolite Y Materials: Effect of Cation, Adsorbed Water and Particle Size, Energy Environ. Sci., 2009, 2(4), p 401–409CrossRef
5.
Zurück zum Zitat Q. Wang, J. Luo, Z. Zhong, and A. Borgna, CO2 Capture by Solid Adsorbents and their Applications: Current Status and New Trends, Energy Environ. Sci., 2011, 4(1), p 42–55CrossRef Q. Wang, J. Luo, Z. Zhong, and A. Borgna, CO2 Capture by Solid Adsorbents and their Applications: Current Status and New Trends, Energy Environ. Sci., 2011, 4(1), p 42–55CrossRef
6.
Zurück zum Zitat Y. Liu, Z.U. Wang, and H.C. Zhou, Recent Advances in Carbon Dioxide Capture with Metal-Organic Frameworks, Greenh. Gases Sci. Technol., 2012, 2, p 239–259. doi:10.1002/ghg CrossRef Y. Liu, Z.U. Wang, and H.C. Zhou, Recent Advances in Carbon Dioxide Capture with Metal-Organic Frameworks, Greenh. Gases Sci. Technol., 2012, 2, p 239–259. doi:10.​1002/​ghg CrossRef
7.
Zurück zum Zitat P. Pachfule, R. Das, P. Poddar, and R. Banerjee, Solvothermal Synthesis, Structure, and Properties of Metal Organic Framework Isomers Derived from a Partially Fluorinated Link, Cryst. Growth Des., 2011, 11(4), p 1215–1222CrossRef P. Pachfule, R. Das, P. Poddar, and R. Banerjee, Solvothermal Synthesis, Structure, and Properties of Metal Organic Framework Isomers Derived from a Partially Fluorinated Link, Cryst. Growth Des., 2011, 11(4), p 1215–1222CrossRef
8.
Zurück zum Zitat Z. Liang, M. Marshall, and L. Chaffee, CO2 Adsorption-Based Separation by Metal Organic Framework (Cu-BTC) Versus Zeolite (13X), Energy Fuels, 2009, 23, p 2785–2789CrossRef Z. Liang, M. Marshall, and L. Chaffee, CO2 Adsorption-Based Separation by Metal Organic Framework (Cu-BTC) Versus Zeolite (13X), Energy Fuels, 2009, 23, p 2785–2789CrossRef
9.
Zurück zum Zitat T.V.N. Thi, C.L. Luu, T.C. Hoang, T. Nguyen, T.H. Bui, and P.H.D. Nguyen, Synthesis of MOF-199 and Application to CO2 Adsorption, Adv. Nat. Sci. Nanosci. Nanotechnol., 2013, 4(3), p 035016CrossRef T.V.N. Thi, C.L. Luu, T.C. Hoang, T. Nguyen, T.H. Bui, and P.H.D. Nguyen, Synthesis of MOF-199 and Application to CO2 Adsorption, Adv. Nat. Sci. Nanosci. Nanotechnol., 2013, 4(3), p 035016CrossRef
10.
Zurück zum Zitat R. Ostermann, J. Cravillon, C. Weidmann, M. Wiebcke, and B.M. Smarsly, Metal-Organic Framework Nanofibers via Electrospinning, Chem. Commun., 2011, 47, p 442–444CrossRef R. Ostermann, J. Cravillon, C. Weidmann, M. Wiebcke, and B.M. Smarsly, Metal-Organic Framework Nanofibers via Electrospinning, Chem. Commun., 2011, 47, p 442–444CrossRef
11.
Zurück zum Zitat Z. Li and C. Wang, Effects of Working Parameters on Electrospinning, One-Dimensional Nanostructures, One-Dimensional Nanostructures, Chapter 2, Springer, Berlin, 2013, p 15–28 Z. Li and C. Wang, Effects of Working Parameters on Electrospinning, One-Dimensional Nanostructures, One-Dimensional Nanostructures, Chapter 2, Springer, Berlin, 2013, p 15–28
12.
