Skip to main content
Erschienen in: Polymer Bulletin 2/2016

20.08.2015 | Review

A brief review on the chemical modifications of lignocellulosic fibers for durable engineering composites

Erschienen in: Polymer Bulletin | Ausgabe 2/2016

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

A brief review has been presented on the existing methods to enhance the durability of lignocellulosic fibers (LCFs) for manufacturing composites for engineering applications. The free hydroxyl groups of the cellulose chains within LCFs tend to attract water molecules in moist environment, which may cause the fibers to swell and the cellulose chains to lose their integrity due to hydrolysis and oxidation imparted by the actions of biogenic enzymes or chemical factors, such as acidity, alkalinity, and salinity or UV irradiation. This study mainly highlights those technologies that present the modifications of cellulose main chain within the LCFs to improve the degradation resistance and mechanical strength. Detailed pros and cons of those chemical modifications have also been presented in this study with possible applications of the composites with special reference to durability.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Thakur VK, Thakur MK (2014) Processing and characterization of natural cellulose fibers/thermoset polymer composites. Carbohydr Polym 109:102–117CrossRef Thakur VK, Thakur MK (2014) Processing and characterization of natural cellulose fibers/thermoset polymer composites. Carbohydr Polym 109:102–117CrossRef
2.
Zurück zum Zitat Thakur VK, Thakur MK, Gupta RK (2014) Review: Raw natural fiber-based polymer composites. Int J Polym Anal Charact 19:256–271CrossRef Thakur VK, Thakur MK, Gupta RK (2014) Review: Raw natural fiber-based polymer composites. Int J Polym Anal Charact 19:256–271CrossRef
3.
Zurück zum Zitat Bledzki AK, Gassan J (1999) Composites reinforced with cellulose based fibers. Prog Polym Sci 24:221–274CrossRef Bledzki AK, Gassan J (1999) Composites reinforced with cellulose based fibers. Prog Polym Sci 24:221–274CrossRef
4.
Zurück zum Zitat Thakur VK, Thakur MK, Raghvan P, Kessler MR (2014) Progress in green polymer composites from lignin for multifunctional applications: a review. ACS Sustain Chem Eng 2:1072–1092CrossRef Thakur VK, Thakur MK, Raghvan P, Kessler MR (2014) Progress in green polymer composites from lignin for multifunctional applications: a review. ACS Sustain Chem Eng 2:1072–1092CrossRef
5.
Zurück zum Zitat Thakur VK, Thakur MK, Gupta RK (2013) Synthesiss of lignocellulosic polymer with improved chemical resistance through free radical polymerization. Int J Biol Macromol 61:121–126CrossRef Thakur VK, Thakur MK, Gupta RK (2013) Synthesiss of lignocellulosic polymer with improved chemical resistance through free radical polymerization. Int J Biol Macromol 61:121–126CrossRef
6.
Zurück zum Zitat Li M-C, Wu Q, Song K, Lee S, Qing Y, Wu Y (2015) Cellulose nanoparticles: structure-morphology-rheology relationship. ACS Sustain Chem Eng 3:821–832CrossRef Li M-C, Wu Q, Song K, Lee S, Qing Y, Wu Y (2015) Cellulose nanoparticles: structure-morphology-rheology relationship. ACS Sustain Chem Eng 3:821–832CrossRef
7.
Zurück zum Zitat Habibi Y, Lucia LA, Rojas OJ (2010) Cellulose nanocrystals: chemistry, self-assembly, and Applications. Chem Rev 110:3479–3500CrossRef Habibi Y, Lucia LA, Rojas OJ (2010) Cellulose nanocrystals: chemistry, self-assembly, and Applications. Chem Rev 110:3479–3500CrossRef
8.
Zurück zum Zitat Saha P, Manna S, Chowdhury RS, Sen R, Roy D, Adhikari B (2010) Enhancement of tensile strength of lignocellulosic jute fibers by alkali-steam treatment. Biores Technol 101:3182–3187CrossRef Saha P, Manna S, Chowdhury RS, Sen R, Roy D, Adhikari B (2010) Enhancement of tensile strength of lignocellulosic jute fibers by alkali-steam treatment. Biores Technol 101:3182–3187CrossRef
9.
Zurück zum Zitat Gassan J, Bledzki AK (1995) 7th Internationales techtexil symposium 1995. Frankfurt, 20–22 June 1995 Gassan J, Bledzki AK (1995) 7th Internationales techtexil symposium 1995. Frankfurt, 20–22 June 1995
10.
Zurück zum Zitat Solomon TWG (1988) Organic chemistry, 4th edn. Wiley, New York Solomon TWG (1988) Organic chemistry, 4th edn. Wiley, New York
11.
Zurück zum Zitat Rowell RM, Stout HP (2007) Jute and Kenaf fibers, Chapter 7. In: Lewin M (ed) Handbook of fiber chemistry, 3rd edn. CRC Press, Boca Raton Rowell RM, Stout HP (2007) Jute and Kenaf fibers, Chapter 7. In: Lewin M (ed) Handbook of fiber chemistry, 3rd edn. CRC Press, Boca Raton
12.
Zurück zum Zitat Rowell RM (1996) Chemical modification of nonwood lignocellulosics, chapter 9. In: Hon DNS (ed) Chemical modification of lignocellulosic materials. Marcel Dekker, New York Rowell RM (1996) Chemical modification of nonwood lignocellulosics, chapter 9. In: Hon DNS (ed) Chemical modification of lignocellulosic materials. Marcel Dekker, New York
13.
Zurück zum Zitat Winandy JE, Rowell RM (2005) Chemistry of wood strength. In: Handbook of wood chemistry and wood composites. CRC Press, Boca Raton Winandy JE, Rowell RM (2005) Chemistry of wood strength. In: Handbook of wood chemistry and wood composites. CRC Press, Boca Raton
14.
Zurück zum Zitat Saheb DN, Jog JP (1999) Natural fiber polymer composites: a review. Adv Polym Tech 18:351–363CrossRef Saheb DN, Jog JP (1999) Natural fiber polymer composites: a review. Adv Polym Tech 18:351–363CrossRef
15.
Zurück zum Zitat Sjorstrom E (1981) Wood chemistry: fundamentals and applications. Academic Press, London, p 169 Sjorstrom E (1981) Wood chemistry: fundamentals and applications. Academic Press, London, p 169
16.
Zurück zum Zitat Sreekala MS, Thomas S (2003) Effect of fibre surface modification on water-sorption characteristics of oil palm fibres. Composit Sci Technol 63:861–869CrossRef Sreekala MS, Thomas S (2003) Effect of fibre surface modification on water-sorption characteristics of oil palm fibres. Composit Sci Technol 63:861–869CrossRef
17.
