Skip to main content
Erschienen in: Shape Memory and Superelasticity 3/2020

24.06.2020 | Special Issue: A Tribute to Prof. Dr. Gunther Eggeler, Invited Paper

Pseudoelastic NiTiNOL in Orthopaedic Applications

verfasst von: David Safranski, Kenneth Dupont, Ken Gall

Erschienen in: Shape Memory and Superelasticity | Ausgabe 3/2020

Einloggen, um Zugang zu erhalten

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Pseudoelastic NiTiNOL presents an attractive material option for devices used in clinical orthopaedic applications. The capacity of the material to exert sustained compression during shape recovery aligns well with the mechanobiological factors associated with bone healing, particularly in applications such as fracture healing and joint fusion. Orthopaedic medical devices which have incorporated NiTiNOL are increasing in number, with two noted examples including staples and intramedullary nails. Early NiTiNOL devices utilized shape memory NiTiNOL, but the logistical difficulties with maintaining a cold state in the clinic or limited force-generation for materials warmed from room temperature to body temperature have led to pseudoelastic NiTiNOL devices dominating clinical usage. Both pre-clinical biomechanical and clinical studies have shown that these devices do exert sustained compression beyond the abilities of competing static devices, and largely have resulted in superior clinical outcomes, such as higher fusion rates and faster times to fusion. Given these results, continued adoption of existing NiTiNOL devices and future development of new orthopaedic devices utilizing the material should continue.
Literatur
1.
Zurück zum Zitat Hughes JL (1976) Evaluation of nitinol for use as a material in the construction of orthopaedic implants. US Army Medical Research and Development, Fredrick Hughes JL (1976) Evaluation of nitinol for use as a material in the construction of orthopaedic implants. US Army Medical Research and Development, Fredrick
2.
Zurück zum Zitat Simon M et al (1977) A vena cava filter using thermal shape memory alloy. Exp Aspects Radiol 125(1):87–94 Simon M et al (1977) A vena cava filter using thermal shape memory alloy. Exp Aspects Radiol 125(1):87–94
3.
Zurück zum Zitat Carter DR et al (1998) Mechanobiology of skeletal regeneration. Clin Orthop Relat Res 355:S41–55CrossRef Carter DR et al (1998) Mechanobiology of skeletal regeneration. Clin Orthop Relat Res 355:S41–55CrossRef
4.
Zurück zum Zitat Allori AC et al (2008) Biological basis of bone formation, remodeling, and repair-part III: biomechanical forces. Tissue Eng Part B 14(3):285–293CrossRef Allori AC et al (2008) Biological basis of bone formation, remodeling, and repair-part III: biomechanical forces. Tissue Eng Part B 14(3):285–293CrossRef
5.
Zurück zum Zitat Robling AG, Castillo AB, Turner CH (2006) Biomechanical and molecular regulation of bone remodeling. Annu Rev Biomed Eng 8:455–498CrossRef Robling AG, Castillo AB, Turner CH (2006) Biomechanical and molecular regulation of bone remodeling. Annu Rev Biomed Eng 8:455–498CrossRef
6.
Zurück zum Zitat Rosa N et al (2015) From mechanical stimulus to bone formation: a review. Med Eng Phys 37(8):719–728CrossRef Rosa N et al (2015) From mechanical stimulus to bone formation: a review. Med Eng Phys 37(8):719–728CrossRef
7.
Zurück zum Zitat Liu C et al (2018) Effects of mechanical loading on cortical defect repair using a novel mechanobiological model of bone healing. Bone 108:145–155CrossRef Liu C et al (2018) Effects of mechanical loading on cortical defect repair using a novel mechanobiological model of bone healing. Bone 108:145–155CrossRef
8.
Zurück zum Zitat Charnley J (1951) Compression arthrodesis of the ankle and shoulder. J Bone Joint Surg Br 33B(2):180–191CrossRef Charnley J (1951) Compression arthrodesis of the ankle and shoulder. J Bone Joint Surg Br 33B(2):180–191CrossRef
9.
Zurück zum Zitat Muckley T et al (2007) Biomechanical evaluation of primary stiffness of tibiotalocalcaneal fusion with intramedullary nails. Foot Ankle Int 28(2):224–231CrossRef Muckley T et al (2007) Biomechanical evaluation of primary stiffness of tibiotalocalcaneal fusion with intramedullary nails. Foot Ankle Int 28(2):224–231CrossRef
10.
