Skip to main content
Erschienen in: International Journal of Steel Structures 5/2023

27.08.2023

Progressive Collapse Performance Evaluation of Shear Tab Connection Subjected to Column Loss

verfasst von: Masoud Ghalejoughi, Mohammad Reza Sheidaii

Erschienen in: International Journal of Steel Structures | Ausgabe 5/2023

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

A shear tab connection is one of the most common simple beam-to-column connections that is widely used in steel structures. In ASCE41-17 (Seismic evaluation and retrofit of existing buildings, American Society of Civil Engineers, 2017) and DoD (UFC 4-023-03, Design of buildings to resist progressive collapse, Department of Defense, Washington, DC, 2009), the plastic rotation capacity of a shear tab connection is purely a function of the connection depth, which is over- and under-estimated, respectively. To address this shortcoming, the present paper tries to provide a better estimation of plastic rotation capacity under the column removal scenario by employing a validated finite element model and conducting a comprehensive parametric study under various effective parameters such as connection depth, adjacent span length, and connection plate thickness. In addition to improving the plastic rotation capacity relationship, since the connection depth and adjacent span length have a significant effect on the plastic rotation capacity of the connection, a new equation has been proposed in terms of these parameters. Also, the axial-shear force–bending moment interaction of the connection is investigated.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat AISC. (2003). AISC manual of steel construction: Load and resistance factor design (3rd ed.). American Institute of Steel Construction. AISC. (2003). AISC manual of steel construction: Load and resistance factor design (3rd ed.). American Institute of Steel Construction.
Zurück zum Zitat AISC. (2005). AISC manual of steel construction (13th ed.). American Institute of Steel Construction. AISC. (2005). AISC manual of steel construction (13th ed.). American Institute of Steel Construction.
Zurück zum Zitat Alrubaidi, M., Elsanadedy, H., Abbas, H., Almusallam, T., & Al-Salloum, Y. (2020). Investigation of different steel intermediate moment frame connections under column-loss scenario. Thin-Walled Structures, 154, 106875.CrossRef Alrubaidi, M., Elsanadedy, H., Abbas, H., Almusallam, T., & Al-Salloum, Y. (2020). Investigation of different steel intermediate moment frame connections under column-loss scenario. Thin-Walled Structures, 154, 106875.CrossRef
Zurück zum Zitat ASCE. (2016). Minimum design loads for buildings and other structures. ASCE7-16, 2016. ASCE. ASCE. (2016). Minimum design loads for buildings and other structures. ASCE7-16, 2016. ASCE.
Zurück zum Zitat ASCE. (2017). Seismic evaluation and retrofit of existing buildings. ASCE41-17, 2017. American Society of Civil Engineers. ASCE. (2017). Seismic evaluation and retrofit of existing buildings. ASCE41-17, 2017. American Society of Civil Engineers.
Zurück zum Zitat Astaneh, A. (1989). Demand and supply of ductility in steel shear connections. Journal of Constructional Steel Research, 14, 1–19.MathSciNetCrossRef Astaneh, A. (1989). Demand and supply of ductility in steel shear connections. Journal of Constructional Steel Research, 14, 1–19.MathSciNetCrossRef
Zurück zum Zitat Astaneh, A. (2005). Design of shear tab connections for gravity and seismic loads. Structural Steel Educational Council. Astaneh, A. (2005). Design of shear tab connections for gravity and seismic loads. Structural Steel Educational Council.
Zurück zum Zitat Astaneh, A., Call, S. M., & McMULLIN, K. M. (1989). Design of single plate shear connections. Engineering Journal, 26, 21–32. Astaneh, A., Call, S. M., & McMULLIN, K. M. (1989). Design of single plate shear connections. Engineering Journal, 26, 21–32.
Zurück zum Zitat Baldwin Metzger, K. A. (2006). Experimental verification of a new single plate shear connection design model. Virginia Tech. Baldwin Metzger, K. A. (2006). Experimental verification of a new single plate shear connection design model. Virginia Tech.
Zurück zum Zitat Barmaki, S., Sheidaii, M. R., & Azizpour, O. (2020). Progressive collapse resistance of bolted extended end-plate moment connections. International Journal of Steel Structures, 66, 1–15. Barmaki, S., Sheidaii, M. R., & Azizpour, O. (2020). Progressive collapse resistance of bolted extended end-plate moment connections. International Journal of Steel Structures, 66, 1–15.