Zurück zum Zitat J.T. McCann, D. Li, and Y. Xia, Electrospinning of Nanofibers with Core-Sheath, Hollow or Porous Structures, J. Mater. Chem., 2005, 15, p 735–738CrossRef J.T. McCann, D. Li, and Y. Xia, Electrospinning of Nanofibers with Core-Sheath, Hollow or Porous Structures, J. Mater. Chem., 2005, 15, p 735–738CrossRef
13.
Zurück zum Zitat E. Zussman, X. Chen, W. Ding, L. Calabri, and D. Dikin, Mechanical and Structural Characterization of Electrospun PAN-Derived Nanofibers, Carbon, 2005, 43(10), p 2175–2185CrossRef E. Zussman, X. Chen, W. Ding, L. Calabri, and D. Dikin, Mechanical and Structural Characterization of Electrospun PAN-Derived Nanofibers, Carbon, 2005, 43(10), p 2175–2185CrossRef
14.
Zurück zum Zitat P. Heikkilä and A. Harlin, Electrospinning of Polyacrylonitrile (PAN) Solution: Effect of Conductive Additive and Filler on the Process, eXPRESS, Polym. Lett., 2009, 3(7), p 437–445CrossRef P. Heikkilä and A. Harlin, Electrospinning of Polyacrylonitrile (PAN) Solution: Effect of Conductive Additive and Filler on the Process, eXPRESS, Polym. Lett., 2009, 3(7), p 437–445CrossRef
15.
Zurück zum Zitat R. Jalili, M. Morshed, S. Abdolkarim, and H. Ravandi, Fundamental Parameters Affecting Electrospinning of PAN Nanofibers as Uniaxially Aligned Fibers, J. Appl. Polym. Sci., 2006, 101(6), p 4350–4357CrossRef R. Jalili, M. Morshed, S. Abdolkarim, and H. Ravandi, Fundamental Parameters Affecting Electrospinning of PAN Nanofibers as Uniaxially Aligned Fibers, J. Appl. Polym. Sci., 2006, 101(6), p 4350–4357CrossRef
16.
Zurück zum Zitat L. Lange, F. Ochanda, S. Obendorf, and J. Hinestroza, CuBTC Metal-Organic Frameworks Enmeshed in Polyacrylonitrile Fibrous Membrane Remove Methyl Parathion from Solutions, Fibers Polym., 2014, 15(2), p 200–207CrossRef L. Lange, F. Ochanda, S. Obendorf, and J. Hinestroza, CuBTC Metal-Organic Frameworks Enmeshed in Polyacrylonitrile Fibrous Membrane Remove Methyl Parathion from Solutions, Fibers Polym., 2014, 15(2), p 200–207CrossRef
17.
Zurück zum Zitat Y. Wu, F. Li, H. Liu, W. Zhu, M. Teng, Y. Jiang, W. Li, D. Xu, D. He, P. Hannam, and G. Li, Electrospun Fibrous Mats as Skeletons to Produce Free-standing MOF Membranes, J. Mater. Chem., 2012, 22(33), p 16971–16978CrossRef Y. Wu, F. Li, H. Liu, W. Zhu, M. Teng, Y. Jiang, W. Li, D. Xu, D. He, P. Hannam, and G. Li, Electrospun Fibrous Mats as Skeletons to Produce Free-standing MOF Membranes, J. Mater. Chem., 2012, 22(33), p 16971–16978CrossRef
18.
Zurück zum Zitat A. Centrone, Y. Yang, S. Speakman, L. Bromberg, G.C. Rutledge, and T.A. Hatton, Growth of Metal-Organic Frameworks on Polymer Surfaces, J. Am. Chem. Soc., 2010, 132(44), p 15687–15691CrossRef A. Centrone, Y. Yang, S. Speakman, L. Bromberg, G.C. Rutledge, and T.A. Hatton, Growth of Metal-Organic Frameworks on Polymer Surfaces, J. Am. Chem. Soc., 2010, 132(44), p 15687–15691CrossRef
19.