Zurück zum Zitat Hill ASC, Abdul Khalil HPS, Hale MD (1998) A study of the potential acetylation to improve the properties of plant fibers. Ind Crop Prod 8:53–63CrossRef Hill ASC, Abdul Khalil HPS, Hale MD (1998) A study of the potential acetylation to improve the properties of plant fibers. Ind Crop Prod 8:53–63CrossRef
18.
Zurück zum Zitat Abdul Khalil HPS, Ismail H (2001) Effect of acetylation and coupling agent treatments upon biological degradation of plant fibre reinforced polyester composites. Polym Test 20:65–75CrossRef Abdul Khalil HPS, Ismail H (2001) Effect of acetylation and coupling agent treatments upon biological degradation of plant fibre reinforced polyester composites. Polym Test 20:65–75CrossRef
19.
Zurück zum Zitat Teramoto N, Urata K, Ozawa K, Shibata M (2004) Biodegradation of aliphatic polyester composites reinforced by abaca fiber. Polym Degrad Stab 86:401–409CrossRef Teramoto N, Urata K, Ozawa K, Shibata M (2004) Biodegradation of aliphatic polyester composites reinforced by abaca fiber. Polym Degrad Stab 86:401–409CrossRef
20.
Zurück zum Zitat Joseph K, Mattoso LHC, Toledo S, Thomas S, de Carvalho LH, Pthen L, Kala S, James B (2000) Frollini E, Leão AL, Mattoso LHC, Sãn Carlos (eds) Natural polymers and agrofibers composites. Embrapa, USP-IQSC, UNESP, Brazil Joseph K, Mattoso LHC, Toledo S, Thomas S, de Carvalho LH, Pthen L, Kala S, James B (2000) Frollini E, Leão AL, Mattoso LHC, Sãn Carlos (eds) Natural polymers and agrofibers composites. Embrapa, USP-IQSC, UNESP, Brazil
21.
Zurück zum Zitat Kushwaha PK, Kumar R (2011) Influence of chemical treatment on the mechanical and water absorption properties of bamboo fiber composites. J Reinf Plast Composit 30:73–85CrossRef Kushwaha PK, Kumar R (2011) Influence of chemical treatment on the mechanical and water absorption properties of bamboo fiber composites. J Reinf Plast Composit 30:73–85CrossRef
22.
Zurück zum Zitat Pandey K, Chandrasekhar N (2006) Photostability of wood surfaces esterified by benzoyl chloride. J Appl Polym Sci 99:2367–2374CrossRef Pandey K, Chandrasekhar N (2006) Photostability of wood surfaces esterified by benzoyl chloride. J Appl Polym Sci 99:2367–2374CrossRef
23.
Zurück zum Zitat Evans PD, Owen NL, Schmid S, Webster RD (2002) Weathering and photostability of benzoylated wood. Polym Degrad Stab 76:291–303CrossRef Evans PD, Owen NL, Schmid S, Webster RD (2002) Weathering and photostability of benzoylated wood. Polym Degrad Stab 76:291–303CrossRef
24.
Zurück zum Zitat Cunha AG, Freire CSR, Silvestre AJD, Neto CP, Gandini A, Orblin E, Fardim P (2007) Highly hydrophobic biopolymers prepared by the surface pentafluorobenzoylation of cellulose substrate. Biomacromolecules 8:1347–1352CrossRef Cunha AG, Freire CSR, Silvestre AJD, Neto CP, Gandini A, Orblin E, Fardim P (2007) Highly hydrophobic biopolymers prepared by the surface pentafluorobenzoylation of cellulose substrate. Biomacromolecules 8:1347–1352CrossRef
25.
Zurück zum Zitat Torres FG, Cubillas ML (2005) Study of the interfacial properties of natural fibre reinforced polyethylene. Polym Test 24:694–698CrossRef Torres FG, Cubillas ML (2005) Study of the interfacial properties of natural fibre reinforced polyethylene. Polym Test 24:694–698CrossRef
26.
Zurück zum Zitat Kalaprasad G, Francis B, Thomas S, Radhesh Kumar C, Pavitharan C, Groeninckx G, Thomas S (2004) Effect of fibre length and chemical modifications on the tensile properties of intimately mixed short sisal/glass hybrid fibre reinforced low density polyethylene composites. Polym Int 53:1624–1638CrossRef Kalaprasad G, Francis B, Thomas S, Radhesh Kumar C, Pavitharan C, Groeninckx G, Thomas S (2004) Effect of fibre length and chemical modifications on the tensile properties of intimately mixed short sisal/glass hybrid fibre reinforced low density polyethylene composites. Polym Int 53:1624–1638CrossRef
27.
Zurück zum Zitat Corrales F, Vilaseca F, Llop M, Girones J, Mendez JA, Mutje P (2007) Chemical modification of jute fibers for the production of green composites. J Hazard Mater 144:730–7354CrossRef Corrales F, Vilaseca F, Llop M, Girones J, Mendez JA, Mutje P (2007) Chemical modification of jute fibers for the production of green composites. J Hazard Mater 144:730–7354CrossRef
28.
Zurück zum Zitat Pasquini D, Belgacem MN, Gandini A, Curvelo da Silva AA (2006) Surface erterification of cellulose fibers: characterization by DRIFT and contact angle measurements. J Colloid Interf Sci 295:79–83CrossRef Pasquini D, Belgacem MN, Gandini A, Curvelo da Silva AA (2006) Surface erterification of cellulose fibers: characterization by DRIFT and contact angle measurements. J Colloid Interf Sci 295:79–83CrossRef
29.
Zurück zum Zitat Freire CSR, Silvestre AJD, Pascoal Neto C, Belgacem MN, Gandini A (2006) Controlled heterogeneous modification of cellulose fibers with fatty acids: effect of reaction conditions on the extent of esterification and fiber properties. J Appl Polym Sci 100:1093–1102CrossRef Freire CSR, Silvestre AJD, Pascoal Neto C, Belgacem MN, Gandini A (2006) Controlled heterogeneous modification of cellulose fibers with fatty acids: effect of reaction conditions on the extent of esterification and fiber properties. J Appl Polym Sci 100:1093–1102CrossRef
30.
Zurück zum Zitat Samal RK, Acharya S, Mohanty M, Ray MC (2001) FTIR spectra and physico-chemical behavior of vinyl ester participated and transesterification and curing of jute. J Appl Polym Sci 79:575–581CrossRef Samal RK, Acharya S, Mohanty M, Ray MC (2001) FTIR spectra and physico-chemical behavior of vinyl ester participated and transesterification and curing of jute. J Appl Polym Sci 79:575–581CrossRef
31.