Zurück zum Zitat Behnam, B., Shojaei, F., & Ronagh, H. R. (2019). Seismic progressive-failure analysis of tall steel structures under beam-removal scenarios. Frontiers of Structural and Civil Engineering, 13, 904–917.CrossRef Behnam, B., Shojaei, F., & Ronagh, H. R. (2019). Seismic progressive-failure analysis of tall steel structures under beam-removal scenarios. Frontiers of Structural and Civil Engineering, 13, 904–917.CrossRef
Zurück zum Zitat Caccavale, S. E. (1975). Ductility of single plate framing connections. Caccavale, S. E. (1975). Ductility of single plate framing connections.
Zurück zum Zitat Construction, A. I. o. S. (2017). Steel construction manual (15th ed). American Institute of Steel Construction. Construction, A. I. o. S. (2017). Steel construction manual (15th ed). American Institute of Steel Construction.
Zurück zum Zitat Cortés, G., & Liu, J. (2017). Behavior of conventional and enhanced gravity connections subjected to column loss. Journal of Constructional Steel Research, 133, 475–484.CrossRef Cortés, G., & Liu, J. (2017). Behavior of conventional and enhanced gravity connections subjected to column loss. Journal of Constructional Steel Research, 133, 475–484.CrossRef
Zurück zum Zitat Creech, D. D. (2005). Behavior of single plate shear connections with rigid and flexible supports. Creech, D. D. (2005). Behavior of single plate shear connections with rigid and flexible supports.
Zurück zum Zitat Crocker, J. P., & Chambers, J. J. (2004). Single plate shear connection response to rotation demands imposed by frames undergoing cyclic lateral displacements. Journal of Structural Engineering, 130, 934–941.CrossRef Crocker, J. P., & Chambers, J. J. (2004). Single plate shear connection response to rotation demands imposed by frames undergoing cyclic lateral displacements. Journal of Structural Engineering, 130, 934–941.CrossRef
Zurück zum Zitat Daneshvar, H., & Driver, R. G. (2017). Behaviour of shear tab connections in column removal scenario. Journal of Constructional Steel Research, 138, 580–593.CrossRef Daneshvar, H., & Driver, R. G. (2017). Behaviour of shear tab connections in column removal scenario. Journal of Constructional Steel Research, 138, 580–593.CrossRef
Zurück zum Zitat Daneshvar, H., & Driver, R. G. (2018). Modelling benchmarks for steel shear connections in column removal scenario. Journal of Building Engineering, 16, 199–212.CrossRef Daneshvar, H., & Driver, R. G. (2018). Modelling benchmarks for steel shear connections in column removal scenario. Journal of Building Engineering, 16, 199–212.CrossRef
Zurück zum Zitat Dinu, F., Marginean, I., & Dubina, D. (2017). Experimental testing and numerical modelling of steel moment-frame connections under column loss. Engineering Structures, 151, 861–878.CrossRef Dinu, F., Marginean, I., & Dubina, D. (2017). Experimental testing and numerical modelling of steel moment-frame connections under column loss. Engineering Structures, 151, 861–878.CrossRef
Zurück zum Zitat DoD. (2009). UFC 4-023-03, Design of buildings to resist progressive collapse. Department of Defense. DoD. (2009). UFC 4-023-03, Design of buildings to resist progressive collapse. Department of Defense.
Zurück zum Zitat Elsanadedy, H., Almusallam, T., Alharbi, Y., Al-Salloum, Y., & Abbas, H. (2014). Progressive collapse potential of a typical steel building due to blast attacks. Journal of Constructional Steel Research, 101, 143–157.CrossRef Elsanadedy, H., Almusallam, T., Alharbi, Y., Al-Salloum, Y., & Abbas, H. (2014). Progressive collapse potential of a typical steel building due to blast attacks. Journal of Constructional Steel Research, 101, 143–157.CrossRef
Zurück zum Zitat Guravich, S. J., & Dawe, J. L. (2006). Simple beam connections in combined shear and tension. Canadian Journal of Civil Engineering, 33, 357–372.CrossRef Guravich, S. J., & Dawe, J. L. (2006). Simple beam connections in combined shear and tension. Canadian Journal of Civil Engineering, 33, 357–372.CrossRef
Zurück zum Zitat Iranpour, A., Hedayat, A. A., & Afzadi, E. A. (2019). Rotational demand and capacity of conventional single-plate shear connections subjected to gravity loading. Engineering Structures, 184, 384–405.CrossRef Iranpour, A., Hedayat, A. A., & Afzadi, E. A. (2019). Rotational demand and capacity of conventional single-plate shear connections subjected to gravity loading. Engineering Structures, 184, 384–405.CrossRef
Zurück zum Zitat Jamshidi, A., Koduru, S., & Driver, R. G. (2014). Reliability analysis of shear tab connections under progressive collapse scenario. Structures Congress, 2014, 2151–2161. Jamshidi, A., Koduru, S., & Driver, R. G. (2014). Reliability analysis of shear tab connections under progressive collapse scenario. Structures Congress, 2014, 2151–2161.