Zurück zum Zitat Parker L, Singh D (2009) The principles of foot and ankle arthrodesis. Orthop Trauma 23(6):385–394CrossRef Parker L, Singh D (2009) The principles of foot and ankle arthrodesis. Orthop Trauma 23(6):385–394CrossRef
11.
Zurück zum Zitat Evers J et al (2017) 3D optical investigation of 2 nail systems used in tibiotalocalcaneal arthrodesis: a biomechanical study. Foot Ankle Int 38(5):571–579CrossRef Evers J et al (2017) 3D optical investigation of 2 nail systems used in tibiotalocalcaneal arthrodesis: a biomechanical study. Foot Ankle Int 38(5):571–579CrossRef
12.
Zurück zum Zitat Claes L, Eckert-Hubner K, Augat P (2003) The fracture gap size influences the local vascularization and tissue differentiation in callus healing. Langenbecks Arch Surg 388(5):316–322CrossRef Claes L, Eckert-Hubner K, Augat P (2003) The fracture gap size influences the local vascularization and tissue differentiation in callus healing. Langenbecks Arch Surg 388(5):316–322CrossRef
13.
Zurück zum Zitat Jagodzinski M, Krettek C (2007) Effect of mechanical stability on fracture healing–an update. Injury 38(Suppl 1):S3–10CrossRef Jagodzinski M, Krettek C (2007) Effect of mechanical stability on fracture healing–an update. Injury 38(Suppl 1):S3–10CrossRef
14.
Zurück zum Zitat Yamaji T et al (2001) The effect of micromovement on callus formation. J Orthop Sci 6(6):571–575CrossRef Yamaji T et al (2001) The effect of micromovement on callus formation. J Orthop Sci 6(6):571–575CrossRef
15.
Zurück zum Zitat Wehner T et al (2011) Improvement of the shear fixation stability of intramedullary nailing. Clin Biomech 26(2):147–151CrossRef Wehner T et al (2011) Improvement of the shear fixation stability of intramedullary nailing. Clin Biomech 26(2):147–151CrossRef
16.
Zurück zum Zitat Knothe U, Tate ML, Perren SM (2000) 300 Years of Intramedullary Fixation – from Aztec Practice to Standard Treatment Modality. European Journal of Trauma 26:217–225CrossRef Knothe U, Tate ML, Perren SM (2000) 300 Years of Intramedullary Fixation – from Aztec Practice to Standard Treatment Modality. European Journal of Trauma 26:217–225CrossRef
17.
Zurück zum Zitat Rosa N et al (2017) Recent developments on intramedullary nailing: a biomechanical perspective. Ann N Y Acad Sci 1408(1):20–31CrossRef Rosa N et al (2017) Recent developments on intramedullary nailing: a biomechanical perspective. Ann N Y Acad Sci 1408(1):20–31CrossRef
18.
Zurück zum Zitat Yakacki CM et al (2010) Compression forces of internal and external ankle fixation devices with simulated bone resorption. Foot Ankle Int 31(1):76–85CrossRef Yakacki CM et al (2010) Compression forces of internal and external ankle fixation devices with simulated bone resorption. Foot Ankle Int 31(1):76–85CrossRef
19.
Zurück zum Zitat Yakacki CM et al (2011) Pseudoelastic intramedullary nailing for tibio-talo-calcaneal arthrodesis. Exp Rev Med Dev 8(2):159–166CrossRef Yakacki CM et al (2011) Pseudoelastic intramedullary nailing for tibio-talo-calcaneal arthrodesis. Exp Rev Med Dev 8(2):159–166CrossRef
20.
Zurück zum Zitat Taylor J et al (2016) Tibiotalocalcaneal arthrodesis nails: a comparison of nails with and without internal compression. Foot Ankle Int 37(3):294–299CrossRef Taylor J et al (2016) Tibiotalocalcaneal arthrodesis nails: a comparison of nails with and without internal compression. Foot Ankle Int 37(3):294–299CrossRef
21.
Zurück zum Zitat Griffin MJ, Coughlin MJ (2018) Evaluation of midterm results of the panta nail: an active compression tibiotalocalcaneal arthrodesis device. J Foot Ankle Surg 57(1):74–80CrossRef Griffin MJ, Coughlin MJ (2018) Evaluation of midterm results of the panta nail: an active compression tibiotalocalcaneal arthrodesis device. J Foot Ankle Surg 57(1):74–80CrossRef
22.
