Skip to main content
Erschienen in: International Journal of Computer Vision 3/2021

22.10.2020

Progressive Multi-granularity Analysis for Video Prediction

verfasst von: Jingwei Xu, Bingbing Ni, Xiaokang Yang

Erschienen in: International Journal of Computer Vision | Ausgabe 3/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Video prediction is challenging as real-world motion dynamics are usually multi-modally distributed. Existing stochastic methods commonly formulate random noise input with simple prior distribution, which is insufficient to model highly complex motion dynamics. This work proposes a progressive multiple granularity analysis framework to tackle the above difficulty. Firstly, to achieve coarse alignment, the input sequence is matched to prototype motion dynamics in the training set, based on self-supervised auto-encoder learning via motion/appearance disentanglement. Secondly, motion dynamics is transferred from the matched prototype sequence to input sequence via adaptively learned kernel, and the predicted frames are further refined through a motion-aware prediction model. Extensive qualitative and quantitative experiments on three widely used video prediction datasets demonstrate that: (1) the proposed framework essentially decomposes the hard task into a series of more approachable sub-tasks where a better solution is easier to be sought and (2) our proposed method performs favorably against state-of-the-art prediction methods.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Babaeizadeh, M., Finn, C., Erhan, D., Campbell, R. H., & Levine, S. (2017). Stochastic variational video prediction. Babaeizadeh, M., Finn, C., Erhan, D., Campbell, R. H., & Levine, S. (2017). Stochastic variational video prediction.
Zurück zum Zitat Bradski, G. (2000). The OpenCV Library. Dr. Dobb’s Journal of Software Tools. Bradski, G. (2000). The OpenCV Library. Dr. Dobb’s Journal of Software Tools.
Zurück zum Zitat Carreira, J., & Zisserman, A. (2017). Quo vadis, action recognition? A new model and the kinetics dataset. In CVPR (pp. 4724–4733). Carreira, J., & Zisserman, A. (2017). Quo vadis, action recognition? A new model and the kinetics dataset. In CVPR (pp. 4724–4733).
Zurück zum Zitat Cho, K., van Merrienboer, B., Gülçehre, Ç., Bahdanau, D., Bougares, F., Schwenk, H., & Bengio, Y. (2014). Learning phrase representations using RNN encoder-decoder for statistical machine translation. In EMNLP. Cho, K., van Merrienboer, B., Gülçehre, Ç., Bahdanau, D., Bougares, F., Schwenk, H., & Bengio, Y. (2014). Learning phrase representations using RNN encoder-decoder for statistical machine translation. In EMNLP.
Zurück zum Zitat Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., & Fei-Fei, L. (2009). ImageNet: A large-scale hierarchical image database. In CVPR. Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., & Fei-Fei, L. (2009). ImageNet: A large-scale hierarchical image database. In CVPR.
Zurück zum Zitat Deng, J., Krause, J., Stark, M., & Li, F. (2016). Leveraging the wisdom of the crowd for fine-grained recognition. TPAMI, 38(4), 666–676.CrossRef Deng, J., Krause, J., Stark, M., & Li, F. (2016). Leveraging the wisdom of the crowd for fine-grained recognition. TPAMI, 38(4), 666–676.CrossRef
Zurück zum Zitat Denton, E., & Fergus, R. (2018). Stochastic video generation with a learned prior. In ICML. Denton, E., & Fergus, R. (2018). Stochastic video generation with a learned prior. In ICML.
Zurück zum Zitat Denton, E. L., & Birodkar, V. (2017). Unsupervised learning of disentangled representations from video. In NeurIPS. Denton, E. L., & Birodkar, V. (2017). Unsupervised learning of disentangled representations from video. In NeurIPS.
Zurück zum Zitat Finn, C., Goodfellow, I. J., & Levine, S. (2016). Unsupervised learning for physical interaction through video prediction. In NeurIPS. Finn, C., Goodfellow, I. J., & Levine, S. (2016). Unsupervised learning for physical interaction through video prediction. In NeurIPS.