Zurück zum Zitat N. Yan, R. Hua, G. Ning, and X. Ou, Nano/Micro HKUST-1 Fabricated by Coordination Modulation Method at Room Temperature, Chem. Res. Chin. Univ., 2012, 28(4), p 555–558 N. Yan, R. Hua, G. Ning, and X. Ou, Nano/Micro HKUST-1 Fabricated by Coordination Modulation Method at Room Temperature, Chem. Res. Chin. Univ., 2012, 28(4), p 555–558
20.
Zurück zum Zitat G. Hyde, K. Park, S. Stewart, J. Hinestroza, and G. Parsons, Atomic Layer Deposition of Conformal Inorganic Nanoscale Coatings on Three-Dimensional Natural Fiber Systems: Effect of Surface Topology on Film Growth Characteristics, Langmuir, 2007, 23(19), p 9844–9849CrossRef G. Hyde, K. Park, S. Stewart, J. Hinestroza, and G. Parsons, Atomic Layer Deposition of Conformal Inorganic Nanoscale Coatings on Three-Dimensional Natural Fiber Systems: Effect of Surface Topology on Film Growth Characteristics, Langmuir, 2007, 23(19), p 9844–9849CrossRef
21.
Zurück zum Zitat E. Laurila, J. Thunberg, S.P. Argent, N.R. Champness, S. Zacharias, G. Westman, and L. Ohrstorm, Enhanced Synthesis of Metal-Organic Frameworks on the Surface of Electrospun Cellulose Nanofibers, Adv. Eng. Mater., 2015, 17(9), p 1282–1286CrossRef E. Laurila, J. Thunberg, S.P. Argent, N.R. Champness, S. Zacharias, G. Westman, and L. Ohrstorm, Enhanced Synthesis of Metal-Organic Frameworks on the Surface of Electrospun Cellulose Nanofibers, Adv. Eng. Mater., 2015, 17(9), p 1282–1286CrossRef
22.
Zurück zum Zitat J. Zamaro, N. Pérez, E. Miró, C. Casado, B. Seoane, C. Téllez, and J. Coronas, HKUST-1 MOF: A Matrix to Synthesize CuO and CuO-CeO2 Nanoparticle Catalysts for CO Oxidation, Chem. Eng. J., 2012, 195, p 180–187CrossRef J. Zamaro, N. Pérez, E. Miró, C. Casado, B. Seoane, C. Téllez, and J. Coronas, HKUST-1 MOF: A Matrix to Synthesize CuO and CuO-CeO2 Nanoparticle Catalysts for CO Oxidation, Chem. Eng. J., 2012, 195, p 180–187CrossRef
23.
Zurück zum Zitat J. Zhao, M. Losego, P. Lemaire, P.S. Williams, B. Gong, S. Atanasov, T.M. Blevins, C.J. Oldham, H.J. Walls, S.D. Shepherd, M. Browe, G.W. Peterson, and G.N. Parsons, Highly Adsorptive, MOF-Functionalized Nonwoven Fiber Mats for Hazardous Gas Capture Enabled by Atomic Layer Deposition, Adv. Mater. Interfaces, 2014, 1(4), p 1400040–1400045 J. Zhao, M. Losego, P. Lemaire, P.S. Williams, B. Gong, S. Atanasov, T.M. Blevins, C.J. Oldham, H.J. Walls, S.D. Shepherd, M. Browe, G.W. Peterson, and G.N. Parsons, Highly Adsorptive, MOF-Functionalized Nonwoven Fiber Mats for Hazardous Gas Capture Enabled by Atomic Layer Deposition, Adv. Mater. Interfaces, 2014, 1(4), p 1400040–1400045
24.
Zurück zum Zitat J. Moellmer, A. Moeller, F. Dreisbach, R. Glaeser, and R. Staudt, High Pressure Adsorption of Hydrogen, Nitrogen, Carbon Dioxide and Methane on the Metal-Organic Framework HKUST-1, Microporous Mesoporous Mater., 2011, 138(1-3), p 140–148CrossRef J. Moellmer, A. Moeller, F. Dreisbach, R. Glaeser, and R. Staudt, High Pressure Adsorption of Hydrogen, Nitrogen, Carbon Dioxide and Methane on the Metal-Organic Framework HKUST-1, Microporous Mesoporous Mater., 2011, 138(1-3), p 140–148CrossRef
25.