Zurück zum Zitat Anderson R et al (2016) Finite element analysis of a pseudoelastic compression-generating intramedullary ankle arthrodesis nail. J Mech Behav Biomed Mater 62:83–92CrossRef Anderson R et al (2016) Finite element analysis of a pseudoelastic compression-generating intramedullary ankle arthrodesis nail. J Mech Behav Biomed Mater 62:83–92CrossRef
23.
Zurück zum Zitat Karakasli A, Satoglu IS, Havitcioglu H (2015) A new intramedullary sustained dynamic compression nail for the treatment of long bone fractures: a biomechanical study. Eklem Hastalik Cerrahisi 26(2):64–71CrossRef Karakasli A, Satoglu IS, Havitcioglu H (2015) A new intramedullary sustained dynamic compression nail for the treatment of long bone fractures: a biomechanical study. Eklem Hastalik Cerrahisi 26(2):64–71CrossRef
24.
Zurück zum Zitat Mueckley TM et al (2006) Biomechanical evaluation of primary stiffness of tibiotalar arthrodesis with an intramedullary compression nail and four other fixation devices. Foot Ankle Int 27(10):814–820CrossRef Mueckley TM et al (2006) Biomechanical evaluation of primary stiffness of tibiotalar arthrodesis with an intramedullary compression nail and four other fixation devices. Foot Ankle Int 27(10):814–820CrossRef
25.
Zurück zum Zitat Morgan NB (2004) Medical shape memory alloy applications - the market and its products. Mater Sci Eng, A 378:16–23CrossRef Morgan NB (2004) Medical shape memory alloy applications - the market and its products. Mater Sci Eng, A 378:16–23CrossRef
26.
Zurück zum Zitat Machado LG, Savi MA (2003) Medical applications of shape memory alloys. Braz J Med Biol Res 36(6):683–691CrossRef Machado LG, Savi MA (2003) Medical applications of shape memory alloys. Braz J Med Biol Res 36(6):683–691CrossRef
27.
Zurück zum Zitat Gabarre S et al (2017) Influence of gap size, screw configuration, and nail materials in the stability of anterograde reamed intramedullary nail in femoral transverse fractures. Injury 48(Suppl 6):S40–S46CrossRef Gabarre S et al (2017) Influence of gap size, screw configuration, and nail materials in the stability of anterograde reamed intramedullary nail in femoral transverse fractures. Injury 48(Suppl 6):S40–S46CrossRef
28.
Zurück zum Zitat Yakacki CM et al (2017) Patient-specific finite-element analysis of three intramedullary nails for tibiotalocalcaneal fusion. In: AOFAS annual meeting. 2017: Seattle, WA Yakacki CM et al (2017) Patient-specific finite-element analysis of three intramedullary nails for tibiotalocalcaneal fusion. In: AOFAS annual meeting. 2017: Seattle, WA
29.
Zurück zum Zitat Kujala S et al (2002) Bone modeling controlled by a nickel-titanium shape memory alloy intramedullary nail. Biomaterials 23(12):2535–2543CrossRef Kujala S et al (2002) Bone modeling controlled by a nickel-titanium shape memory alloy intramedullary nail. Biomaterials 23(12):2535–2543CrossRef
30.
Zurück zum Zitat Firoozbakhsh K et al (2004) Smart intramedullary rod for correction of pediatric bone deformity: a preliminary study. Clin Orthop Relat Res 424:194–201CrossRef Firoozbakhsh K et al (2004) Smart intramedullary rod for correction of pediatric bone deformity: a preliminary study. Clin Orthop Relat Res 424:194–201CrossRef
31.
Zurück zum Zitat Assad M et al (2003) Porous titanium-nickel for intervertebral fusion in a sheep model: part 2. Surface analysis and nickel release assessment. J Biomed Mater Res B 64(2):121–129CrossRef Assad M et al (2003) Porous titanium-nickel for intervertebral fusion in a sheep model: part 2. Surface analysis and nickel release assessment. J Biomed Mater Res B 64(2):121–129CrossRef
32.