Zurück zum Zitat Kang, H., & Kim, J. (2015). Progressive collapse of steel moment frames subjected to vehicle impact. Journal of Performance of Constructed Facilities, 29, 04014172.CrossRef Kang, H., & Kim, J. (2015). Progressive collapse of steel moment frames subjected to vehicle impact. Journal of Performance of Constructed Facilities, 29, 04014172.CrossRef
Zurück zum Zitat Kiakojouri, F., De Biagi, V., Chiaia, B., & Sheidaii, M. R. (2020). Progressive collapse of framed building structures: Current knowledge and future prospects. Engineering Structures, 206, 110061.CrossRef Kiakojouri, F., De Biagi, V., Chiaia, B., & Sheidaii, M. R. (2020). Progressive collapse of framed building structures: Current knowledge and future prospects. Engineering Structures, 206, 110061.CrossRef
Zurück zum Zitat Koduru, S., & Driver, R. (2014). Generalized component-based model for shear tab connections. Journal of Structural Engineering, 140, 04013041.CrossRef Koduru, S., & Driver, R. (2014). Generalized component-based model for shear tab connections. Journal of Structural Engineering, 140, 04013041.CrossRef
Zurück zum Zitat Li, L., Wang, W., Chen, Y., & Lu, Y. (2015). Effect of beam web bolt arrangement on catenary behaviour of moment connections. Journal of Constructional Steel Research, 104, 22–36.CrossRef Li, L., Wang, W., Chen, Y., & Lu, Y. (2015). Effect of beam web bolt arrangement on catenary behaviour of moment connections. Journal of Constructional Steel Research, 104, 22–36.CrossRef
Zurück zum Zitat Li, L., Wang, W., Teh, L. H., & Chen, Y. (2017). Effects of span-to-depth ratios on moment connection damage evolution under catenary action. Journal of Constructional Steel Research, 139, 18–29.CrossRef Li, L., Wang, W., Teh, L. H., & Chen, Y. (2017). Effects of span-to-depth ratios on moment connection damage evolution under catenary action. Journal of Constructional Steel Research, 139, 18–29.CrossRef
Zurück zum Zitat Lipson, S. L. (1968). Single-angle and single-plate beam framing connections. In Canadian Structural Engineering Conference, Toronto, Ontario, 1968 (pp. 141–162). Lipson, S. L. (1968). Single-angle and single-plate beam framing connections. In Canadian Structural Engineering Conference, Toronto, Ontario, 1968 (pp. 141–162).
Zurück zum Zitat Main, J. A., & Sadek, F. (2014). Modeling and analysis of single-plate shear connections under column loss. Journal of Structural Engineering, 140, 04013070.CrossRef Main, J. A., & Sadek, F. (2014). Modeling and analysis of single-plate shear connections under column loss. Journal of Structural Engineering, 140, 04013070.CrossRef
Zurück zum Zitat Marchand, K. (2008). Guidance for progressive collapse analysis: Recommended performance levels for alternate path analysis of blast-damaged steel connections. In Proceedings of the Structures Congress/North American Steel Construction Conference (NASCC), 2008 Nashville, TN. Marchand, K. (2008). Guidance for progressive collapse analysis: Recommended performance levels for alternate path analysis of blast-damaged steel connections. In Proceedings of the Structures Congress/North American Steel Construction Conference (NASCC), 2008 Nashville, TN.
