Skip to main content
Erschienen in: Neural Computing and Applications 1/2024

29.10.2023 | Original Article

Projection neural networks with finite-time and fixed-time convergence for sparse signal reconstruction

verfasst von: Jing Xu, Chuandong Li, Xing He, Xiaoyu Zhang

Erschienen in: Neural Computing and Applications | Ausgabe 1/2024

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This paper considers the \(L_1\)-minimization problem for sparse signal and image reconstruction by using projection neural networks (PNNs). Firstly, a new finite-time converging projection neural network (FtPNN) is presented. Building upon FtPNN, a new fixed-time converging PNN (FxtPNN) is designed. Under the condition that the projection matrix satisfies the Restricted Isometry Property (RIP), the stability in the sense of Lyapunov and the finite-time convergence property of the proposed FtPNN are proved; then, it is proven that the proposed FxtPNN is stable and converges to the optimum solution regardless of the initial values in fixed time. Finally, simulation examples with signal and image reconstruction are carried out to show the effectiveness of our proposed two neural networks, namely FtPNN and FxtPNN.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
2.
Zurück zum Zitat Candes EJ, Wakin MB (2008) An introduction to compressive sampling. IEEE Signal Process Mag 25(2):21–30CrossRef Candes EJ, Wakin MB (2008) An introduction to compressive sampling. IEEE Signal Process Mag 25(2):21–30CrossRef
3.
Zurück zum Zitat Gan L (2007) Block compressed sensing of natural images. In: 15th International conference on digital signal processing, pp 403–406 Gan L (2007) Block compressed sensing of natural images. In: 15th International conference on digital signal processing, pp 403–406
4.
Zurück zum Zitat Zhao Y, Liao X, He X, Tang R, Deng W (2021) Smoothing inertial neurodynamic approach for sparse signal reconstruction via lP-norm minimization. Neural Netw 140:100–112CrossRef Zhao Y, Liao X, He X, Tang R, Deng W (2021) Smoothing inertial neurodynamic approach for sparse signal reconstruction via lP-norm minimization. Neural Netw 140:100–112CrossRef
5.
Zurück zum Zitat Aharon M, Elad M, Bruckstein A (2006) K-SVD: an algorithm for designing overcomplete dictionaries for sparse representation. IEEE Trans Signal Process 54(11):4311–4322CrossRef Aharon M, Elad M, Bruckstein A (2006) K-SVD: an algorithm for designing overcomplete dictionaries for sparse representation. IEEE Trans Signal Process 54(11):4311–4322CrossRef
6.
Zurück zum Zitat Zhao Y, Liao X, He X (2022) Novel projection neurodynamic approaches for constrained convex optimization. Neural Netw 150:336–349CrossRef Zhao Y, Liao X, He X (2022) Novel projection neurodynamic approaches for constrained convex optimization. Neural Netw 150:336–349CrossRef
8.
Zurück zum Zitat Duarte MF, Davenport MA, Takhar D, Laska JN, Sun T, Kelly KF, Baraniuk RG (2008) Single-pixel imaging via compressive sampling. IEEE Signal Process Mag 25(2):83–91CrossRef Duarte MF, Davenport MA, Takhar D, Laska JN, Sun T, Kelly KF, Baraniuk RG (2008) Single-pixel imaging via compressive sampling. IEEE Signal Process Mag 25(2):83–91CrossRef
9.
Zurück zum Zitat Adcock B, Gelb A, Song G, Sui Y (2019) Joint sparse recovery based on variances. SIAM J Sci Comput 41(1):246–268MathSciNetCrossRef Adcock B, Gelb A, Song G, Sui Y (2019) Joint sparse recovery based on variances. SIAM J Sci Comput 41(1):246–268MathSciNetCrossRef
10.