Zurück zum Zitat Assad M et al (2003) (2003) Porous titanium-nickel for intervertebral fusion in a sheep model: part 1. Histomorphometric and radiological analysis. J Biomed Mater Res B 64(2):107–120CrossRef Assad M et al (2003) (2003) Porous titanium-nickel for intervertebral fusion in a sheep model: part 1. Histomorphometric and radiological analysis. J Biomed Mater Res B 64(2):107–120CrossRef
33.
Zurück zum Zitat Russell SM (2009) Design considerations for nitinol bone staples. J Mater Eng Perform 18(5–6):831–835CrossRef Russell SM (2009) Design considerations for nitinol bone staples. J Mater Eng Perform 18(5–6):831–835CrossRef
34.
Zurück zum Zitat Knight A et al (2013) Method and apparatus for an orthopedic fixation system. BioMedical Enterprises: USPTO 8584853B2. Knight A et al (2013) Method and apparatus for an orthopedic fixation system. BioMedical Enterprises: USPTO 8584853B2.
35.
Zurück zum Zitat Cheney D (2018) Elastic orthopedic implant and method of manufacturing thereof. BioMedical Enterprises: USPTO 10117647B2 Cheney D (2018) Elastic orthopedic implant and method of manufacturing thereof. BioMedical Enterprises: USPTO 10117647B2
36.
Zurück zum Zitat Cheney D (2014) Bonestaples and methods of use therefor and manufacturing thereof. BioMedical Enterprises: USPTO US2014/0276830 Cheney D (2014) Bonestaples and methods of use therefor and manufacturing thereof. BioMedical Enterprises: USPTO US2014/0276830
37.
Zurück zum Zitat Mereau TM, Ford TC (2006) Nitinol compression staples for bone fixation in foot surgery. J Am Podiatr Med Assoc 96(2):102–106CrossRef Mereau TM, Ford TC (2006) Nitinol compression staples for bone fixation in foot surgery. J Am Podiatr Med Assoc 96(2):102–106CrossRef
38.
Zurück zum Zitat Neufeld SK, Parks BG, Naseef GS, Melamed EA, Schon LC (2002) Arthrodesis of the first metatarsophalangeal joint: a biomechanical study comparing memory compression staples, cannulated screws, and a dorsal plate. Foot Ankle Int 23(2):97–101CrossRef Neufeld SK, Parks BG, Naseef GS, Melamed EA, Schon LC (2002) Arthrodesis of the first metatarsophalangeal joint: a biomechanical study comparing memory compression staples, cannulated screws, and a dorsal plate. Foot Ankle Int 23(2):97–101CrossRef
39.
Zurück zum Zitat Shibuya N et al (2007) A compression force comparison study among three staple fixation systems. J Foot Ankle Surg 46(1):7–15CrossRef Shibuya N et al (2007) A compression force comparison study among three staple fixation systems. J Foot Ankle Surg 46(1):7–15CrossRef
40.
Zurück zum Zitat Farr D et al (2010) A biomechanical comparison of shape memory compression staples and mechanical compression staples: compression or distraction? Knee Surg Sports Traumatol Arthrosc 18(2):212–217CrossRef Farr D et al (2010) A biomechanical comparison of shape memory compression staples and mechanical compression staples: compression or distraction? Knee Surg Sports Traumatol Arthrosc 18(2):212–217CrossRef
41.
Zurück zum Zitat Chang TJ, Overley BD, Pancratz D (2008) An in vitro comparative study of screw and nitinol staple compression: a model showing active dynamic compression. The Podiatry Institute Update Textbooks, Decatur Chang TJ, Overley BD, Pancratz D (2008) An in vitro comparative study of screw and nitinol staple compression: a model showing active dynamic compression. The Podiatry Institute Update Textbooks, Decatur
42.
Zurück zum Zitat Russell NA et al (2015) Evaluation of nitinol staples for the lapidus arthrodesis in a reproducible biomechanical model. Front Surg 2:65CrossRef Russell NA et al (2015) Evaluation of nitinol staples for the lapidus arthrodesis in a reproducible biomechanical model. Front Surg 2:65CrossRef
43.
Zurück zum Zitat Aiyer A et al (2016) The impact of nitinol staples on the compressive forces, contact area, and mechanical properties in comparison to a claw plate and crossed screws for the first tarsometatarsal arthrodesis. Foot Ankle Spec 9(3):232–240CrossRef Aiyer A et al (2016) The impact of nitinol staples on the compressive forces, contact area, and mechanical properties in comparison to a claw plate and crossed screws for the first tarsometatarsal arthrodesis. Foot Ankle Spec 9(3):232–240CrossRef
44.
