Skip to main content
Erschienen in: Polymer Bulletin 2/2016

20.08.2015 | Original Paper

Properties and characterization of ethylene-vinyl acetate filled with carbon nanotube

verfasst von: Maziyar Sabet, Hassan Soleimani, Seyednooroldin Hosseini

Erschienen in: Polymer Bulletin | Ausgabe 2/2016

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Ethylene-vinyl acetate (EVA) containing carbon nanotubes (CNTs) were prepared by melt blending. Morphological observation showed well dispersion of CNTs in EVA. Effect of CNTs on crystallization of EVA was studied by differential scanning calorimetry (DSC). The beginning and maximum crystallization temperatures for CNT/EVA composite resulted 10 and 5 °C higher than pure EVA, respectively, showing high nucleation capability of CNTs in EVA matrix. The morphologies were evaluated by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and atomic force microscopy (AFM), whereas, flammability properties were assessed by thermogravimetric analysis (TGA), natural burning and cone calorimetry. It was resulted that when nanodimensional material was not well dispersed, degradation products were not changed significantly. Unlike, CNT/EVA nanocomposites gave reasonably good reductions in peak heat release even when well nano-dispersed has not been obtained due to formation of low permeable char containing graphitic carbon. It was noticeable that CNT addition to EVA reduced surface cracks of chars which improved barrier resistance to evolution of flammable volatiles and oxygen access to condensed phase. The CNTs declined heat release rates and mass loss rate by 50–60 %, prolonged combustion time to two times in CNT/EVA samples. The TGA data also displayed that CNTs increased thermal degradation temperatures and final charred residues of CNT/EVA samples. The experimental observations from the torque, morphological evolution tests, and SEM resulted that CNTs are utilized for (1) increase of melt viscosity due to network structure formation of CNTs in the EVA matrix; (2) the enhancement of thermoxidation stability as a result of the CNTs’ mechanical strength and integrity of the charred layers in the CNT/EVA nanocomposites; (3) the formation of compact charred layers promoted by CNTs acted as heat barrier and thermal insulation.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Thostenson ET, Chou TW (2003) On the elastic properties of carbon nanotube-based composites: modeling and characterization. J Phys D Appl Phys 36(573):82–90 Thostenson ET, Chou TW (2003) On the elastic properties of carbon nanotube-based composites: modeling and characterization. J Phys D Appl Phys 36(573):82–90
2.
Zurück zum Zitat Robertson J (2004) Realistic applications of CNTs. Mater Today 7(10):46–52CrossRef Robertson J (2004) Realistic applications of CNTs. Mater Today 7(10):46–52CrossRef
3.
Zurück zum Zitat Guadagno L, Vertuccio L, Sorrentino A, Raimondo M, Naddeo C, Vittoria V et al (2009) Mechanical and barrier properties of epoxy resin filled with multi-walled carbon nanotubes. Carbon 47(10):2419–2430CrossRef Guadagno L, Vertuccio L, Sorrentino A, Raimondo M, Naddeo C, Vittoria V et al (2009) Mechanical and barrier properties of epoxy resin filled with multi-walled carbon nanotubes. Carbon 47(10):2419–2430CrossRef
4.
Zurück zum Zitat Sabet M, Hassan A, Ratnam CT (2010) Mechanical, thermal and electrical properties of ethylene vinyl acetate irradiated by an electron-beam. Polym Plast Technol Eng 49(6):589–594CrossRef Sabet M, Hassan A, Ratnam CT (2010) Mechanical, thermal and electrical properties of ethylene vinyl acetate irradiated by an electron-beam. Polym Plast Technol Eng 49(6):589–594CrossRef
5.
Zurück zum Zitat Sabet M, Soleimani H, Hassan A, Ratnam CT (2015) Properties of ethylene-vinyl acetate filled with metal hydroxide. J Elastomers Plast 47:88–100CrossRef Sabet M, Soleimani H, Hassan A, Ratnam CT (2015) Properties of ethylene-vinyl acetate filled with metal hydroxide. J Elastomers Plast 47:88–100CrossRef
6.
