Skip to main content
Erschienen in: Quantum Information Processing 9/2015

01.09.2015

Protecting multipartite entanglement against weak-measurement-induced amplitude damping by local unitary operations

verfasst von: Xiao-Lan Zong, Chao-Qun Du, Ming Yang, Wei Song, Qing Yang, Zhuo-Liang Cao

Erschienen in: Quantum Information Processing | Ausgabe 9/2015

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Protecting entanglement from decoherence has attracted more and more attention recently. Amplitude damping is a typical decoherence mechanism. If we detect the environment to guarantee no excitation escapes from the system, the amplitude damping is modified into a weak measurement of the system state. In this paper, based on local pulse series, we propose a scheme for protecting tripartite entanglement against decaying caused by weak-measurement-induced damping. Unlike previous bipartite state protection schemes, we consider three different situations: A series of unitary operations are applied on all of the three qubits, on two of the three qubits, and on only one qubit. The results show that this protocol can protect remote tripartite entanglement with a wide range of unitary operations. For the case of GHZ state, when the uniform pulses are applied on all qubits or on two qubits, the tripartite entanglement can be fixed around the entanglement of the initial state. Moreover, in the W state case, if a train of uniform pulses is applied on two qubits, we can see that the bipartite entanglement can be enhanced to the maximum with the third qubit being traced out. We also generalize our scheme to the cases of the superposition and mixture of GHZ and W states, and the numerical simulation shows that our protection scheme still works fine. The most distinct advantage of this entanglement protection scheme is that there is no need for the users to synchronize their operations. The fluctuations of the time interval between two adjacent local unitary operations, the operation parameters, and the pulse duration are all taken into consideration. All these advantages suggest that our scheme is much simpler and feasible, which may warrant its experimental realization.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)MATH Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)MATH
2.
Zurück zum Zitat Bennett, C.H., et al.: Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels. Phys. Rev. Lett. 70, 1895–1899 (1993)MATHMathSciNetCrossRefADS Bennett, C.H., et al.: Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels. Phys. Rev. Lett. 70, 1895–1899 (1993)MATHMathSciNetCrossRefADS
3.
Zurück zum Zitat Bouwmeester, D.: Experimental quantum teleportation. Nature 390, 575–579 (1997)CrossRefADS Bouwmeester, D.: Experimental quantum teleportation. Nature 390, 575–579 (1997)CrossRefADS
4.
Zurück zum Zitat Kim, Y.-H., Kulik, S.P., Shih, Y.H.: Quantum teleportation of a polarization state with a complete bell state measurement. Phys. Rev. Lett. 86, 1370–1373 (2001)CrossRefADS Kim, Y.-H., Kulik, S.P., Shih, Y.H.: Quantum teleportation of a polarization state with a complete bell state measurement. Phys. Rev. Lett. 86, 1370–1373 (2001)CrossRefADS
7.
Zurück zum Zitat Li, X.H., Deng, F.G., Zhou, H.Y.: Efficient quantum key distribution over a collective noise channel. Phys. Rev. A 78(1–6), 022321 (2008)CrossRefADS Li, X.H., Deng, F.G., Zhou, H.Y.: Efficient quantum key distribution over a collective noise channel. Phys. Rev. A 78(1–6), 022321 (2008)CrossRefADS