Zurück zum Zitat Samal RK, Rout SK, Panda BB, Senapati BK (1997) Vunyl-ester-participated transesterification and curing on the physicochemical behavior of coir-IV. J Appl Polym Sci 64:2283–2291CrossRef Samal RK, Rout SK, Panda BB, Senapati BK (1997) Vunyl-ester-participated transesterification and curing on the physicochemical behavior of coir-IV. J Appl Polym Sci 64:2283–2291CrossRef
32.
Zurück zum Zitat Dankovich TA, Hsieh YL (2007) Surface modification of cellulose with plant triglycerides for hydrophobicity. Cellulose 14:469–480CrossRef Dankovich TA, Hsieh YL (2007) Surface modification of cellulose with plant triglycerides for hydrophobicity. Cellulose 14:469–480CrossRef
33.
Zurück zum Zitat Rowell RM, Chen GC (1994) Epichlorohydrin coupling reactions with wood: part 1. Reactions with biologically active alcohol. Wood Sci Technol 28:371–376CrossRef Rowell RM, Chen GC (1994) Epichlorohydrin coupling reactions with wood: part 1. Reactions with biologically active alcohol. Wood Sci Technol 28:371–376CrossRef
34.
Zurück zum Zitat Lu X, Zhang MQ, Rong MZ, Shi G, Yang GC (2002) All plant fiber composites. I: unidirectional sisal fiber reinforced benzylated wood. Polym Compos 23:624–633CrossRef Lu X, Zhang MQ, Rong MZ, Shi G, Yang GC (2002) All plant fiber composites. I: unidirectional sisal fiber reinforced benzylated wood. Polym Compos 23:624–633CrossRef
35.
Zurück zum Zitat Kalia S, Kaith BS, Kaur I (2009) Pretreatment of natural fibers and their application as reinforcing materials in polymer composites—a review. Polym Eng Sci 49:1253–1272CrossRef Kalia S, Kaith BS, Kaur I (2009) Pretreatment of natural fibers and their application as reinforcing materials in polymer composites—a review. Polym Eng Sci 49:1253–1272CrossRef
36.
Zurück zum Zitat Bairdo M, Frisoni G, Scandola M, Licciardello A (2002) Surface chemical modification of natural cellulose fibers. J Appl Polym Sci 83:38–45CrossRef Bairdo M, Frisoni G, Scandola M, Licciardello A (2002) Surface chemical modification of natural cellulose fibers. J Appl Polym Sci 83:38–45CrossRef
37.
Zurück zum Zitat Agarwal R, Saxena NS, Sharma KB, Thomas S, Sreekala MS (2000) Activation energya and crystallization kinetics of untreated and treated oil palm fibre reinforced phenol formaldehyde composites. Mater Sci Eng A 277:77–82CrossRef Agarwal R, Saxena NS, Sharma KB, Thomas S, Sreekala MS (2000) Activation energya and crystallization kinetics of untreated and treated oil palm fibre reinforced phenol formaldehyde composites. Mater Sci Eng A 277:77–82CrossRef
38.
Zurück zum Zitat Thakur MK, Gupta RK, Thakur VK (2014) Surface modification of cellulose using silane coupling agent. Carbohydr Polym 111:849–855CrossRef Thakur MK, Gupta RK, Thakur VK (2014) Surface modification of cellulose using silane coupling agent. Carbohydr Polym 111:849–855CrossRef
39.
Zurück zum Zitat Valadez-Gonzalvez A, Cervantez-Uc JM, Olayo R, Herrera-Franco PJ (1999) Chemical modification of henequen fibers with an organosilane coupling agent. Composit B Eng 30:321–331CrossRef Valadez-Gonzalvez A, Cervantez-Uc JM, Olayo R, Herrera-Franco PJ (1999) Chemical modification of henequen fibers with an organosilane coupling agent. Composit B Eng 30:321–331CrossRef
40.
Zurück zum Zitat Sreekala MS, Kumaran MG, Joseph S, Jacob M, Thomas S (2000) Oil palm reinforced phenol formaldehyde composite influence of fiber surface modifications on the mechanical performance. Appl Composit Mater 7:295–329CrossRef Sreekala MS, Kumaran MG, Joseph S, Jacob M, Thomas S (2000) Oil palm reinforced phenol formaldehyde composite influence of fiber surface modifications on the mechanical performance. Appl Composit Mater 7:295–329CrossRef
41.
Zurück zum Zitat Thakur VK, Singha AS, Misra BN (2011) Graft copolymerization of methyl methacrylate onto cellulosic biofibers. J Appl Polym Sci 122:532–544CrossRef Thakur VK, Singha AS, Misra BN (2011) Graft copolymerization of methyl methacrylate onto cellulosic biofibers. J Appl Polym Sci 122:532–544CrossRef
42.
Zurück zum Zitat Thakur VK, Singha AS, Thakur MK (2014) Pressure induced synthesis of EA grafted Saccaharum cilliare fibers. Int J Polym Mater Biomater 63:17–22CrossRef Thakur VK, Singha AS, Thakur MK (2014) Pressure induced synthesis of EA grafted Saccaharum cilliare fibers. Int J Polym Mater Biomater 63:17–22CrossRef
43.
Zurück zum Zitat Thakur VK, Thakur MK, Gupta RK (2013) Graft copolymers from cellulose: synthesis, characterization and evaluation. Carbohydr Polym 97:18–25CrossRef Thakur VK, Thakur MK, Gupta RK (2013) Graft copolymers from cellulose: synthesis, characterization and evaluation. Carbohydr Polym 97:18–25CrossRef
44.
Zurück zum Zitat Thakur VK, Singha AS, Thakur MK (2013) Synthesis of natural cellulose-based graft copolymers using methyl methacrylate as an efficient monomer. Adv Polym Technol 32:E741–E748CrossRef Thakur VK, Singha AS, Thakur MK (2013) Synthesis of natural cellulose-based graft copolymers using methyl methacrylate as an efficient monomer. Adv Polym Technol 32:E741–E748CrossRef
45.
Zurück zum Zitat Thakur VK, Thakur MK, Gupta RK (2013) Rapid synthesis of graft copolymers from natural cellulose fibers. Carbohydr Polym 98:820–828CrossRef Thakur VK, Thakur MK, Gupta RK (2013) Rapid synthesis of graft copolymers from natural cellulose fibers. Carbohydr Polym 98:820–828CrossRef
46.
Zurück zum Zitat Thakur VK, Thakur MK, Gupta RK (2014) Graft copolymers of natural fibers from green composites. Carbohydr Polym 104:87–93CrossRef Thakur VK, Thakur MK, Gupta RK (2014) Graft copolymers of natural fibers from green composites. Carbohydr Polym 104:87–93CrossRef
47.