Zurück zum Zitat Sabet M, Hassan A, Ratnam CT (2012) Electron beam irradiation of low density polyethylene/ethylene vinyl acetate filled with metal hydroxides for wire and cable applications. Polym Degrad Stab 97(8):1432–1437CrossRef Sabet M, Hassan A, Ratnam CT (2012) Electron beam irradiation of low density polyethylene/ethylene vinyl acetate filled with metal hydroxides for wire and cable applications. Polym Degrad Stab 97(8):1432–1437CrossRef
7.
Zurück zum Zitat Sabet M, Soleimani H, Hassan A, Ratnam CT (2014) The effect of addition EVA and LDPE-g-MAH on irradiated LDPE filled with metal hydroxides. Polym Plast Technol Eng 53(8):775–783CrossRef Sabet M, Soleimani H, Hassan A, Ratnam CT (2014) The effect of addition EVA and LDPE-g-MAH on irradiated LDPE filled with metal hydroxides. Polym Plast Technol Eng 53(8):775–783CrossRef
8.
Zurück zum Zitat Sabet M, Hassan A, Ratnam CT (2013) Effect of zinc borate on flammability/thermal properties of ethylene vinyl acetate filled with metal hydroxides. J Reinf Plast Compos 32(15):1122–1128CrossRef Sabet M, Hassan A, Ratnam CT (2013) Effect of zinc borate on flammability/thermal properties of ethylene vinyl acetate filled with metal hydroxides. J Reinf Plast Compos 32(15):1122–1128CrossRef
9.
Zurück zum Zitat Giuliana Gorrasia G, Lietoa RD, Patimob G, Pasqualeb SD, Sorrentino A (2011) Structure–property relationships on uniaxially oriented carbon nanotube/polyethylene composites. Polymer 52:1124–1132CrossRef Giuliana Gorrasia G, Lietoa RD, Patimob G, Pasqualeb SD, Sorrentino A (2011) Structure–property relationships on uniaxially oriented carbon nanotube/polyethylene composites. Polymer 52:1124–1132CrossRef
10.
Zurück zum Zitat Sandler JKW, Kirk JE, Kinloch IA, Shaffer MSP, Windle AH (2003) Ultra-low electrical percolation threshold in carbon-nanotube–epoxy composites. Polymer 44(19):5893–5899CrossRef Sandler JKW, Kirk JE, Kinloch IA, Shaffer MSP, Windle AH (2003) Ultra-low electrical percolation threshold in carbon-nanotube–epoxy composites. Polymer 44(19):5893–5899CrossRef
11.
Zurück zum Zitat Bauhofer W, Kovacs JZ (2009) A review and analysis of electrical percolation in carbon nanotube polymer composites. Compos Sci Technol 69(10):1486–1498CrossRef Bauhofer W, Kovacs JZ (2009) A review and analysis of electrical percolation in carbon nanotube polymer composites. Compos Sci Technol 69(10):1486–1498CrossRef
12.
Zurück zum Zitat Xiao KQ, Zhang LC, Zarudi I (2007) Mechanical and rheological properties of carbon nanotube-reinforced polyethylene composites. Compos Sci Technol 67:177–182CrossRef Xiao KQ, Zhang LC, Zarudi I (2007) Mechanical and rheological properties of carbon nanotube-reinforced polyethylene composites. Compos Sci Technol 67:177–182CrossRef
13.
Zurück zum Zitat Cha SI, Kim KT, Arshad SN, Mo CB, Hong SH (2005) Extraordinary strengthening effect of carbon nanotubes in metal-matrix composites processed by molecular-level mixing. Adv Mater 17(11):1377–1381CrossRef Cha SI, Kim KT, Arshad SN, Mo CB, Hong SH (2005) Extraordinary strengthening effect of carbon nanotubes in metal-matrix composites processed by molecular-level mixing. Adv Mater 17(11):1377–1381CrossRef
14.