Zurück zum Zitat Meng, B., Zhong, W., Hao, J., & Song, X. (2020). Improving anti-collapse performance of steel frame with RBS connection. Journal of Constructional Steel Research, 170, 106119.CrossRef Meng, B., Zhong, W., Hao, J., & Song, X. (2020). Improving anti-collapse performance of steel frame with RBS connection. Journal of Constructional Steel Research, 170, 106119.CrossRef
Zurück zum Zitat Motallebi, M., Lignos, D. G., & Rogers, C. A. (2018). Behaviour of stiffened extended shear tab connections under gravity induced shear force. Journal of Constructional Steel Research, 148, 336–350.CrossRef Motallebi, M., Lignos, D. G., & Rogers, C. A. (2018). Behaviour of stiffened extended shear tab connections under gravity induced shear force. Journal of Constructional Steel Research, 148, 336–350.CrossRef
Zurück zum Zitat Motallebi, M., Lignos, D. G., & Rogers, C. A. (2019). Full-scale testing of stiffened extended shear tab connections under combined axial and shear forces. Engineering Structures, 185, 90–105.CrossRef Motallebi, M., Lignos, D. G., & Rogers, C. A. (2019). Full-scale testing of stiffened extended shear tab connections under combined axial and shear forces. Engineering Structures, 185, 90–105.CrossRef
Zurück zum Zitat Mourid, E. H., Mamouri, S., & Ibrahimbegovic, A. (2020). Progressive collapse of 2D reinforced concrete structures under sudden column removal. Frontiers of Structural and Civil Engineering, 14, 1387–1402.CrossRef Mourid, E. H., Mamouri, S., & Ibrahimbegovic, A. (2020). Progressive collapse of 2D reinforced concrete structures under sudden column removal. Frontiers of Structural and Civil Engineering, 14, 1387–1402.CrossRef
Zurück zum Zitat Oosterhof, S., & Driver, R. (2012). Performance of steel shear connections under combined moment, shear, and tension. Structures Congress, 2012, 146–157. Oosterhof, S., & Driver, R. (2012). Performance of steel shear connections under combined moment, shear, and tension. Structures Congress, 2012, 146–157.
Zurück zum Zitat Pantidis, P., & Gerasimidis, S. (2018). Progressive collapse of 3D steel composite buildings under interior gravity column loss. Journal of Constructional Steel Research, 150, 60–75.CrossRef Pantidis, P., & Gerasimidis, S. (2018). Progressive collapse of 3D steel composite buildings under interior gravity column loss. Journal of Constructional Steel Research, 150, 60–75.CrossRef
Zurück zum Zitat Qiao, H., Chen, Y., Wang, J., & Chen, C. (2020). Experimental study on beam-to-column connections with reduced beam section against progressive collapse. Journal of Constructional Steel Research, 175, 106358.CrossRef Qiao, H., Chen, Y., Wang, J., & Chen, C. (2020). Experimental study on beam-to-column connections with reduced beam section against progressive collapse. Journal of Constructional Steel Research, 175, 106358.CrossRef
Zurück zum Zitat Rahnavard, R., & Thomas, R. J. (2018). Numerical evaluation of the effects of fire on steel connections; Part 1: Simulation techniques. Case Studies in Thermal Engineering, 12, 445–453.CrossRef Rahnavard, R., & Thomas, R. J. (2018). Numerical evaluation of the effects of fire on steel connections; Part 1: Simulation techniques. Case Studies in Thermal Engineering, 12, 445–453.CrossRef
Zurück zum Zitat Rahnavard, R., & Thomas, R. J. (2019). Numerical evaluation of the effects of fire on steel connections; Part 2: Model results. Case Studies in Thermal Engineering, 13, 100361.CrossRef Rahnavard, R., & Thomas, R. J. (2019). Numerical evaluation of the effects of fire on steel connections; Part 2: Model results. Case Studies in Thermal Engineering, 13, 100361.CrossRef
Zurück zum Zitat Salmasi, A., Sheidaii, M. R., Saghaie Sahebalzaman, M., & Tariverdilo, S. (2020). Effect of fully restrained beam-to-column connection on the progressive collapse strength of steel moment frames. Advances in Structural Engineering, 23, 1656–1668.CrossRef Salmasi, A., Sheidaii, M. R., Saghaie Sahebalzaman, M., & Tariverdilo, S. (2020). Effect of fully restrained beam-to-column connection on the progressive collapse strength of steel moment frames. Advances in Structural Engineering, 23, 1656–1668.CrossRef
Zurück zum Zitat Song, B. I. & Sezen, H. (2009). Evaluation of an existing steel frame building against progressive collapse. In Structures Congress 2009: Don't Mess with Structural Engineers: Expanding Our Role (pp. 1–8). Song, B. I. & Sezen, H. (2009). Evaluation of an existing steel frame building against progressive collapse. In Structures Congress 2009: Don't Mess with Structural Engineers: Expanding Our Role (pp. 1–8).
Zurück zum Zitat Song, X. (2021). Probabilistic calibration for rotation capacity models of shear tab connection under column loss scenarios. Engineering Structures, 229, 111592.CrossRef Song, X. (2021). Probabilistic calibration for rotation capacity models of shear tab connection under column loss scenarios. Engineering Structures, 229, 111592.CrossRef
Zurück zum Zitat Subki, N. E. A., Mansor, H., Hamid, Y. S., & Parke, G. A. (2021). The development of a moment-rotation model for progressive collapse analysis under the influence of tensile catenary action. Journal of Constructional Steel Research, 187, 106960.CrossRef Subki, N. E. A., Mansor, H., Hamid, Y. S., & Parke, G. A. (2021). The development of a moment-rotation model for progressive collapse analysis under the influence of tensile catenary action. Journal of Constructional Steel Research, 187, 106960.CrossRef
Zurück zum Zitat Systèmes, D. (2014). ABAQUS Version 6.14. User Documentation. Systèmes, D. (2014). ABAQUS Version 6.14. User Documentation.