Zurück zum Zitat Sahoo PK, Sahu GC, Rana PK, Das AK (2005) Preparation, characterization, and biodegradability of jute-based natural fiber composite superabsorbents. Adv Polym Technol 24:208–214CrossRef Sahoo PK, Sahu GC, Rana PK, Das AK (2005) Preparation, characterization, and biodegradability of jute-based natural fiber composite superabsorbents. Adv Polym Technol 24:208–214CrossRef
48.
Zurück zum Zitat Thakur VK, Thakur MK, Gupta RK (2013) Graft copolymers from natural polymers using free radical polymerization. Int J Polym Anal Charact 18:495–503CrossRef Thakur VK, Thakur MK, Gupta RK (2013) Graft copolymers from natural polymers using free radical polymerization. Int J Polym Anal Charact 18:495–503CrossRef
49.
Zurück zum Zitat Podgorski L, Bousta G, Schambourg F, Maguin J, Chevet B (2001) Surface modification of wood by plasma polymerization. Pigment Resin Technol 31:33–40CrossRef Podgorski L, Bousta G, Schambourg F, Maguin J, Chevet B (2001) Surface modification of wood by plasma polymerization. Pigment Resin Technol 31:33–40CrossRef
50.
Zurück zum Zitat Navarro F, Davalos F, Denes F, Cruz LE, Young RA, Ramos J (2003) Highly hydrophobic sisal chemithermomechanical pulp (CTMO) paper by fluorotrimethylsilane plasma treatment. Cellulose 10:411–424CrossRef Navarro F, Davalos F, Denes F, Cruz LE, Young RA, Ramos J (2003) Highly hydrophobic sisal chemithermomechanical pulp (CTMO) paper by fluorotrimethylsilane plasma treatment. Cellulose 10:411–424CrossRef
51.
Zurück zum Zitat Hassan MM, Islam MR, Khan MA (2002) Effect of additives on the improvement of mechanical and degradable properties of photografted jute yarn with acrylamide. J Polym Environ 10:139–145CrossRef Hassan MM, Islam MR, Khan MA (2002) Effect of additives on the improvement of mechanical and degradable properties of photografted jute yarn with acrylamide. J Polym Environ 10:139–145CrossRef
52.
Zurück zum Zitat Joseph PV, Joseph K, Thomas S, Pillai CKS, Prasad VS, Groeninckx G, Sarkissova M (2003) The thermal and crystallisation studies of short sisal fibre reinforced polypropylene composites. Composit A Appl Sci Manuf 34:253–266CrossRef Joseph PV, Joseph K, Thomas S, Pillai CKS, Prasad VS, Groeninckx G, Sarkissova M (2003) The thermal and crystallisation studies of short sisal fibre reinforced polypropylene composites. Composit A Appl Sci Manuf 34:253–266CrossRef
53.
Zurück zum Zitat Mohanty S, Nayak SK, Verma SK, Tripathy SS (2004) Effect of MAPP as coupling agent on the performance of sisal-PP composites. J Reinf Plast Composit 23:2047–2063CrossRef Mohanty S, Nayak SK, Verma SK, Tripathy SS (2004) Effect of MAPP as coupling agent on the performance of sisal-PP composites. J Reinf Plast Composit 23:2047–2063CrossRef
54.
Zurück zum Zitat Mohanty S, Nayak SK, Verma SK, Tripathy SS (2004) Effect of MAPP as a coupling agent on the performance of jute-PP composites. J Reinf Plast Composit 23:625–637CrossRef Mohanty S, Nayak SK, Verma SK, Tripathy SS (2004) Effect of MAPP as a coupling agent on the performance of jute-PP composites. J Reinf Plast Composit 23:625–637CrossRef
55.
Zurück zum Zitat Mishra S, Naik JB, Ptil YP (2000) The compatibilising effect of maleic anhydride on swelling and mechanical properties of plant-fiber-reinforced novolac composites. Composit Sci Technol 60:1729–1735CrossRef Mishra S, Naik JB, Ptil YP (2000) The compatibilising effect of maleic anhydride on swelling and mechanical properties of plant-fiber-reinforced novolac composites. Composit Sci Technol 60:1729–1735CrossRef
56.
Zurück zum Zitat Kumar AP, Singh RP, Sarwade BD (2005) Degradability of composites, prepared from ethylene–propylene copolymer and jute fiber under accelerated aging and biotic environments. Mater Chem Phys 92:458–469CrossRef Kumar AP, Singh RP, Sarwade BD (2005) Degradability of composites, prepared from ethylene–propylene copolymer and jute fiber under accelerated aging and biotic environments. Mater Chem Phys 92:458–469CrossRef
57.
Zurück zum Zitat Vasoya PJ, Patel VA, Parsania PH (2008) Preparation, mechanical and electrical properties and water absorption study of novel bisphenol–c-formaldehyde–acrylate treated and untreated jute composites. Polym Plast Technol Eng 47:53–57CrossRef Vasoya PJ, Patel VA, Parsania PH (2008) Preparation, mechanical and electrical properties and water absorption study of novel bisphenol–c-formaldehyde–acrylate treated and untreated jute composites. Polym Plast Technol Eng 47:53–57CrossRef
58.
Zurück zum Zitat Paul S, Joseph K, Thomas S (1997) Effect of surface treatments on the electrical properties of low-density polyethylene composites reinforced with short sisal fibers. Composit Sci Technol 57:67–79CrossRef Paul S, Joseph K, Thomas S (1997) Effect of surface treatments on the electrical properties of low-density polyethylene composites reinforced with short sisal fibers. Composit Sci Technol 57:67–79CrossRef
59.
Zurück zum Zitat Joseph K, Thomas S, Pavithran C (1996) Effect of chemical treatment on the tensile properties of short sisal fibre-reinforced polyethylene composites. Polymer 37:5139–5149CrossRef Joseph K, Thomas S, Pavithran C (1996) Effect of chemical treatment on the tensile properties of short sisal fibre-reinforced polyethylene composites. Polymer 37:5139–5149CrossRef
60.
Zurück zum Zitat Frederick TW, Norman W (2004) Natural fibers plastics and composites. Kluwer, NY Frederick TW, Norman W (2004) Natural fibers plastics and composites. Kluwer, NY
61.
Zurück zum Zitat George J, Ivens J, Varpoest I (1999) Mechanical properties of flax fibre reinforced epoxy composites. Macromol Mater Eng 272:41–45 George J, Ivens J, Varpoest I (1999) Mechanical properties of flax fibre reinforced epoxy composites. Macromol Mater Eng 272:41–45
62.