8.
Zurück zum Zitat Bennett, C.H., Wiesner, S.J.: Communication via one- and two-particle operators on Einstein–Podolsky–Rosen states. Phys. Rev. Lett. 69, 2881–2884 (1992)MATHMathSciNetCrossRefADS Bennett, C.H., Wiesner, S.J.: Communication via one- and two-particle operators on Einstein–Podolsky–Rosen states. Phys. Rev. Lett. 69, 2881–2884 (1992)MATHMathSciNetCrossRefADS
9.
Zurück zum Zitat Shor, P.W.: Scheme for reducing decoherence in quantum computer memory. Phys. Rev. A 52, R2493–R2496 (1995)CrossRefADS Shor, P.W.: Scheme for reducing decoherence in quantum computer memory. Phys. Rev. A 52, R2493–R2496 (1995)CrossRefADS
11.
Zurück zum Zitat Ekert, A., Macchiavello, C.: Quantum error correction for communication. Phys. Rev. Lett. 77, 2585–2588 (1996)CrossRefADS Ekert, A., Macchiavello, C.: Quantum error correction for communication. Phys. Rev. Lett. 77, 2585–2588 (1996)CrossRefADS
12.
Zurück zum Zitat Lidar, D.A., Chuang, I., Whaley, K.B.: Decoherence-free subspaces for quantum computation. Phys. Rev. Lett. 81, 2594–2597 (1998)CrossRefADS Lidar, D.A., Chuang, I., Whaley, K.B.: Decoherence-free subspaces for quantum computation. Phys. Rev. Lett. 81, 2594–2597 (1998)CrossRefADS
13.
Zurück zum Zitat Kwiat, P.G., et al.: Experimental verification of decoherence-free subspaces. Science 290, 498–501 (2000)CrossRefADS Kwiat, P.G., et al.: Experimental verification of decoherence-free subspaces. Science 290, 498–501 (2000)CrossRefADS
15.
Zurück zum Zitat Wang, Y., Rong, X., Feng, P.B., Xu, W.J., Bo Chong, J.H., Gong, J.B., Du, J.F.: Preservation of bipartite pseudoentanglement in solids using dynamical decoupling. Phys. Rev. Lett. 106(1–4), 040501 (2011)CrossRefADS Wang, Y., Rong, X., Feng, P.B., Xu, W.J., Bo Chong, J.H., Gong, J.B., Du, J.F.: Preservation of bipartite pseudoentanglement in solids using dynamical decoupling. Phys. Rev. Lett. 106(1–4), 040501 (2011)CrossRefADS
16.
Zurück zum Zitat Zhang, J.F., Souza, A.M., Brandao, F.D., Suter, D.: Protected quantum computing: interleaving gate operations with dynamical decoupling sequences. Phys. Rev. Lett. 112(1–5), 050502 (2014)CrossRefADS Zhang, J.F., Souza, A.M., Brandao, F.D., Suter, D.: Protected quantum computing: interleaving gate operations with dynamical decoupling sequences. Phys. Rev. Lett. 112(1–5), 050502 (2014)CrossRefADS
17.
Zurück zum Zitat Man, Z.X., Xia, Y.J., An, N.B.: On-demand contro of coherence transfer between interacting qubits surrounded by a dissipative environment. Phys. Rev. A 89(1–9), 013852 (2014)CrossRefADS Man, Z.X., Xia, Y.J., An, N.B.: On-demand contro of coherence transfer between interacting qubits surrounded by a dissipative environment. Phys. Rev. A 89(1–9), 013852 (2014)CrossRefADS
18.
Zurück zum Zitat Man, Z.X., An, N.B., Xia, Y.J., Kim, J.: Universal scheme for finite-probability perfect transfer of arbitrary multispin states through spin chains. Ann. Phys. 351, 739–750 (2014)MathSciNetCrossRefADS Man, Z.X., An, N.B., Xia, Y.J., Kim, J.: Universal scheme for finite-probability perfect transfer of arbitrary multispin states through spin chains. Ann. Phys. 351, 739–750 (2014)MathSciNetCrossRefADS
19.