Zurück zum Zitat Hoon QJ et al (2016) Biomechanical evaluation of shape-memory alloy staples for internal fixation-an in vitro study. J Exp Orthop 3(1):19CrossRef Hoon QJ et al (2016) Biomechanical evaluation of shape-memory alloy staples for internal fixation-an in vitro study. J Exp Orthop 3(1):19CrossRef
45.
Zurück zum Zitat McKnight RR, Lee SK (2019) Biomechanical properties of nitinol staples: effects of troughing, effective leg length, and 2-staple constructs. J Hand Surg Am 44(6):520CrossRef McKnight RR, Lee SK (2019) Biomechanical properties of nitinol staples: effects of troughing, effective leg length, and 2-staple constructs. J Hand Surg Am 44(6):520CrossRef
46.
Zurück zum Zitat Zhou PY et al (2019) Nickel-titanium arched shape-memory alloy connector combined with bone grafting in the treatment of scaphoid nonunion. Eur J Med Res 24(1):27CrossRef Zhou PY et al (2019) Nickel-titanium arched shape-memory alloy connector combined with bone grafting in the treatment of scaphoid nonunion. Eur J Med Res 24(1):27CrossRef
47.
Zurück zum Zitat Malal JJ, Hegde G, Ferdinand RD (2006) Tarsal joint fusion using memory compression staples–a study of 10 cases. J Foot Ankle Surg 45(2):113–117CrossRef Malal JJ, Hegde G, Ferdinand RD (2006) Tarsal joint fusion using memory compression staples–a study of 10 cases. J Foot Ankle Surg 45(2):113–117CrossRef
48.
Zurück zum Zitat Fernandez-de-Retana P, Poggio D, Ortega JP (2008) Technical tip: first metatarsophalangeal arthrodesis with 20-mm memory compression staples. Foot Ankle Int 29(6):613–615CrossRef Fernandez-de-Retana P, Poggio D, Ortega JP (2008) Technical tip: first metatarsophalangeal arthrodesis with 20-mm memory compression staples. Foot Ankle Int 29(6):613–615CrossRef
49.
Zurück zum Zitat Choudhary RK, Theruvil B, Taylor GR (2004) First metatarsophalangeal joint arthrodesis: a new technique of internal fixation by using memory compression staples. J Foot Ankle Surg 43(5):312–317CrossRef Choudhary RK, Theruvil B, Taylor GR (2004) First metatarsophalangeal joint arthrodesis: a new technique of internal fixation by using memory compression staples. J Foot Ankle Surg 43(5):312–317CrossRef
50.
Zurück zum Zitat Mallette JP, Glenn CL, Glod DJ (2014) The incidence of nonunion after lapidus arthrodesis using staple fixation. J Foot Ankle Surg 53(3):303–306CrossRef Mallette JP, Glenn CL, Glod DJ (2014) The incidence of nonunion after lapidus arthrodesis using staple fixation. J Foot Ankle Surg 53(3):303–306CrossRef
51.
Zurück zum Zitat Schipper ON et al (2018) Radiographic results of nitinol compression staples for hindfoot and midfoot arthrodeses. Foot Ankle Int 39(2):172–179CrossRef Schipper ON et al (2018) Radiographic results of nitinol compression staples for hindfoot and midfoot arthrodeses. Foot Ankle Int 39(2):172–179CrossRef
52.
Zurück zum Zitat Schipper ON, Ellington JK (2019) Nitinol compression staples in foot and ankle surgery. Orthop Clin N Am 50(3):391–399CrossRef Schipper ON, Ellington JK (2019) Nitinol compression staples in foot and ankle surgery. Orthop Clin N Am 50(3):391–399CrossRef
53.
Zurück zum Zitat Wu JC et al (2019) Fracture fixation using shape-memory (ninitol) staples. Orthop Clin N Am 50(3):367–374CrossRef Wu JC et al (2019) Fracture fixation using shape-memory (ninitol) staples. Orthop Clin N Am 50(3):367–374CrossRef
54.
Zurück zum Zitat Bennett GL et al (2005) Tibiotalocalcaneal arthrodesis: a biomechanical assessment of stability. Foot Ankle Int 26(7):530–536CrossRef Bennett GL et al (2005) Tibiotalocalcaneal arthrodesis: a biomechanical assessment of stability. Foot Ankle Int 26(7):530–536CrossRef
55.