Zurück zum Zitat Zedorecki P, Flodin P (1985) Surface modification of cellulose fiber. II. The effect of cellulose fibre treatment on the performance of cellulose polyester composites. J Appl Polym Sci 30:3971–3983CrossRef Zedorecki P, Flodin P (1985) Surface modification of cellulose fiber. II. The effect of cellulose fibre treatment on the performance of cellulose polyester composites. J Appl Polym Sci 30:3971–3983CrossRef
63.
Zurück zum Zitat Xie K, Hou A, Sun Y (2007) Chemical and morphological structures of modified novel cellulose with triazine derivatives containing cationic and anionic groups. Carbohydr Polym 70:285–290CrossRef Xie K, Hou A, Sun Y (2007) Chemical and morphological structures of modified novel cellulose with triazine derivatives containing cationic and anionic groups. Carbohydr Polym 70:285–290CrossRef
64.
Zurück zum Zitat Felby C, Hassingboe J, Lund M (2002) Pilot-scale production of fiberboards made by laccase oxidized wood fibers: board properties and evidence for cross-linking of lignin. Enzyme Micron Technol 31:736–741CrossRef Felby C, Hassingboe J, Lund M (2002) Pilot-scale production of fiberboards made by laccase oxidized wood fibers: board properties and evidence for cross-linking of lignin. Enzyme Micron Technol 31:736–741CrossRef
65.
Zurück zum Zitat Xie J, Hsieh YL (2001) Enzyme-catalyzed transesterification of vinyl esters on cellulose solids. J Polym Sci A Polym Chem 39:1931–1939CrossRef Xie J, Hsieh YL (2001) Enzyme-catalyzed transesterification of vinyl esters on cellulose solids. J Polym Sci A Polym Chem 39:1931–1939CrossRef
66.
Zurück zum Zitat Zhang Y, Fan X (2010) Surface modification of cotton fabrics by transesterificaation with ion-paired subtilisin Carlsberg in solvents. Cellulose 17:903–911CrossRef Zhang Y, Fan X (2010) Surface modification of cotton fabrics by transesterificaation with ion-paired subtilisin Carlsberg in solvents. Cellulose 17:903–911CrossRef
67.
Zurück zum Zitat Vigneswaran C, Jayapriya J (2010) Effect on physical characteristics of jute fibers with cellulase and specific mixed enzyme system. J Text Inst 101:506–513CrossRef Vigneswaran C, Jayapriya J (2010) Effect on physical characteristics of jute fibers with cellulase and specific mixed enzyme system. J Text Inst 101:506–513CrossRef
68.
Zurück zum Zitat Bledzki AK, Mmun AA, Jaszkiewicz A, Erdmann K (2010) Polypropylene composites with enzyme modified abaca fibre. Composit Sci Technol 70:854–860CrossRef Bledzki AK, Mmun AA, Jaszkiewicz A, Erdmann K (2010) Polypropylene composites with enzyme modified abaca fibre. Composit Sci Technol 70:854–860CrossRef
69.
Zurück zum Zitat Janardhnan SK, Sain M (2011) Targeted disruption of hydroxyl chemistry and crystallinity innatural fibers for the isolation of cellulose nano-fibers via enzymatic treatment. Bioresources 6:1242–1250 Janardhnan SK, Sain M (2011) Targeted disruption of hydroxyl chemistry and crystallinity innatural fibers for the isolation of cellulose nano-fibers via enzymatic treatment. Bioresources 6:1242–1250
70.
Zurück zum Zitat Manna S, Saha P, Roy D, Sen RK, Adhikari B, Das S (2012) Enhanced biodegradation resistance of biomodified jute fibers. Carbohydr Polym 93:597–603CrossRef Manna S, Saha P, Roy D, Sen RK, Adhikari B, Das S (2012) Enhanced biodegradation resistance of biomodified jute fibers. Carbohydr Polym 93:597–603CrossRef
71.
Zurück zum Zitat Halls NA (1991) Gamma-irradiation processing. In: Clegg DW, Collyer AA (eds) Irradiation effects on polymers. Elsevier, New York Halls NA (1991) Gamma-irradiation processing. In: Clegg DW, Collyer AA (eds) Irradiation effects on polymers. Elsevier, New York
72.
Zurück zum Zitat Clough RL (2001) High-energy radiation and polymers: a review of commercial processes and engineering applications. Nucl Instr Methods Phys Res B 185:8–33CrossRef Clough RL (2001) High-energy radiation and polymers: a review of commercial processes and engineering applications. Nucl Instr Methods Phys Res B 185:8–33CrossRef
73.
Zurück zum Zitat Solpan D, Guven O (1999) Preservation of beech and spruce wood by allyl alcohol-based copolymers. Radiat Phys Chem 54:583–591CrossRef Solpan D, Guven O (1999) Preservation of beech and spruce wood by allyl alcohol-based copolymers. Radiat Phys Chem 54:583–591CrossRef
74.
Zurück zum Zitat Sreekala MS, Thomas S (2003) Effect of surface modification on water-sorption characteristics of oil palm fibers. Composit Sci Technol 63:861–869CrossRef Sreekala MS, Thomas S (2003) Effect of surface modification on water-sorption characteristics of oil palm fibers. Composit Sci Technol 63:861–869CrossRef
75.
Zurück zum Zitat Garnett JL, Ng LT (1996) Additive effects common to radiation grafting and wood plastic composite formation. Radiat Phys Chem 48:217–230CrossRef Garnett JL, Ng LT (1996) Additive effects common to radiation grafting and wood plastic composite formation. Radiat Phys Chem 48:217–230CrossRef
76.
Zurück zum Zitat Ng LT, Garnett JL, Mohajerani S (1999) Role of additives in wood–polymer composites. Relationship to analogous radiation grafting and curing processes. Radiat Phys Chem 55:633–637CrossRef Ng LT, Garnett JL, Mohajerani S (1999) Role of additives in wood–polymer composites. Relationship to analogous radiation grafting and curing processes. Radiat Phys Chem 55:633–637CrossRef
77.
Zurück zum Zitat Khan M, Ali K (1993) Synergistic effect of additives including multifunctional acrylates in wood plastic composites. Radiat Phys Chem 42:167–170CrossRef Khan M, Ali K (1993) Synergistic effect of additives including multifunctional acrylates in wood plastic composites. Radiat Phys Chem 42:167–170CrossRef
78.
Zurück zum Zitat Han YH, Han SO, Chao D, Kim HI (2007) Kenaf/polypropylene biocomposites: effects of electron beam irradiation and alkali treatment on kenaf natural fibers. Composit Interf 14:559–578CrossRef Han YH, Han SO, Chao D, Kim HI (2007) Kenaf/polypropylene biocomposites: effects of electron beam irradiation and alkali treatment on kenaf natural fibers. Composit Interf 14:559–578CrossRef
79.