Zurück zum Zitat Xie J, Liao A, Lei Y (2018) A new accelerated alternating minimization method for analysis sparse recovery. Signal Process 145:167–174CrossRef Xie J, Liao A, Lei Y (2018) A new accelerated alternating minimization method for analysis sparse recovery. Signal Process 145:167–174CrossRef
11.
Zurück zum Zitat Sant A, Leinonen M, Rao BD (2022) Block-sparse signal recovery via general total variation regularized sparse Bayesian learning. IEEE Trans Signal Process 70:1056–1071MathSciNetCrossRef Sant A, Leinonen M, Rao BD (2022) Block-sparse signal recovery via general total variation regularized sparse Bayesian learning. IEEE Trans Signal Process 70:1056–1071MathSciNetCrossRef
12.
Zurück zum Zitat Thomas TJ, Rani JS (2022) FPGA implementation of sparsity independent regularized pursuit for fast CS reconstruction. IEEE Trans Circuits Syst I Regul Pap 69(4):1617–1628CrossRef Thomas TJ, Rani JS (2022) FPGA implementation of sparsity independent regularized pursuit for fast CS reconstruction. IEEE Trans Circuits Syst I Regul Pap 69(4):1617–1628CrossRef
13.
Zurück zum Zitat Figueiredo MAT, Nowak RD, Wright SJ (2007) Gradient projection for sparse reconstruction: application to compressed sensing and other inverse problems. IEEE J Sel Top Signal Process 1(4):586–597CrossRef Figueiredo MAT, Nowak RD, Wright SJ (2007) Gradient projection for sparse reconstruction: application to compressed sensing and other inverse problems. IEEE J Sel Top Signal Process 1(4):586–597CrossRef
14.
Zurück zum Zitat Wang J, Kwon S, Shim B (2012) Generalized orthogonal matching pursuit. IEEE Trans Signal Process 60(12):6202–6216MathSciNetCrossRef Wang J, Kwon S, Shim B (2012) Generalized orthogonal matching pursuit. IEEE Trans Signal Process 60(12):6202–6216MathSciNetCrossRef
15.
16.
17.
Zurück zum Zitat Chen SS, Donoho DL, Saunders MA (1998) Atomic decomposition by basis pursuit. SIAM J Sci Comput 20(1):33–61MathSciNetCrossRef Chen SS, Donoho DL, Saunders MA (1998) Atomic decomposition by basis pursuit. SIAM J Sci Comput 20(1):33–61MathSciNetCrossRef
18.
Zurück zum Zitat Liu Q, Wang J (2015) \(L_1\)-minimization algorithms for sparse signal reconstruction based on a projection neural network. IEEE Trans Neural Netw Learn Syst 27(3):698–707CrossRef Liu Q, Wang J (2015) \(L_1\)-minimization algorithms for sparse signal reconstruction based on a projection neural network. IEEE Trans Neural Netw Learn Syst 27(3):698–707CrossRef
19.
Zurück zum Zitat Liu Q, Zhang W, Xiong J, Xu B, Cheng L (2018) A projection-based algorithm for constrained \(L_1\)-minimization optimization with application to sparse signal reconstruction. In: 2018 Eighth international conference on information science and technology (ICIST), pp 437–443 Liu Q, Zhang W, Xiong J, Xu B, Cheng L (2018) A projection-based algorithm for constrained \(L_1\)-minimization optimization with application to sparse signal reconstruction. In: 2018 Eighth international conference on information science and technology (ICIST), pp 437–443
20.
Zurück zum Zitat Feng R, Leung C, Constantinides AG, Zeng W (2017) Lagrange programming neural network for nondifferentiable optimization problems in sparse approximation. IEEE Trans Neural Net Learn Syst 28(10):2395–2407MathSciNetCrossRef Feng R, Leung C, Constantinides AG, Zeng W (2017) Lagrange programming neural network for nondifferentiable optimization problems in sparse approximation. IEEE Trans Neural Net Learn Syst 28(10):2395–2407MathSciNetCrossRef
21.