Zurück zum Zitat A. Millward and O. Yaghi, Metal-Organic Frameworks with Exceptionally High Capacity for Storage of CO2 at Room Temperature, J. Am. Chem. Soc., 2005, 127(51), p 17998–17999CrossRef A. Millward and O. Yaghi, Metal-Organic Frameworks with Exceptionally High Capacity for Storage of CO2 at Room Temperature, J. Am. Chem. Soc., 2005, 127(51), p 17998–17999CrossRef
26.
Zurück zum Zitat W. Isahak, Z.A. Ramli, M.W. Ismail, and K. Ismail, Adsorption-Desorption of CO2 on Different Type of Copper Oxides Surfaces: Physical and Chemical Attractions Studies, J. CO2 Util., 2013, 2, p 8CrossRef W. Isahak, Z.A. Ramli, M.W. Ismail, and K. Ismail, Adsorption-Desorption of CO2 on Different Type of Copper Oxides Surfaces: Physical and Chemical Attractions Studies, J. CO2 Util., 2013, 2, p 8CrossRef
27.
Zurück zum Zitat J.R. Li, Y. Ma, C. McCarthy, J. Sculley, J. Yu, H. Jeong, P. Balbuena, and H. Zhou, Carbon Dioxide Capture-Related Gas Adsorption and Separation in Metal-Organic Frameworks, Coord. Chem. Rev., 2011, 255(15-16), p 1791–1823CrossRef J.R. Li, Y. Ma, C. McCarthy, J. Sculley, J. Yu, H. Jeong, P. Balbuena, and H. Zhou, Carbon Dioxide Capture-Related Gas Adsorption and Separation in Metal-Organic Frameworks, Coord. Chem. Rev., 2011, 255(15-16), p 1791–1823CrossRef
28.
Zurück zum Zitat Y. Wang, A. Benin, P. Jakubczak, R. Willis, and D. LeVan, CO2/H2O Adsorption Equilibrium and Rates on Metal-Organic Frameworks: HKUST-1 and Ni/DOBDC, Langmuir, 2010, 26(17), p 14301–14307CrossRef Y. Wang, A. Benin, P. Jakubczak, R. Willis, and D. LeVan, CO2/H2O Adsorption Equilibrium and Rates on Metal-Organic Frameworks: HKUST-1 and Ni/DOBDC, Langmuir, 2010, 26(17), p 14301–14307CrossRef
29.
Zurück zum Zitat M.P. Bernstein, D.P. Cruikshank, and S. Sandford, Near-Infrared Laboratory Spectra of Solid H2O/CO2 and CH3OH/CO2 Ice Mixtures, Icarus, 2005, 179(2), p 527–534CrossRef M.P. Bernstein, D.P. Cruikshank, and S. Sandford, Near-Infrared Laboratory Spectra of Solid H2O/CO2 and CH3OH/CO2 Ice Mixtures, Icarus, 2005, 179(2), p 527–534CrossRef
Metadaten
Titel
Processing and Performance of MOF (Metal Organic Framework)-Loaded PAN Nanofibrous Membrane for CO2 Adsorption
verfasst von
Wahiduzzaman
Mujibur R. Khan
Spencer Harp
Jeffrey Neumann
Quazi Nahida Sultana
Publikationsdatum
22.02.2016
Verlag
Springer US
Erschienen in
Journal of Materials Engineering and Performance / Ausgabe 4/2016
Print ISSN: 1059-9495
Elektronische ISSN: 1544-1024
DOI
https://doi.org/10.1007/s11665-016-1966-y

Weitere Artikel der Ausgabe 4/2016

Journal of Materials Engineering and Performance 4/2016 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.