Zurück zum Zitat Gibeop N, Lee DW, Prasad CV, Toru F, Kim BS, Song JI (2013) Effect of plasma treatment on mechanical properties of jute fiber/poly (lactic acid) biodegradable composites. Adv Composit Mater 22:389–399CrossRef Gibeop N, Lee DW, Prasad CV, Toru F, Kim BS, Song JI (2013) Effect of plasma treatment on mechanical properties of jute fiber/poly (lactic acid) biodegradable composites. Adv Composit Mater 22:389–399CrossRef
80.
Zurück zum Zitat Mitra BC, Basak RK, Sarkar M (1998) Studies on jute-reinforced composites, its limitations, and some solutions through chemical modifications of fibers. J Appl Polym Sci 67:1093–1100CrossRef Mitra BC, Basak RK, Sarkar M (1998) Studies on jute-reinforced composites, its limitations, and some solutions through chemical modifications of fibers. J Appl Polym Sci 67:1093–1100CrossRef
81.
Zurück zum Zitat Furuno T, Imamura Y, Kjita H (2004) The modification of wood by treatment with low molecular weight phenol formaldehyde resin: a properties enhancement with neutralized phenolic-resin and resin penetration into wood cell walls. Wood Sci Technol 37:349–361CrossRef Furuno T, Imamura Y, Kjita H (2004) The modification of wood by treatment with low molecular weight phenol formaldehyde resin: a properties enhancement with neutralized phenolic-resin and resin penetration into wood cell walls. Wood Sci Technol 37:349–361CrossRef
82.
Zurück zum Zitat Hussein AS, Ibrahim KI, Abdulla KM (2011) Tannin–phenol formaldehyde resins as binders for cellulosic fibers: mechanical properties. Nat Res 2:98–101 Hussein AS, Ibrahim KI, Abdulla KM (2011) Tannin–phenol formaldehyde resins as binders for cellulosic fibers: mechanical properties. Nat Res 2:98–101
83.
Zurück zum Zitat Bisanda ETN, Ansell MP (1992) Properties of sisal CNSL composites. J Mater Sci 27:1690–1700CrossRef Bisanda ETN, Ansell MP (1992) Properties of sisal CNSL composites. J Mater Sci 27:1690–1700CrossRef
84.
Zurück zum Zitat Wang S, Wasylciw W, Guoliang QU (2007) Using oil based additives to improve lignocellulosic fibre bonding and dimensional performance. US Patent No. 2007210473, September 13, 2007 Wang S, Wasylciw W, Guoliang QU (2007) Using oil based additives to improve lignocellulosic fibre bonding and dimensional performance. US Patent No. 2007210473, September 13, 2007
85.
Zurück zum Zitat Sarkar S, Adhikari B (2001) Jute felt composite from lignin modified phenolic resin. Polym Composit 22:518–527CrossRef Sarkar S, Adhikari B (2001) Jute felt composite from lignin modified phenolic resin. Polym Composit 22:518–527CrossRef
86.
Zurück zum Zitat Yap MGS, Chia LHL, Teoh SH (1990) Wood-polymer composites from tropical hardwoods. I WPC properties. J Wood Chem Technol 10:1–19CrossRef Yap MGS, Chia LHL, Teoh SH (1990) Wood-polymer composites from tropical hardwoods. I WPC properties. J Wood Chem Technol 10:1–19CrossRef
87.
Zurück zum Zitat Lyon F, Pizzi A, Imamura Y, Thevenon MF, Kartal AN, Gril J (2007) Leachability and termite resistance of wood treated with new preservative: ammonium borate oleate. Rolz Roh Werkst 65:359–366CrossRef Lyon F, Pizzi A, Imamura Y, Thevenon MF, Kartal AN, Gril J (2007) Leachability and termite resistance of wood treated with new preservative: ammonium borate oleate. Rolz Roh Werkst 65:359–366CrossRef
88.
Zurück zum Zitat Jacob M, Varughese KT, Thomas S (2006) Water sorption studies of hybrid biofiber-reinforced natural rubber biocomposites. Biomacromolecules 6:2969–2979CrossRef Jacob M, Varughese KT, Thomas S (2006) Water sorption studies of hybrid biofiber-reinforced natural rubber biocomposites. Biomacromolecules 6:2969–2979CrossRef
89.
Zurück zum Zitat Joshi M, Wazed S, Rajendran S (2007) Antibacterial finishing of polyester/cotton blend fabrics using neem (Azadiractha indica): a natural bioactive agent. J Appl Polym Sci 106:793–800CrossRef Joshi M, Wazed S, Rajendran S (2007) Antibacterial finishing of polyester/cotton blend fabrics using neem (Azadiractha indica): a natural bioactive agent. J Appl Polym Sci 106:793–800CrossRef
90.
Zurück zum Zitat Schmalzl KJ, Evans PD (2003) Wood surface protection with some titanium, zirconium and manganese compounds. Polym Degrad Stab 82:409–419CrossRef Schmalzl KJ, Evans PD (2003) Wood surface protection with some titanium, zirconium and manganese compounds. Polym Degrad Stab 82:409–419CrossRef
91.
Zurück zum Zitat Lesar B, Pavlič M, Petrič M, Škapin AS, Humar M (2011) Wax treatment of wood slows photodegradation. Polym Degrad Stab 96:1271–1278CrossRef Lesar B, Pavlič M, Petrič M, Škapin AS, Humar M (2011) Wax treatment of wood slows photodegradation. Polym Degrad Stab 96:1271–1278CrossRef
92.
Zurück zum Zitat Saha P, Manna S, Sen RK, Roy D, Adhikari B (2012) Durability of lignocellulosic Fibers treated with vegetable oil-phenolic resin. Carbhydr Polym 87:1628–1636 Saha P, Manna S, Sen RK, Roy D, Adhikari B (2012) Durability of lignocellulosic Fibers treated with vegetable oil-phenolic resin. Carbhydr Polym 87:1628–1636
93.
Zurück zum Zitat Lyon F, Thevenon MF, Hwang WJ, Imamura Y, Gril J, Pizzi A (2007) Effect of an oil heat treatment on the leachability and biological resistance of boric acid impregnated wood. Ann For Sci 64:673–678CrossRef Lyon F, Thevenon MF, Hwang WJ, Imamura Y, Gril J, Pizzi A (2007) Effect of an oil heat treatment on the leachability and biological resistance of boric acid impregnated wood. Ann For Sci 64:673–678CrossRef
94.