Zurück zum Zitat Xu B, Liu Q (2018) Iterative projection based sparse reconstruction for face recognition. Neurocomputing 284:99–106CrossRef Xu B, Liu Q (2018) Iterative projection based sparse reconstruction for face recognition. Neurocomputing 284:99–106CrossRef
22.
Zurück zum Zitat Guo C, Yang Q (2015) A neurodynamic optimization method for recovery of compressive sensed signals with globally converged solution approximating to \(l_{0}\) minimization. IEEE Trans Neural Net Learn Syst 26(7):1363–1374CrossRef Guo C, Yang Q (2015) A neurodynamic optimization method for recovery of compressive sensed signals with globally converged solution approximating to \(l_{0}\) minimization. IEEE Trans Neural Net Learn Syst 26(7):1363–1374CrossRef
23.
Zurück zum Zitat Li W, Bian W, Xue X (2020) Projected neural network for a class of non-Lipschitz optimization problems with linear constraints. IEEE Trans Neural Net Learn Syst 31(9):3361–3373MathSciNetCrossRef Li W, Bian W, Xue X (2020) Projected neural network for a class of non-Lipschitz optimization problems with linear constraints. IEEE Trans Neural Net Learn Syst 31(9):3361–3373MathSciNetCrossRef
24.
Zurück zum Zitat Ma L, Bian W (2021) A simple neural network for sparse optimization with \(l_1\) regularization. IEEE Trans Netw Sci Eng 8(4):3430–3442CrossRef Ma L, Bian W (2021) A simple neural network for sparse optimization with \(l_1\) regularization. IEEE Trans Netw Sci Eng 8(4):3430–3442CrossRef
25.
Zurück zum Zitat Wang D, Zhang Z (2019) KKT condition-based smoothing recurrent neural network for nonsmooth nonconvex optimization in compressed sensing. Neural Comput Appl 31(7):2905–2920CrossRef Wang D, Zhang Z (2019) KKT condition-based smoothing recurrent neural network for nonsmooth nonconvex optimization in compressed sensing. Neural Comput Appl 31(7):2905–2920CrossRef
27.
Zurück zum Zitat Che H, Wang J, Cichocki A (2022) Sparse signal reconstruction via collaborative neurodynamic optimization. Neural Net 154:255–269CrossRef Che H, Wang J, Cichocki A (2022) Sparse signal reconstruction via collaborative neurodynamic optimization. Neural Net 154:255–269CrossRef
28.
Zurück zum Zitat Li J, Che H, Liu X (2022) Circuit design and analysis of smoothed \(l_0\) norm approximation for sparse signal reconstruction. Circ Syst Signal Process 42:1–25 Li J, Che H, Liu X (2022) Circuit design and analysis of smoothed \(l_0\) norm approximation for sparse signal reconstruction. Circ Syst Signal Process 42:1–25
29.
Zurück zum Zitat Zhang X, Li C, Li H (2022) Finite-time stabilization of nonlinear systems via impulsive control with state-dependent delay. J Frankl Inst 359(3):1196–1214MathSciNetCrossRef Zhang X, Li C, Li H (2022) Finite-time stabilization of nonlinear systems via impulsive control with state-dependent delay. J Frankl Inst 359(3):1196–1214MathSciNetCrossRef
30.
Zurück zum Zitat Zhang X, Li X, Cao J, Miaadi F (2018) Design of memory controllers for finite-time stabilization of delayed neural networks with uncertainty. J Frankl Inst 355(13):5394–5413MathSciNetCrossRef Zhang X, Li X, Cao J, Miaadi F (2018) Design of memory controllers for finite-time stabilization of delayed neural networks with uncertainty. J Frankl Inst 355(13):5394–5413MathSciNetCrossRef
31.
Zurück zum Zitat Li H, Li C, Huang T, Zhang W (2018) Fixed-time stabilization of impulsive Cohen-Grossberg bam neural networks. Neural Netw 98:203–211CrossRef Li H, Li C, Huang T, Zhang W (2018) Fixed-time stabilization of impulsive Cohen-Grossberg bam neural networks. Neural Netw 98:203–211CrossRef
32.