Zurück zum Zitat Gavves, E., Fernando, B., Snoek, C. G. M., Smeulders, A. W. M., & Tuytelaars, T. (2015). Local alignments for fine-grained categorization. IJCV., 111(2), 191–212.CrossRef Gavves, E., Fernando, B., Snoek, C. G. M., Smeulders, A. W. M., & Tuytelaars, T. (2015). Local alignments for fine-grained categorization. IJCV., 111(2), 191–212.CrossRef
Zurück zum Zitat Goodfellow, I. J., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A. C., & Bengio, Y. (2014). Generative adversarial nets. In NeurIPS. Goodfellow, I. J., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A. C., & Bengio, Y. (2014). Generative adversarial nets. In NeurIPS.
Zurück zum Zitat Hariharan, B., Arbelaez, P., Girshick, R. B., & Malik, J. (2017). Object instance segmentation and fine-grained localization using hypercolumns. TPAMI, 39(4), 627–639.CrossRef Hariharan, B., Arbelaez, P., Girshick, R. B., & Malik, J. (2017). Object instance segmentation and fine-grained localization using hypercolumns. TPAMI, 39(4), 627–639.CrossRef
Zurück zum Zitat Hochreiter, S., & Schmidhuber, J. (1997). Long short-term memory. Neural Computation, 9(8), 1735–1780.CrossRef Hochreiter, S., & Schmidhuber, J. (1997). Long short-term memory. Neural Computation, 9(8), 1735–1780.CrossRef
Zurück zum Zitat Hsieh, J., Liu, B., Huang, D., Li, F., & Niebles, J. C. (2018). Learning to decompose and disentangle representations for video prediction. In NeurIPS. Hsieh, J., Liu, B., Huang, D., Li, F., & Niebles, J. C. (2018). Learning to decompose and disentangle representations for video prediction. In NeurIPS.
Zurück zum Zitat Huang, Z., Xu, J., & Ni, B. (2018). Human motion generation via cross-space constrained sampling. In IJCAI (pp. 757–763). Huang, Z., Xu, J., & Ni, B. (2018). Human motion generation via cross-space constrained sampling. In IJCAI (pp. 757–763).
Zurück zum Zitat Ilg, E., Mayer, N., Saikia, T., Keuper, M., Dosovitskiy, A., & Brox, T. (2017). Flownet 2.0: Evolution of optical flow estimation with deep networks. In CVPR (pp. 1647–1655). Ilg, E., Mayer, N., Saikia, T., Keuper, M., Dosovitskiy, A., & Brox, T. (2017). Flownet 2.0: Evolution of optical flow estimation with deep networks. In CVPR (pp. 1647–1655).
Zurück zum Zitat Ioffe, S., & Szegedy, C. (2015). Batch normalization: Accelerating deep network training by reducing internal covariate shift. In ICML. Ioffe, S., & Szegedy, C. (2015). Batch normalization: Accelerating deep network training by reducing internal covariate shift. In ICML.
Zurück zum Zitat Ionescu, C., Papava, D., Olaru, V., & Sminchisescu, C. (2014). Human3.6m: Large scale datasets and predictive methods for 3D human sensing in natural environments. TPAMI, 36(7), 1325–1339.CrossRef Ionescu, C., Papava, D., Olaru, V., & Sminchisescu, C. (2014). Human3.6m: Large scale datasets and predictive methods for 3D human sensing in natural environments. TPAMI, 36(7), 1325–1339.CrossRef
Zurück zum Zitat Isola, P., Zhu, J., Zhou, T., & Efros, A. A. (2017). Image-to-image translation with conditional adversarial networks. In CVPR. Isola, P., Zhu, J., Zhou, T., & Efros, A. A. (2017). Image-to-image translation with conditional adversarial networks. In CVPR.
Zurück zum Zitat Jang, Y., Kim, G., & Song, Y. (2018). Video prediction with appearance and motion conditions. In ICML. Jang, Y., Kim, G., & Song, Y. (2018). Video prediction with appearance and motion conditions. In ICML.