Zurück zum Zitat Saha P, Roy D, Manna S, Adhikari B, Sen RK, Roy S (2012) Durability of transesterified jute geotextiles. Geotex Geomembr 35:69–75CrossRef Saha P, Roy D, Manna S, Adhikari B, Sen RK, Roy S (2012) Durability of transesterified jute geotextiles. Geotex Geomembr 35:69–75CrossRef
95.
Zurück zum Zitat Silva RV, Spinelli D, Bose Filho WW, Neto SC, Chierice GO, Tarpani JR (2006) Fracture toughness of natural fibers/castor oil polyurethane composites. Composit Sci Technol 66:1328–1335CrossRef Silva RV, Spinelli D, Bose Filho WW, Neto SC, Chierice GO, Tarpani JR (2006) Fracture toughness of natural fibers/castor oil polyurethane composites. Composit Sci Technol 66:1328–1335CrossRef
96.
Zurück zum Zitat Le Troedec M, Sedan D, Peyratout C, Bonnet JP, Smith A, Guinebretiere R, Gloaguen V, Krausz P (2008) Influence of various chemical treatments on the composition and structure of hemp fibres. Composit Part A Appl Sci Manuf 39:514–522CrossRef Le Troedec M, Sedan D, Peyratout C, Bonnet JP, Smith A, Guinebretiere R, Gloaguen V, Krausz P (2008) Influence of various chemical treatments on the composition and structure of hemp fibres. Composit Part A Appl Sci Manuf 39:514–522CrossRef
97.
Zurück zum Zitat Ray D, Sarkar BK (2001) Characterization of alkali-treated jute fibers for physical and mechanical properties. J Appl Polym Sci 80:1013–1020CrossRef Ray D, Sarkar BK (2001) Characterization of alkali-treated jute fibers for physical and mechanical properties. J Appl Polym Sci 80:1013–1020CrossRef
98.
Zurück zum Zitat Edeerozey AM, Akil MH, Azhar AB, Ariffin MIZ (2007) Chemical modification of kenaf fibers. Mater Lett 61:2023–2025CrossRef Edeerozey AM, Akil MH, Azhar AB, Ariffin MIZ (2007) Chemical modification of kenaf fibers. Mater Lett 61:2023–2025CrossRef
99.
Zurück zum Zitat Munawar SS, Umemura K, Tanaka F, Kawai S (2008) Effects of alkali, mild steam, and chitosan treatment on the properties of pineapple, eamie, and sansevieria fiber bundles. J Wood Sci 54:28–35CrossRef Munawar SS, Umemura K, Tanaka F, Kawai S (2008) Effects of alkali, mild steam, and chitosan treatment on the properties of pineapple, eamie, and sansevieria fiber bundles. J Wood Sci 54:28–35CrossRef
100.
Zurück zum Zitat Kessler RW, Becker U, Kohlar R, Goth B (1998) Steam explosion of flax—a superior technique for upgrading fibre value. Biomass Bioenerg 14:237–249CrossRef Kessler RW, Becker U, Kohlar R, Goth B (1998) Steam explosion of flax—a superior technique for upgrading fibre value. Biomass Bioenerg 14:237–249CrossRef
101.
Zurück zum Zitat Chakraborty S, Kundu SP, Roy A, Basak RK, BasuMajumder S, Adhikari B (2013) Improvement of the mechanical properties of jute fiber reinforced cement mortar: a statistical approach. Constr Build Mater 38:776–784CrossRef Chakraborty S, Kundu SP, Roy A, Basak RK, BasuMajumder S, Adhikari B (2013) Improvement of the mechanical properties of jute fiber reinforced cement mortar: a statistical approach. Constr Build Mater 38:776–784CrossRef
102.
Zurück zum Zitat Chakraborty S, Kundu SP, Roy A, BasuMajumder S, Adhikari B (2013) Polymer modified jute fibre as reinforcing agent controlling the physical and mechanical characteristics of cement mortar. Constr Build Mater 49:214–222CrossRef Chakraborty S, Kundu SP, Roy A, BasuMajumder S, Adhikari B (2013) Polymer modified jute fibre as reinforcing agent controlling the physical and mechanical characteristics of cement mortar. Constr Build Mater 49:214–222CrossRef
103.
Zurück zum Zitat Kundu SP, Chakraborty S, Roy A, BasuMajumder S, Adhikari B (2012) Chemically modified jute fibre reinforced non-pressure (NP) concrete pipes with improved mechanical properties. Constr Build Mater 37:841–850CrossRef Kundu SP, Chakraborty S, Roy A, BasuMajumder S, Adhikari B (2012) Chemically modified jute fibre reinforced non-pressure (NP) concrete pipes with improved mechanical properties. Constr Build Mater 37:841–850CrossRef
104.
Zurück zum Zitat Chakraborty S, Kundu SP, Roy A, BasuMajumder S, Adhikari B (2013) Effect of jute as fiber reinforcement controlling the hydration characteristics of cement matrix. Ind Eng Chem Res 52:1252–1260CrossRef Chakraborty S, Kundu SP, Roy A, BasuMajumder S, Adhikari B (2013) Effect of jute as fiber reinforcement controlling the hydration characteristics of cement matrix. Ind Eng Chem Res 52:1252–1260CrossRef
105.
Zurück zum Zitat Sridevi A, Behera AK, Sen RK, Adhikari B (2013) Physical and mechanical characterization of jute reinforced soy composites. J Reinf Plast Composit 32:1380–1390CrossRef Sridevi A, Behera AK, Sen RK, Adhikari B (2013) Physical and mechanical characterization of jute reinforced soy composites. J Reinf Plast Composit 32:1380–1390CrossRef
106.
Zurück zum Zitat Behera AK, Sridevi A, Sen RK, Adhikari B (2013) Develoment and characterization of nanoclay-modified soy resin-based jute composite as an eco-friendly/green product. Polym Plast Technol Eng 52:1–9CrossRef Behera AK, Sridevi A, Sen RK, Adhikari B (2013) Develoment and characterization of nanoclay-modified soy resin-based jute composite as an eco-friendly/green product. Polym Plast Technol Eng 52:1–9CrossRef
107.
Zurück zum Zitat Gordon JE (1976) The New Science of Strong Materials. Penguin Books, London Gordon JE (1976) The New Science of Strong Materials. Penguin Books, London
108.
Zurück zum Zitat McMullen P (1984) Fibre/resin composites for aircraft primary structures: a short history 1936–1984. Composites 15:222–230CrossRef McMullen P (1984) Fibre/resin composites for aircraft primary structures: a short history 1936–1984. Composites 15:222–230CrossRef
109.