Zurück zum Zitat Li H, Li C, Huang T, Ouyang D (2017) Fixed-time stability and stabilization of impulsive dynamical systems. J Frankl Inst 354(18):8626–8644MathSciNetCrossRef Li H, Li C, Huang T, Ouyang D (2017) Fixed-time stability and stabilization of impulsive dynamical systems. J Frankl Inst 354(18):8626–8644MathSciNetCrossRef
33.
Zurück zum Zitat Garg K, Panagou D (2021) Fixed-time stable gradient flows: applications to continuous-time optimization. IEEE Trans Autom Control 66(5):2002–2015MathSciNetCrossRef Garg K, Panagou D (2021) Fixed-time stable gradient flows: applications to continuous-time optimization. IEEE Trans Autom Control 66(5):2002–2015MathSciNetCrossRef
34.
Zurück zum Zitat Ju X, Hu D, Li C, He X, Feng G (2022) A novel fixed-time converging neurodynamic approach to mixed variational inequalities and applications. IEEE Trans Cybern 52(12):12942–12953CrossRef Ju X, Hu D, Li C, He X, Feng G (2022) A novel fixed-time converging neurodynamic approach to mixed variational inequalities and applications. IEEE Trans Cybern 52(12):12942–12953CrossRef
37.
Zurück zum Zitat Bhat SP, Bernstein DS (2000) Finite-time stability of continuous autonomous systems. SIAM J Control Optim 38(3):751–766MathSciNetCrossRef Bhat SP, Bernstein DS (2000) Finite-time stability of continuous autonomous systems. SIAM J Control Optim 38(3):751–766MathSciNetCrossRef
38.
Zurück zum Zitat Polyakov A (2012) Nonlinear feedback design for fixed-time stabilization of linear control systems. IEEE Trans Autom Control 57(8):2106–2110MathSciNetCrossRef Polyakov A (2012) Nonlinear feedback design for fixed-time stabilization of linear control systems. IEEE Trans Autom Control 57(8):2106–2110MathSciNetCrossRef
39.
Zurück zum Zitat Parikh N, Boyd S (2013) Proximal algorithms. Found Trends Optim 1:123–231 Parikh N, Boyd S (2013) Proximal algorithms. Found Trends Optim 1:123–231
40.
Zurück zum Zitat Candes E, Tao T (2007) The DANTZIG selector: statistical estimation when p is much larger than n. Ann Stat 35(6):2313–2351MathSciNet Candes E, Tao T (2007) The DANTZIG selector: statistical estimation when p is much larger than n. Ann Stat 35(6):2313–2351MathSciNet
41.
Zurück zum Zitat Meana H, Miyatake M, Guzm V (2004) Analysis of a wavelet-based watermarking algorithm. In: International conference on electronics, communications, and computers. IEEE computer society, Los Alamitos, CA, USA, p 283 Meana H, Miyatake M, Guzm V (2004) Analysis of a wavelet-based watermarking algorithm. In: International conference on electronics, communications, and computers. IEEE computer society, Los Alamitos, CA, USA, p 283
42.
Zurück zum Zitat LaSalle JP (ed) (1967) An invariance principle in the theory of stability. New York, Academic, pp 277–286 LaSalle JP (ed) (1967) An invariance principle in the theory of stability. New York, Academic, pp 277–286
Metadaten
Titel
Projection neural networks with finite-time and fixed-time convergence for sparse signal reconstruction
verfasst von
Jing Xu
Chuandong Li
Xing He
Xiaoyu Zhang
Publikationsdatum
29.10.2023
Verlag
Springer London
Erschienen in
Neural Computing and Applications / Ausgabe 1/2024
Print ISSN: 0941-0643
Elektronische ISSN: 1433-3058
DOI
https://doi.org/10.1007/s00521-023-09015-9

Weitere Artikel der Ausgabe 1/2024

Neural Computing and Applications 1/2024 Zur Ausgabe

S.I.: Improving Healthcare outcomes using Multimedia Big Data Analytics

EEG signal classification using improved intuitionistic fuzzy twin support vector machines

Premium Partner