Zurück zum Zitat Man, Z.X., An, N.B., Xia, Y.J.: Improved quantum state transfer via quantum partially collapsing measurements. Ann. Phys. 349, 209–219 (2014)MathSciNetCrossRefADS Man, Z.X., An, N.B., Xia, Y.J.: Improved quantum state transfer via quantum partially collapsing measurements. Ann. Phys. 349, 209–219 (2014)MathSciNetCrossRefADS
20.
Zurück zum Zitat Sun, Q.Q., Al-Amri, M., Zubairy, M.S.: Reversing the weak measurement of an arbitrary field with finite photon number. Phys. Rev. A 80(1–5), 033838 (2009)CrossRefADS Sun, Q.Q., Al-Amri, M., Zubairy, M.S.: Reversing the weak measurement of an arbitrary field with finite photon number. Phys. Rev. A 80(1–5), 033838 (2009)CrossRefADS
21.
Zurück zum Zitat Korotkov, A.N., Keane, K.: Decoherence suppression by quantum measurement reversal. Phys. Rev. A 81(1–4), 040103 (2010)CrossRefADS Korotkov, A.N., Keane, K.: Decoherence suppression by quantum measurement reversal. Phys. Rev. A 81(1–4), 040103 (2010)CrossRefADS
22.
Zurück zum Zitat Xiao, X., Feng, M.: Reexamination of the feedback control on quantum states via weak measurements. Phys. Rev. A 83(1–4), 054301 (2011)CrossRefADS Xiao, X., Feng, M.: Reexamination of the feedback control on quantum states via weak measurements. Phys. Rev. A 83(1–4), 054301 (2011)CrossRefADS
23.
Zurück zum Zitat Man, Z.X., Xia, Y.J., An, N.B.: Manipulating entanglement of two qubits in a common environment by means of weak measurements and quantum measurement reversals. Phys. Rev. A 86(1–9), 012325 (2012)CrossRefADS Man, Z.X., Xia, Y.J., An, N.B.: Manipulating entanglement of two qubits in a common environment by means of weak measurements and quantum measurement reversals. Phys. Rev. A 86(1–9), 012325 (2012)CrossRefADS
24.
Zurück zum Zitat Kim, Y.S., Lee, J.C., Kwon, O., Kim, Y.H.: Protecting entanglement from decoherence using weak measurement and quantum measurement reversal. Nat. Phys. 8, 117–120 (2012)CrossRef Kim, Y.S., Lee, J.C., Kwon, O., Kim, Y.H.: Protecting entanglement from decoherence using weak measurement and quantum measurement reversal. Nat. Phys. 8, 117–120 (2012)CrossRef
25.
Zurück zum Zitat Al-Amri, M., Scully, M.O., Zubairy, M.S.: Reversing the weak measurement on a qubit. J. Phys. B 44(1–5), 165509 (2011)CrossRefADS Al-Amri, M., Scully, M.O., Zubairy, M.S.: Reversing the weak measurement on a qubit. J. Phys. B 44(1–5), 165509 (2011)CrossRefADS
26.
Zurück zum Zitat Liao, Z.Y., Al-Amri, M., Zubairy, M.S.: Protecting quantum entanglement from amplitude damping. J. Phys. B 46(1–9), 145501 (2013)CrossRefADS Liao, Z.Y., Al-Amri, M., Zubairy, M.S.: Protecting quantum entanglement from amplitude damping. J. Phys. B 46(1–9), 145501 (2013)CrossRefADS
27.
Zurück zum Zitat Sun, Q.Q., Al-Amri, M., Davidovich, M.L., Zubairy, M.S.: Reversing entanglement change by a weak measurement. Phys. Rev. A 82(1–5), 052323 (2010)CrossRefADS Sun, Q.Q., Al-Amri, M., Davidovich, M.L., Zubairy, M.S.: Reversing entanglement change by a weak measurement. Phys. Rev. A 82(1–5), 052323 (2010)CrossRefADS
28.
Zurück zum Zitat Wang, C.Q., Xu, B.M., Zou, J., He, Z., Yan, Y., Li, J.G., Shao, B.: Feed-forward control for quantum state protection against decoherence. Phys. Rev. A 89(1–11), 032303 (2014)CrossRefADS Wang, C.Q., Xu, B.M., Zou, J., He, Z., Yan, Y., Li, J.G., Shao, B.: Feed-forward control for quantum state protection against decoherence. Phys. Rev. A 89(1–11), 032303 (2014)CrossRefADS
29.