Zurück zum Zitat Jia, X., Brabandere, B. D., Tuytelaars, T., & Gool, L. V. (2016). Dynamic filter networks. In NeurIPS. Jia, X., Brabandere, B. D., Tuytelaars, T., & Gool, L. V. (2016). Dynamic filter networks. In NeurIPS.
Zurück zum Zitat Kanungo, T., Mount, D. M., Netanyahu, N. S., Piatko, C. D., Silverman, R., & Wu, A. Y. (2002). An efficient k-means clustering algorithm: Analysis and implementation. TPAMI, 24(7), 881–892.CrossRef Kanungo, T., Mount, D. M., Netanyahu, N. S., Piatko, C. D., Silverman, R., & Wu, A. Y. (2002). An efficient k-means clustering algorithm: Analysis and implementation. TPAMI, 24(7), 881–892.CrossRef
Zurück zum Zitat Kingma, D. P., & Ba, J. (2015). Adam: A method for stochastic optimization. In ICLR. Kingma, D. P., & Ba, J. (2015). Adam: A method for stochastic optimization. In ICLR.
Zurück zum Zitat Kurutach, T., Tamar, A., Yang, G., Russell, S. J., & Abbeel, P. (2018). Learning plannable representations with causal infogan. In NeurIPS. Kurutach, T., Tamar, A., Yang, G., Russell, S. J., & Abbeel, P. (2018). Learning plannable representations with causal infogan. In NeurIPS.
Zurück zum Zitat Lee, A. X., Zhang, R., Ebert, F., Abbeel, P., Finn, C., & Levine, S. (2018). Stochastic adversarial video prediction. CoRR. Lee, A. X., Zhang, R., Ebert, F., Abbeel, P., Finn, C., & Levine, S. (2018). Stochastic adversarial video prediction. CoRR.
Zurück zum Zitat Lee, S., Purushwalkam, S., Cogswell, M., Ranjan, V., Crandall, D. J., & Batra, D. (2016). Stochastic multiple choice learning for training diverse deep ensembles. In NeurIPS. Lee, S., Purushwalkam, S., Cogswell, M., Ranjan, V., Crandall, D. J., & Batra, D. (2016). Stochastic multiple choice learning for training diverse deep ensembles. In NeurIPS.
Zurück zum Zitat Li, H., Huang, D., Morvan, J., Wang, Y., & Chen, L. (2015). Towards 3D face recognition in the real: A registration-free approach using fine-grained matching of 3D keypoint descriptors. IJCV, 113(2), 128–142.MathSciNetCrossRef Li, H., Huang, D., Morvan, J., Wang, Y., & Chen, L. (2015). Towards 3D face recognition in the real: A registration-free approach using fine-grained matching of 3D keypoint descriptors. IJCV, 113(2), 128–142.MathSciNetCrossRef
Zurück zum Zitat Li, Y., Fang, C., Yang, J., Wang, Z., Lu, X., & Yang, M. (2018). Flow-grounded spatial-temporal video prediction from still images. In ECCV. Li, Y., Fang, C., Yang, J., Wang, Z., Lu, X., & Yang, M. (2018). Flow-grounded spatial-temporal video prediction from still images. In ECCV.
Zurück zum Zitat Liang, X., Lee, L., Dai, W., & Xing, E. P. (2017). Dual motion GAN for future-flow embedded video prediction. In ICCV. Liang, X., Lee, L., Dai, W., & Xing, E. P. (2017). Dual motion GAN for future-flow embedded video prediction. In ICCV.
Zurück zum Zitat Lin, T., Roy Chowdhury, A., & Maji, S. (2018). Bilinear convolutional neural networks for fine-grained visual recognition. TPAMI, 40(6), 1309–1322.CrossRef Lin, T., Roy Chowdhury, A., & Maji, S. (2018). Bilinear convolutional neural networks for fine-grained visual recognition. TPAMI, 40(6), 1309–1322.CrossRef
Zurück zum Zitat Luc, P., Neverova, N., Couprie, C., Verbeek, J., & LeCun, Y. (2017). Predicting deeper into the future of semantic segmentation. In ICCV. Luc, P., Neverova, N., Couprie, C., Verbeek, J., & LeCun, Y. (2017). Predicting deeper into the future of semantic segmentation. In ICCV.