Zurück zum Zitat Azwa ZN, Yousif BF, Manalo AC, Karunasenaa W (2013) A review on the degradability of polymeric composites based on natural fibers. Mater Des 47:424–442CrossRef Azwa ZN, Yousif BF, Manalo AC, Karunasenaa W (2013) A review on the degradability of polymeric composites based on natural fibers. Mater Des 47:424–442CrossRef
110.
Zurück zum Zitat Hughes M (2000) Baillie C (ed) Green composites: polymer composites and the environment, Chapter 11. CRC Press, England Hughes M (2000) Baillie C (ed) Green composites: polymer composites and the environment, Chapter 11. CRC Press, England
111.
Zurück zum Zitat Saha P, Manna S, Roy D, Kim MC, Chowdhury S, De S, Sen RK, Adhikari B, Kim JK (2014) Effect of photodegradation of lignocellulosic fibers transesterified with vegetable oil. Fibers Polym 15:2345–2354CrossRef Saha P, Manna S, Roy D, Kim MC, Chowdhury S, De S, Sen RK, Adhikari B, Kim JK (2014) Effect of photodegradation of lignocellulosic fibers transesterified with vegetable oil. Fibers Polym 15:2345–2354CrossRef
112.
Zurück zum Zitat Saha P, Roy D, Manna S, Chowdhury S, Banik S, Sen RK, Jo J, Kim JK, Adhikari B (2015) Biodegradation of chemically modified lignocellulosic sisal fibers: study of the mechanism for enzymatic degradation of cellulose. e-polymers 15:185–194CrossRef Saha P, Roy D, Manna S, Chowdhury S, Banik S, Sen RK, Jo J, Kim JK, Adhikari B (2015) Biodegradation of chemically modified lignocellulosic sisal fibers: study of the mechanism for enzymatic degradation of cellulose. e-polymers 15:185–194CrossRef
113.
Zurück zum Zitat Rahman MA, Siddiqueullah M, Mian AJ (1996) Production of fine yarns from partially etherified jute fibre. J Text Inst Part 1(87):600–602CrossRef Rahman MA, Siddiqueullah M, Mian AJ (1996) Production of fine yarns from partially etherified jute fibre. J Text Inst Part 1(87):600–602CrossRef
114.
Zurück zum Zitat Andersson M, Tillman AM (1989) Acetylation of jute: effects of strength, rot resistance, and hydrophobicity. J Appl Polym Sci 37:3437–3447CrossRef Andersson M, Tillman AM (1989) Acetylation of jute: effects of strength, rot resistance, and hydrophobicity. J Appl Polym Sci 37:3437–3447CrossRef
115.
Zurück zum Zitat Uddin MK, Khan MA, Idriss Ali KM (1996) Modification of jute yarn by graft-copolymerization with ultraviolet radiation. Radiat Phys Chem 48:511–517CrossRef Uddin MK, Khan MA, Idriss Ali KM (1996) Modification of jute yarn by graft-copolymerization with ultraviolet radiation. Radiat Phys Chem 48:511–517CrossRef
116.
Zurück zum Zitat Sanyal T, Chakraborty K (1994) Application of bitumen-coated jute geotextiles in river bank-protection works in the Hooghly estuary. Geotext Geomembr 13:67–89CrossRef Sanyal T, Chakraborty K (1994) Application of bitumen-coated jute geotextiles in river bank-protection works in the Hooghly estuary. Geotext Geomembr 13:67–89CrossRef
117.
Zurück zum Zitat Dutta U (2007) Application of Jute geotextiles. J Nat Fibers 4:67–82CrossRef Dutta U (2007) Application of Jute geotextiles. J Nat Fibers 4:67–82CrossRef
118.
Zurück zum Zitat Sinha S, Chakraborty S (2004) A rot resistant durable natural fibre and/or geotextiles. Patent application number: PCT/IN2004000119 Sinha S, Chakraborty S (2004) A rot resistant durable natural fibre and/or geotextiles. Patent application number: PCT/IN2004000119
119.
Zurück zum Zitat Basu G, Roy AN, Bhattacharyya SK, Ghosh SK (2009) Construction of unpaved rural road using jute-synthetic blended woven geotextiles—a case study. Geotext Geomembr 27:506–512CrossRef Basu G, Roy AN, Bhattacharyya SK, Ghosh SK (2009) Construction of unpaved rural road using jute-synthetic blended woven geotextiles—a case study. Geotext Geomembr 27:506–512CrossRef
120.
Zurück zum Zitat Alms B, Yonko PJ, McDowell RC, Advani SG (2009) Design and development of an I-Beam from natural composites. J Biobased Mater Bioenergy 3:181–187CrossRef Alms B, Yonko PJ, McDowell RC, Advani SG (2009) Design and development of an I-Beam from natural composites. J Biobased Mater Bioenergy 3:181–187CrossRef
121.
Zurück zum Zitat Dweib MA, Hu B, Shenton HW III, Wool RP (2006) Bio-based composite roof structure: manufacturing and processing issues. Composit Struct 74:379–388CrossRef Dweib MA, Hu B, Shenton HW III, Wool RP (2006) Bio-based composite roof structure: manufacturing and processing issues. Composit Struct 74:379–388CrossRef
122.
Zurück zum Zitat Yu HN, Kim SS, Hwang IU, Lee DG (2008) Application of natural fiber reinforced composites to trenchless rehabilitation of underground pipes. Composit Struct 86:285–290CrossRef Yu HN, Kim SS, Hwang IU, Lee DG (2008) Application of natural fiber reinforced composites to trenchless rehabilitation of underground pipes. Composit Struct 86:285–290CrossRef
123.
Zurück zum Zitat Suardana NPG, Ku MS, Lim JK (2011) Effects of diammonium phosphate on the flammability and mechanical properties of bio-composites. Mater Design 32:1990–1999CrossRef Suardana NPG, Ku MS, Lim JK (2011) Effects of diammonium phosphate on the flammability and mechanical properties of bio-composites. Mater Design 32:1990–1999CrossRef
124.
Zurück zum Zitat Belgacem MM, Gandini A (2005) The surface modification of cellulose fibres for use as reinforcing elements in composite materials. Composit Interf 12:41–75CrossRef Belgacem MM, Gandini A (2005) The surface modification of cellulose fibres for use as reinforcing elements in composite materials. Composit Interf 12:41–75CrossRef
Metadaten
Titel
A brief review on the chemical modifications of lignocellulosic fibers for durable engineering composites
Publikationsdatum
20.08.2015
Erschienen in
Polymer Bulletin / Ausgabe 2/2016
Print ISSN: 0170-0839
Elektronische ISSN: 1436-2449
DOI
https://doi.org/10.1007/s00289-015-1489-y

Weitere Artikel der Ausgabe 2/2016

Polymer Bulletin 2/2016 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.