Zurück zum Zitat Cha SI, Kim KT, Lee KH, Mo CB, Hong SH (2005) Strengthening and toughening of carbon nanotube reinforced alumina composite fabricated by molecular level mixing process. Scripta Mater 53(7):793–797CrossRef Cha SI, Kim KT, Lee KH, Mo CB, Hong SH (2005) Strengthening and toughening of carbon nanotube reinforced alumina composite fabricated by molecular level mixing process. Scripta Mater 53(7):793–797CrossRef
15.
Zurück zum Zitat Liang GD, Tjong SC (2006) Electrical properties of low-density polyethylene/multiwalled carbon nanotube composites. Mater Chem Phys 100:132–137CrossRef Liang GD, Tjong SC (2006) Electrical properties of low-density polyethylene/multiwalled carbon nanotube composites. Mater Chem Phys 100:132–137CrossRef
16.
Zurück zum Zitat Singh BP, Prabha Parveen S et al (2011) Designing of multiwalled carbon nanotubes reinforced low density polyethylene composites for suppression of electromagnetic radiation. J Nanopart Res 13:7065–7074CrossRef Singh BP, Prabha Parveen S et al (2011) Designing of multiwalled carbon nanotubes reinforced low density polyethylene composites for suppression of electromagnetic radiation. J Nanopart Res 13:7065–7074CrossRef
17.
Zurück zum Zitat Dorigato A, Pegoretti AP (2010) Linear low-density polyethylene/silica micro- and nanocomposites: dynamic rheological measurements and modeling. eXPRESS. Polymer Letters 4:115–129CrossRef Dorigato A, Pegoretti AP (2010) Linear low-density polyethylene/silica micro- and nanocomposites: dynamic rheological measurements and modeling. eXPRESS. Polymer Letters 4:115–129CrossRef
18.
Zurück zum Zitat Liang GD, Tjong SC (2006) Electrical properties of low-density polyethylene/multiwalled carbon nanotube nanocomposites. Mater Chem Phys 100:132–137CrossRef Liang GD, Tjong SC (2006) Electrical properties of low-density polyethylene/multiwalled carbon nanotube nanocomposites. Mater Chem Phys 100:132–137CrossRef
19.
Zurück zum Zitat Chen-Feng K, Hsu-Chiang K, Chen-Chi MM, Chia-Hsun C, Han-Lang W (2007) The preparation of carbon nanotube/linear low density polyethylene composites by a water-crosslinking reaction. Mater Lett 61:2744–2748CrossRef Chen-Feng K, Hsu-Chiang K, Chen-Chi MM, Chia-Hsun C, Han-Lang W (2007) The preparation of carbon nanotube/linear low density polyethylene composites by a water-crosslinking reaction. Mater Lett 61:2744–2748CrossRef
20.
Zurück zum Zitat Wenzhong T, Michael HS, Suresh GA (2003) Melt processing and mechanical property characterization of multi-walled carbon nanotube/high density polyethylene (MWNT/HDPE) composite films. Carbon 41:2779–2785CrossRef Wenzhong T, Michael HS, Suresh GA (2003) Melt processing and mechanical property characterization of multi-walled carbon nanotube/high density polyethylene (MWNT/HDPE) composite films. Carbon 41:2779–2785CrossRef
21.
Zurück zum Zitat Qinghua Z, Sanjay R, Dajun C, Dirk L, Piet JL (2006) Low percolation threshold in single-walled carbon nanotube/high density polyethylene composites prepared by melt processing technique. Carbon 44:778–785CrossRef Qinghua Z, Sanjay R, Dajun C, Dirk L, Piet JL (2006) Low percolation threshold in single-walled carbon nanotube/high density polyethylene composites prepared by melt processing technique. Carbon 44:778–785CrossRef
22.