Zurück zum Zitat Tabaeye Izadi, I., & Ranjbaran, A. (2012). Investigation on a mitigation scheme to resist the progressive collapse of reinforced concrete buildings. Frontiers of Structural and Civil Engineering, 6, 421–430.CrossRef Tabaeye Izadi, I., & Ranjbaran, A. (2012). Investigation on a mitigation scheme to resist the progressive collapse of reinforced concrete buildings. Frontiers of Structural and Civil Engineering, 6, 421–430.CrossRef
Zurück zum Zitat Thomas, K., Driver, R. G., Oosterhof, S. A., & Callele, L. (2017). Full-scale tests of stabilized and unstabilized extended single-plate connections. Structures, 10, 49–58.CrossRef Thomas, K., Driver, R. G., Oosterhof, S. A., & Callele, L. (2017). Full-scale tests of stabilized and unstabilized extended single-plate connections. Structures, 10, 49–58.CrossRef
Zurück zum Zitat Thompson, S. (2009). Axial, shear and moment interaction of single plate. Shear tab connections Master’s Thesis. Milwaukee School of Engineering. Thompson, S. (2009). Axial, shear and moment interaction of single plate. Shear tab connections Master’s Thesis. Milwaukee School of Engineering.
Zurück zum Zitat Wang, F., Yang, J., & Pan, Z. (2020a). Progressive collapse behaviour of steel framed substructures with various beam-column connections. Engineering Failure Analysis, 109, 104399.CrossRef Wang, F., Yang, J., & Pan, Z. (2020a). Progressive collapse behaviour of steel framed substructures with various beam-column connections. Engineering Failure Analysis, 109, 104399.CrossRef
Zurück zum Zitat Wang, H., Yang, B., Chen, K., & Elchalakani, M. (2020b). Parametric analysis and simplified approach for steel-framed subassemblies with reverse channel connection under falling-debris impact. Engineering Structures, 225, 111263.CrossRef Wang, H., Yang, B., Chen, K., & Elchalakani, M. (2020b). Parametric analysis and simplified approach for steel-framed subassemblies with reverse channel connection under falling-debris impact. Engineering Structures, 225, 111263.CrossRef
Zurück zum Zitat Wang, W., Fang, C., Qin, X., Chen, Y., & Li, L. (2016). Performance of practical beam-to-SHS column connections against progressive collapse. Engineering Structures, 106, 332–347.CrossRef Wang, W., Fang, C., Qin, X., Chen, Y., & Li, L. (2016). Performance of practical beam-to-SHS column connections against progressive collapse. Engineering Structures, 106, 332–347.CrossRef
Zurück zum Zitat Zhang, J., Hu, X., Gong, S., Wu, J., Zhu, W., & Ren, C. (2021). Experimental investigation of steel-concrete composite beam to reinforced-concrete column joints with single plate shear connection. Engineering Structures, 245, 112906.CrossRef Zhang, J., Hu, X., Gong, S., Wu, J., Zhu, W., & Ren, C. (2021). Experimental investigation of steel-concrete composite beam to reinforced-concrete column joints with single plate shear connection. Engineering Structures, 245, 112906.CrossRef
Zurück zum Zitat Zhong, W., Meng, B., & Hao, J. (2017). Performance of different stiffness connections against progressive collapse. Journal of Constructional Steel Research, 135, 162–175.CrossRef Zhong, W., Meng, B., & Hao, J. (2017). Performance of different stiffness connections against progressive collapse. Journal of Constructional Steel Research, 135, 162–175.CrossRef
Metadaten
Titel
Progressive Collapse Performance Evaluation of Shear Tab Connection Subjected to Column Loss
verfasst von
Masoud Ghalejoughi
Mohammad Reza Sheidaii
Publikationsdatum
27.08.2023
Verlag
Korean Society of Steel Construction
Erschienen in
International Journal of Steel Structures / Ausgabe 5/2023
Print ISSN: 1598-2351
Elektronische ISSN: 2093-6311
DOI
https://doi.org/10.1007/s13296-023-00777-5

Weitere Artikel der Ausgabe 5/2023

International Journal of Steel Structures 5/2023 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.