Zurück zum Zitat Maaten, L. V. D., & Hinton, G. (2008). Visualizing data using t-sne. JMLR, 9(11), 2579–2605.MATH Maaten, L. V. D., & Hinton, G. (2008). Visualizing data using t-sne. JMLR, 9(11), 2579–2605.MATH
Zurück zum Zitat Nair, A., Pong, V., Dalal, M., Bahl, S., Lin, S., & Levine, S. (2018). Visual reinforcement learning with imagined goals. In NeurIPS. Nair, A., Pong, V., Dalal, M., Bahl, S., Lin, S., & Levine, S. (2018). Visual reinforcement learning with imagined goals. In NeurIPS.
Zurück zum Zitat Ni, B., Paramathayalan, V. R., Li, T., & Moulin, P. (2016). Multiple granularity modeling: A coarse-to-fine framework for fine-grained action analysis. IJCV, 120(1), 28–43.MathSciNetCrossRef Ni, B., Paramathayalan, V. R., Li, T., & Moulin, P. (2016). Multiple granularity modeling: A coarse-to-fine framework for fine-grained action analysis. IJCV, 120(1), 28–43.MathSciNetCrossRef
Zurück zum Zitat Pathak, D., Agrawal, P., Efros, A. A., & Darrell, T. (2017). Curiosity-driven exploration by self-supervised prediction. In ICML. Pathak, D., Agrawal, P., Efros, A. A., & Darrell, T. (2017). Curiosity-driven exploration by self-supervised prediction. In ICML.
Zurück zum Zitat Rohrbach, M., Rohrbach, A., Regneri, M., Amin, S., Andriluka, M., Pinkal, M., & Schiele, B. (xxxx) Recognizing fine-grained and composite activities using hand-centric features and script data. IJCV, 119 (3):346–373 (16). Rohrbach, M., Rohrbach, A., Regneri, M., Amin, S., Andriluka, M., Pinkal, M., & Schiele, B. (xxxx) Recognizing fine-grained and composite activities using hand-centric features and script data. IJCV, 119 (3):346–373 (16).
Zurück zum Zitat Ronneberger, O., Fischer, P., & Brox, T. (2015). U-net: Convolutional networks for biomedical image segmentation. In MICCAI. Ronneberger, O., Fischer, P., & Brox, T. (2015). U-net: Convolutional networks for biomedical image segmentation. In MICCAI.
Zurück zum Zitat Ruder, M., Dosovitskiy, A., & Brox, T. (2018). Artistic style transfer for videos and spherical images. IJCV, 126(11), 1199–1219.MathSciNetCrossRef Ruder, M., Dosovitskiy, A., & Brox, T. (2018). Artistic style transfer for videos and spherical images. IJCV, 126(11), 1199–1219.MathSciNetCrossRef
Zurück zum Zitat Ryoo, M. S., & Matthies, L. H. (2016). First-person activity recognition: Feature, temporal structure, and prediction. IJCV, 119(3), 307–328.MathSciNetCrossRef Ryoo, M. S., & Matthies, L. H. (2016). First-person activity recognition: Feature, temporal structure, and prediction. IJCV, 119(3), 307–328.MathSciNetCrossRef
Zurück zum Zitat Salimans, T., Goodfellow, I. J., Zaremba, W., Cheung, V., Radford, A., & Chen, X. (2016). Improved techniques for training gans. In NeurIPS. Salimans, T., Goodfellow, I. J., Zaremba, W., Cheung, V., Radford, A., & Chen, X. (2016). Improved techniques for training gans. In NeurIPS.