Zurück zum Zitat Jehan S et al (2011) The success of tibiotalocalcaneal arthrodesis with intramedullary nailing–a systematic review of the literature. Acta Orthop Belg 77(5):644–651 Jehan S et al (2011) The success of tibiotalocalcaneal arthrodesis with intramedullary nailing–a systematic review of the literature. Acta Orthop Belg 77(5):644–651
56.
Zurück zum Zitat Dupont KM, Shibuya N, Bariteau JT (2019) Tibiotalocalcaneal arthrodesis with intramedullary nails—mechanobiological background and evolution of compressive technology. Glob J Ortho Res 1(5):873–884 Dupont KM, Shibuya N, Bariteau JT (2019) Tibiotalocalcaneal arthrodesis with intramedullary nails—mechanobiological background and evolution of compressive technology. Glob J Ortho Res 1(5):873–884
57.
Zurück zum Zitat Jeng CL et al (2013) Tibiotalocalcaneal arthrodesis with bulk femoral head allograft for salvage of large defects in the ankle. Foot Ankle Int 34(9):1256–1266CrossRef Jeng CL et al (2013) Tibiotalocalcaneal arthrodesis with bulk femoral head allograft for salvage of large defects in the ankle. Foot Ankle Int 34(9):1256–1266CrossRef
58.
Zurück zum Zitat Bussewitz B et al (2014) Retrograde intramedullary nail with femoral head allograft for large deficit tibiotalocalcaneal arthrodesis. Foot Ankle Int 35(7):706–711CrossRef Bussewitz B et al (2014) Retrograde intramedullary nail with femoral head allograft for large deficit tibiotalocalcaneal arthrodesis. Foot Ankle Int 35(7):706–711CrossRef
59.
Zurück zum Zitat Ford SE, Kwon JY, Ellington JK (2019) Tibiotalocalcaneal arthrodesis utilizing a titanium intramedullary nail with an internal pseudoelastic nitinol compression element: a retrospective case series of 33 patients. J Foot Ankle Surg 58(2):266–272CrossRef Ford SE, Kwon JY, Ellington JK (2019) Tibiotalocalcaneal arthrodesis utilizing a titanium intramedullary nail with an internal pseudoelastic nitinol compression element: a retrospective case series of 33 patients. J Foot Ankle Surg 58(2):266–272CrossRef
60.
Zurück zum Zitat Steele JR et al (2019) Comparison of tibiotalocalcaneal arthrodeses using a sustained dynamic compression nail versus nondynamized nails. Foot Ankle Spec 13:193–200CrossRef Steele JR et al (2019) Comparison of tibiotalocalcaneal arthrodeses using a sustained dynamic compression nail versus nondynamized nails. Foot Ankle Spec 13:193–200CrossRef
61.
Zurück zum Zitat Berson L, McGarvey WC, Clanton TO (2002) Evaluation of compression in intramedullary hindfoot arthrodesis. Foot Ankle Int 23(11):992–995CrossRef Berson L, McGarvey WC, Clanton TO (2002) Evaluation of compression in intramedullary hindfoot arthrodesis. Foot Ankle Int 23(11):992–995CrossRef
62.
Zurück zum Zitat Hsu AR, Ellington JK, Adams SB Jr (2015) Tibiotalocalcaneal arthrodesis using a nitinol intramedullary hindfoot nail. Foot Ankle Spec 8(5):389–396CrossRef Hsu AR, Ellington JK, Adams SB Jr (2015) Tibiotalocalcaneal arthrodesis using a nitinol intramedullary hindfoot nail. Foot Ankle Spec 8(5):389–396CrossRef
63.
Zurück zum Zitat Kinmon K et al (2013) Benchtop comparison of a novel dynamic compression screw to a standard cortical screw: compression integrity and gap size over time during simulated resorption. Foot Ankle Spec 6(3):222–225CrossRef Kinmon K et al (2013) Benchtop comparison of a novel dynamic compression screw to a standard cortical screw: compression integrity and gap size over time during simulated resorption. Foot Ankle Spec 6(3):222–225CrossRef
64.