Zurück zum Zitat Tapas K, Saswata B, Chang E, Hong MEU, Partha K, Nam HK, Joong HL (2011) Preparation of functionalized graphene/linear low density polyethylene composites by a solution mixing method. Carbon 49:1033–1051CrossRef Tapas K, Saswata B, Chang E, Hong MEU, Partha K, Nam HK, Joong HL (2011) Preparation of functionalized graphene/linear low density polyethylene composites by a solution mixing method. Carbon 49:1033–1051CrossRef
23.
Zurück zum Zitat Petra P, Tschke MAG, Ingo A, Sergej D, Dirk L (2004) Rheological and dielectrical characterization of melt mixed polycarbonate-multiwalled carbon nanotube composites. Polymer 45:8863–8870CrossRef Petra P, Tschke MAG, Ingo A, Sergej D, Dirk L (2004) Rheological and dielectrical characterization of melt mixed polycarbonate-multiwalled carbon nanotube composites. Polymer 45:8863–8870CrossRef
24.
Zurück zum Zitat Tony M, Petra P, Tschke P, Halley MM, Steven EJB, Gerard P, Brennan DB, Patrick L, Darren M, John PQ (2005) Polyethylene multiwalled carbon nanotube composites. Polymer 46:8222–8232CrossRef Tony M, Petra P, Tschke P, Halley MM, Steven EJB, Gerard P, Brennan DB, Patrick L, Darren M, John PQ (2005) Polyethylene multiwalled carbon nanotube composites. Polymer 46:8222–8232CrossRef
25.
Zurück zum Zitat Marius CC, Matthew JHE, Manias GC, Alberto F, Gunter B, Rakesh KG, Charles AW (2007) The influence of carbon nanotubes, organically modified montmorillonites and layered double hydroxides on the thermal degradation and fire retardancy of polyethylene, ethylene vinyl acetate copolymer and polystyrene. Polymer 48:6532–6545CrossRef Marius CC, Matthew JHE, Manias GC, Alberto F, Gunter B, Rakesh KG, Charles AW (2007) The influence of carbon nanotubes, organically modified montmorillonites and layered double hydroxides on the thermal degradation and fire retardancy of polyethylene, ethylene vinyl acetate copolymer and polystyrene. Polymer 48:6532–6545CrossRef
26.
Zurück zum Zitat Changchun W, Zhi-Xin G, Shoukuan F, Wei W, Daoben Z (2004) Polymers containing fullerene or carbon nanotube structures. Progress Polymer Science 29:1079–1141CrossRef Changchun W, Zhi-Xin G, Shoukuan F, Wei W, Daoben Z (2004) Polymers containing fullerene or carbon nanotube structures. Progress Polymer Science 29:1079–1141CrossRef
27.
Zurück zum Zitat Zdenko S, Dimitrios T, Konstantinos P, Costas G (2010) Carbon nanotube–polymer composites: chemistry, processing, mechanical and electrical properties. Prog Polym Sci 35:357–401CrossRef Zdenko S, Dimitrios T, Konstantinos P, Costas G (2010) Carbon nanotube–polymer composites: chemistry, processing, mechanical and electrical properties. Prog Polym Sci 35:357–401CrossRef
28.
Zurück zum Zitat Sabet M, Soleimani H (2014) Mechanical and electrical properties of low density polyethylene filled with carbon nanotubes. IOP Conference Series. Mater Sci Eng 64(1):012001 Sabet M, Soleimani H (2014) Mechanical and electrical properties of low density polyethylene filled with carbon nanotubes. IOP Conference Series. Mater Sci Eng 64(1):012001
29.