Zurück zum Zitat Gross, C., Zibold, T., Nicklas, E., Esteve, J., Oberthaler, M.K.: Nonlinear atom interferometer surpasses classical precision limit. Nature (London) 464, 1165–1169 (2010)CrossRefADS Gross, C., Zibold, T., Nicklas, E., Esteve, J., Oberthaler, M.K.: Nonlinear atom interferometer surpasses classical precision limit. Nature (London) 464, 1165–1169 (2010)CrossRefADS
30.
Zurück zum Zitat Dür, W., Vidal, G., Cirac, J.I.: Three qubits can be entangled in two inequivalent ways. Phys. Rev. A 62(1–12), 062314 (2000)MathSciNetCrossRefADS Dür, W., Vidal, G., Cirac, J.I.: Three qubits can be entangled in two inequivalent ways. Phys. Rev. A 62(1–12), 062314 (2000)MathSciNetCrossRefADS
31.
Zurück zum Zitat Zong, X.L., Du, C.Q., Yang, M., Qing, Q., Cao, Z.L.: Protecting remote bipartite entanglement against amplitude damping by local unitary operations. Phys. Rev. A 90(1–8), 062345 (2014)CrossRefADS Zong, X.L., Du, C.Q., Yang, M., Qing, Q., Cao, Z.L.: Protecting remote bipartite entanglement against amplitude damping by local unitary operations. Phys. Rev. A 90(1–8), 062345 (2014)CrossRefADS
32.
Zurück zum Zitat Weisskopf, V., Wigner, E.: Berechnung der natrlichen linienbreite auf grund der diracschen lichttheorie. Z. Phys. 63, 54–73 (1930)MATHCrossRefADS Weisskopf, V., Wigner, E.: Berechnung der natrlichen linienbreite auf grund der diracschen lichttheorie. Z. Phys. 63, 54–73 (1930)MATHCrossRefADS
33.
Zurück zum Zitat Korotkov, A.N.: Continuous quantum measurement of a double dot. Phys. Rev. B 60, 5737–5742 (1999)CrossRefADS Korotkov, A.N.: Continuous quantum measurement of a double dot. Phys. Rev. B 60, 5737–5742 (1999)CrossRefADS
34.
Zurück zum Zitat Vidal, G., Werner, R.F.: Computable measure of entanglement. Phys. Rev. A 65(1–11), 032314 (2002)CrossRefADS Vidal, G., Werner, R.F.: Computable measure of entanglement. Phys. Rev. A 65(1–11), 032314 (2002)CrossRefADS
35.
Zurück zum Zitat Zheng, S.B.: Generation of entangled states for many multilevel atoms in a thermal cavity and ions in thermal motion. Phys. Rev. A 68(1–4), 035801 (2003)CrossRefADS Zheng, S.B.: Generation of entangled states for many multilevel atoms in a thermal cavity and ions in thermal motion. Phys. Rev. A 68(1–4), 035801 (2003)CrossRefADS
36.
Zurück zum Zitat Eltschka, C., Osterloh, A., Siewert, J., Uhlmann, A.: Three-tangle for mixtures of generalized GHZ and generalized W states. New J. Phys. 10(1–10), 043014 (2008)CrossRefADS Eltschka, C., Osterloh, A., Siewert, J., Uhlmann, A.: Three-tangle for mixtures of generalized GHZ and generalized W states. New J. Phys. 10(1–10), 043014 (2008)CrossRefADS
37.
Zurück zum Zitat Wootters, W.K.: Entanglement of formation of an arbitrary state of two qubits. Phys. Rev. Lett. 80, 2245–2248 (1998)CrossRefADS Wootters, W.K.: Entanglement of formation of an arbitrary state of two qubits. Phys. Rev. Lett. 80, 2245–2248 (1998)CrossRefADS
Metadaten
Titel
Protecting multipartite entanglement against weak-measurement-induced amplitude damping by local unitary operations
verfasst von
Xiao-Lan Zong
Chao-Qun Du
Ming Yang
Wei Song
Qing Yang
Zhuo-Liang Cao
Publikationsdatum
01.09.2015
Verlag
Springer US
Erschienen in
Quantum Information Processing / Ausgabe 9/2015
Print ISSN: 1570-0755
Elektronische ISSN: 1573-1332
DOI
https://doi.org/10.1007/s11128-015-1041-x

Weitere Artikel der Ausgabe 9/2015

Quantum Information Processing 9/2015 Zur Ausgabe

Neuer Inhalt