Zurück zum Zitat Schüldt, C., Laptev, I., & Caputo, B. (2004). Recognizing human actions: A local SVM approach. In ICPR. Schüldt, C., Laptev, I., & Caputo, B. (2004). Recognizing human actions: A local SVM approach. In ICPR.
Zurück zum Zitat Shen, F., Yan, S., & Zeng, G. (2018). Neural style transfer via meta networks. In CVPR (pp. 8061–8069). Shen, F., Yan, S., & Zeng, G. (2018). Neural style transfer via meta networks. In CVPR (pp. 8061–8069).
Zurück zum Zitat Shi, X., Chen, Z., Wang, H., Yeung, D., Wong, W., & Woo, W. (2015). Convolutional LSTM network: A machine learning approach for precipitation nowcasting. In NeurIPS. Shi, X., Chen, Z., Wang, H., Yeung, D., Wong, W., & Woo, W. (2015). Convolutional LSTM network: A machine learning approach for precipitation nowcasting. In NeurIPS.
Zurück zum Zitat Simonyan, K., & Zisserman, A. (2015). Very deep convolutional networks for large-scale image recognition. In ICLR. Simonyan, K., & Zisserman, A. (2015). Very deep convolutional networks for large-scale image recognition. In ICLR.
Zurück zum Zitat Srivastava, N., Mansimov, E., & Salakhutdinov, R. (2015). Unsupervised learning of video representations using lstms. In ICML. Srivastava, N., Mansimov, E., & Salakhutdinov, R. (2015). Unsupervised learning of video representations using lstms. In ICML.
Zurück zum Zitat Tian, Y., Li, J., Yu, S., & Huang, T. (2015). Learning complementary saliency priors for foreground object segmentation in complex scenes. IJCV, 111(2), 153–170.CrossRef Tian, Y., Li, J., Yu, S., & Huang, T. (2015). Learning complementary saliency priors for foreground object segmentation in complex scenes. IJCV, 111(2), 153–170.CrossRef
Zurück zum Zitat Tulyakov, S., Liu, M., Yang, X., & Kautz, J. (2018). Mocogan: Decomposing motion and content for video generation. In CVPR. Tulyakov, S., Liu, M., Yang, X., & Kautz, J. (2018). Mocogan: Decomposing motion and content for video generation. In CVPR.
Zurück zum Zitat Villegas, R., Yang, J., Hong, S., Lin, X., & Lee, H. (2017a). Decomposing motion and content for natural video sequence prediction. Villegas, R., Yang, J., Hong, S., Lin, X., & Lee, H. (2017a). Decomposing motion and content for natural video sequence prediction.
Zurück zum Zitat Villegas, R., Yang, J., Zou, Y., Sohn, S., Lin, X., & Lee, H. (2017b). Learning to generate long-term future via hierarchical prediction. In ICML. Villegas, R., Yang, J., Zou, Y., Sohn, S., Lin, X., & Lee, H. (2017b). Learning to generate long-term future via hierarchical prediction. In ICML.
Zurück zum Zitat Wichers, N., Villegas, R., Erhan, D., & Lee, H. (2018). Hierarchical long-term video prediction without supervision. In ICML. Wichers, N., Villegas, R., Erhan, D., & Lee, H. (2018). Hierarchical long-term video prediction without supervision. In ICML.
Zurück zum Zitat Wu, X., Hiramatsu, K., & Kashino, K. (2018). Label propagation with ensemble of pairwise geometric relations: Towards robust large-scale retrieval of object instances. IJCV, 126(7), 689–713.MathSciNetCrossRef Wu, X., Hiramatsu, K., & Kashino, K. (2018). Label propagation with ensemble of pairwise geometric relations: Towards robust large-scale retrieval of object instances. IJCV, 126(7), 689–713.MathSciNetCrossRef
Zurück zum Zitat Xia, S., Wang, C., Chai, J., & Hodgins, J. K. (2015). Realtime style transfer for unlabeled heterogeneous human motion. ACM Transactions on Graphics, 34(4), 1191–11910.CrossRef Xia, S., Wang, C., Chai, J., & Hodgins, J. K. (2015). Realtime style transfer for unlabeled heterogeneous human motion. ACM Transactions on Graphics, 34(4), 1191–11910.CrossRef
Zurück zum Zitat Xu, B., Wang, N., Chen, T., & Li, M. (2015). Empirical evaluation of rectified activations in convolutional network. CoRR. Xu, B., Wang, N., Chen, T., & Li, M. (2015). Empirical evaluation of rectified activations in convolutional network. CoRR.