Zurück zum Zitat Sabet M, Hassan A, Wahita MU, Ratnam TR (2010) Mechanical, thermal and electrical properties of ethylene vinyl acetate irradiated by an electron-beam. Polym Plast Technol Eng 49(6):589–594CrossRef Sabet M, Hassan A, Wahita MU, Ratnam TR (2010) Mechanical, thermal and electrical properties of ethylene vinyl acetate irradiated by an electron-beam. Polym Plast Technol Eng 49(6):589–594CrossRef
30.
Zurück zum Zitat Li SN, Li ZM, Yang MB (2004) Carbon nanotubes induced nonisothermal crystallization of ethylene-vinyl acetate copolymer. Mater Lett 58:3967–3970CrossRef Li SN, Li ZM, Yang MB (2004) Carbon nanotubes induced nonisothermal crystallization of ethylene-vinyl acetate copolymer. Mater Lett 58:3967–3970CrossRef
31.
Zurück zum Zitat Costache MC, Heidecker MJ (2007) The influence of carbon nanotubes organically modified montmorillonites and layered double hydroxides on the thermal degradation and fire retardancy of polyethylene, ethylene vinyl acetate copolymer and polystyrene. Polymer 48:6532–6545CrossRef Costache MC, Heidecker MJ (2007) The influence of carbon nanotubes organically modified montmorillonites and layered double hydroxides on the thermal degradation and fire retardancy of polyethylene, ethylene vinyl acetate copolymer and polystyrene. Polymer 48:6532–6545CrossRef
32.
Zurück zum Zitat Huang CY, Wu JY (2011) The manufacture and investigation of multi-walled carbon nanotube/polypyrrole/EVA nano-polymeric composites for electromagnetic interference shielding. Thin Solid Films 519:4765–4773CrossRef Huang CY, Wu JY (2011) The manufacture and investigation of multi-walled carbon nanotube/polypyrrole/EVA nano-polymeric composites for electromagnetic interference shielding. Thin Solid Films 519:4765–4773CrossRef
33.
Zurück zum Zitat Gaoa F, Beyer G (2005) A mechanistic study of fire retardancy of carbon nanotube/ethylene vinyl acetate copolymers and their clay composites. Polym Degrad Stab 89:559–564CrossRef Gaoa F, Beyer G (2005) A mechanistic study of fire retardancy of carbon nanotube/ethylene vinyl acetate copolymers and their clay composites. Polym Degrad Stab 89:559–564CrossRef
34.
Zurück zum Zitat Ye L, Wu Q, Qu B (2009) Synergistic effects and mechanism of multiwalled carbon nanotubes with magnesium hydroxide in halogen-free flame retardant EVA/MH/MWNT nanocomposites. Polym Degrad Stab 94:751–756CrossRef Ye L, Wu Q, Qu B (2009) Synergistic effects and mechanism of multiwalled carbon nanotubes with magnesium hydroxide in halogen-free flame retardant EVA/MH/MWNT nanocomposites. Polym Degrad Stab 94:751–756CrossRef
35.
Zurück zum Zitat Peeterbroeck S, Breugelmans L (2007) The influence of the matrix polarity on the morphology and properties of ethylene vinyl acetate copolymers–carbon nanotube nanocomposites. Composites Science and Technology 67:1659–1665CrossRef Peeterbroeck S, Breugelmans L (2007) The influence of the matrix polarity on the morphology and properties of ethylene vinyl acetate copolymers–carbon nanotube nanocomposites. Composites Science and Technology 67:1659–1665CrossRef
Metadaten
Titel
Properties and characterization of ethylene-vinyl acetate filled with carbon nanotube
verfasst von
Maziyar Sabet
Hassan Soleimani
Seyednooroldin Hosseini
Publikationsdatum
20.08.2015
Verlag
Springer Berlin Heidelberg
Erschienen in
Polymer Bulletin / Ausgabe 2/2016
Print ISSN: 0170-0839
Elektronische ISSN: 1436-2449
DOI
https://doi.org/10.1007/s00289-015-1499-9

Weitere Artikel der Ausgabe 2/2016

Polymer Bulletin 2/2016 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.