Zurück zum Zitat Xu, J., Ni, B., Li, Z., Cheng, S., & Yang, X. (2018a). Structure preserving video prediction. In CVPR (pp. 1460–1469). Xu, J., Ni, B., Li, Z., Cheng, S., & Yang, X. (2018a). Structure preserving video prediction. In CVPR (pp. 1460–1469).
Zurück zum Zitat Xu, J., Ni, B., & Yang, X. (2018b). Video prediction via selective sampling. In NeurIPS. Xu, J., Ni, B., & Yang, X. (2018b). Video prediction via selective sampling. In NeurIPS.
Zurück zum Zitat Xu, J., Xu, H., Ni, B., Yang, X., Wang, X., & Darrell, T. (2020). Hierarchical style-based networks for motion synthesis. CoRR, arXiv:2008.10162. Xu, J., Xu, H., Ni, B., Yang, X., Wang, X., & Darrell, T. (2020). Hierarchical style-based networks for motion synthesis. CoRR, arXiv:​2008.​10162.
Zurück zum Zitat Xu, Z., Tao, D., Huang, S., & Zhang, Y. (xxxx). Friend or foe: Fine-grained categorization with weak supervision. TIP, 26 (1):135–146. Xu, Z., Tao, D., Huang, S., & Zhang, Y. (xxxx). Friend or foe: Fine-grained categorization with weak supervision. TIP, 26 (1):135–146.
Zurück zum Zitat Xue, T., Wu, J., Bouman, K. L., & Freeman, B. (2016). Visual dynamics: Probabilistic future frame synthesis via cross convolutional networks. In NeurIPS. Xue, T., Wu, J., Bouman, K. L., & Freeman, B. (2016). Visual dynamics: Probabilistic future frame synthesis via cross convolutional networks. In NeurIPS.
Zurück zum Zitat Yan, Y., Xu, J., Ni, B., Zhang, W., & Yang, X. (2017). Skeleton-aided articulated motion generation. In ACM MM (pp. 199–207). Yan, Y., Xu, J., Ni, B., Zhang, W., & Yang, X. (2017). Skeleton-aided articulated motion generation. In ACM MM (pp. 199–207).
Zurück zum Zitat Yang, R., Ni, B., Ma, C., Xu, Y., & Yang, X. (2017). Video segmentation via multiple granularity analysis. In CVPR. Yang, R., Ni, B., Ma, C., Xu, Y., & Yang, X. (2017). Video segmentation via multiple granularity analysis. In CVPR.
Zurück zum Zitat Zhao, B., Feng, J., Wu, X., & Yan, S. (2017). A survey on deep learning-based fine-grained object classification and semantic segmentation. IJAC, 14, 119–135. Zhao, B., Feng, J., Wu, X., & Yan, S. (2017). A survey on deep learning-based fine-grained object classification and semantic segmentation. IJAC, 14, 119–135.
Metadaten
Titel
Progressive Multi-granularity Analysis for Video Prediction
verfasst von
Jingwei Xu
Bingbing Ni
Xiaokang Yang
Publikationsdatum
22.10.2020
Verlag
Springer US
Erschienen in
International Journal of Computer Vision / Ausgabe 3/2021
Print ISSN: 0920-5691
Elektronische ISSN: 1573-1405
DOI
https://doi.org/10.1007/s11263-020-01389-w

Weitere Artikel der Ausgabe 3/2021

International Journal of Computer Vision 3/2021 Zur Ausgabe