Zurück zum Zitat Conklin MJ et al (2019) Total ankle replacement conversion to tibiotalocalcaneal arthrodesis with bulk femoral head allograft and pseudoelastic intramedullary nail providing sustained joint compression. Foot Ankle Orthopaedics 3(4):1–7 Conklin MJ et al (2019) Total ankle replacement conversion to tibiotalocalcaneal arthrodesis with bulk femoral head allograft and pseudoelastic intramedullary nail providing sustained joint compression. Foot Ankle Orthopaedics 3(4):1–7
65.
Zurück zum Zitat Dekker TJ et al (2018) Use of patient-specific 3D-printed titanium implants for complex foot and ankle limb salvage, deformity correction, and arthrodesis procedures. Foot Ankle Int 39(8):916–921CrossRef Dekker TJ et al (2018) Use of patient-specific 3D-printed titanium implants for complex foot and ankle limb salvage, deformity correction, and arthrodesis procedures. Foot Ankle Int 39(8):916–921CrossRef
66.
Zurück zum Zitat Kildow BJ et al (2016) Measurement of nitinol recovery distance using pseudoelastic intramedullary nails for tibiotalocalcaneal arthrodesis. Foot Ankle Spec 9(6):494–499CrossRef Kildow BJ et al (2016) Measurement of nitinol recovery distance using pseudoelastic intramedullary nails for tibiotalocalcaneal arthrodesis. Foot Ankle Spec 9(6):494–499CrossRef
67.
Zurück zum Zitat Kreulen C, Lian E, Giza E (2017) Technique for use of trabecular metal spacers in tibiotalocalcaneal arthrodesis with large bony defects. Foot Ankle Int 38(1):96–106CrossRef Kreulen C, Lian E, Giza E (2017) Technique for use of trabecular metal spacers in tibiotalocalcaneal arthrodesis with large bony defects. Foot Ankle Int 38(1):96–106CrossRef
68.
Zurück zum Zitat Lachman JR, Adams SB (2019) Tibiotalocalcaneal arthrodesis for severe talar avascular necrosis. Foot Ankle Clin 24(1):143–161CrossRef Lachman JR, Adams SB (2019) Tibiotalocalcaneal arthrodesis for severe talar avascular necrosis. Foot Ankle Clin 24(1):143–161CrossRef
69.
Zurück zum Zitat Latt LD, Smith KE, Dupont KM (2017) Revision tibiotalocalcaneal arthrodesis with a pseudoelastic intramedullary nail: a case study. Foot Ankle Spec 10(1):75–81CrossRef Latt LD, Smith KE, Dupont KM (2017) Revision tibiotalocalcaneal arthrodesis with a pseudoelastic intramedullary nail: a case study. Foot Ankle Spec 10(1):75–81CrossRef
70.
Zurück zum Zitat Zhao X et al (2012) Nickel-titanium shape-memory sawtooth-arm embracing fixator for periprosthetic femoral fractures. Int Orthop 36(3):619–626CrossRef Zhao X et al (2012) Nickel-titanium shape-memory sawtooth-arm embracing fixator for periprosthetic femoral fractures. Int Orthop 36(3):619–626CrossRef
71.
Zurück zum Zitat Chen X et al (2013) Design and application of nickel-titanium olecranon memory connector in treatment of olecranon fractures: a prospective randomized controlled trial. Int Orthop 37(6):1099–1105CrossRef Chen X et al (2013) Design and application of nickel-titanium olecranon memory connector in treatment of olecranon fractures: a prospective randomized controlled trial. Int Orthop 37(6):1099–1105CrossRef
72.
Zurück zum Zitat Chan WY et al (2018) Mechanical and clinical evaluation of a shape memory alloy and conventional struts in a flexible scoliotic brace. Ann Biomed Eng 46(8):1194–1205CrossRef Chan WY et al (2018) Mechanical and clinical evaluation of a shape memory alloy and conventional struts in a flexible scoliotic brace. Ann Biomed Eng 46(8):1194–1205CrossRef
73.
Zurück zum Zitat Abduljabbar FH et al (2017) Factors associated with clinical outcomes after lumbar interbody fusion with a porous nitinol implant. Glob Spine J 7(8):780–786CrossRef Abduljabbar FH et al (2017) Factors associated with clinical outcomes after lumbar interbody fusion with a porous nitinol implant. Glob Spine J 7(8):780–786CrossRef
74.
Zurück zum Zitat Ferrier M et al (2019) Radiographic and clinical comparison of proximal interphalangeal joint arthrodesis between a static and dynamic implant. J Foot Ankle Surg 58(4):657–662CrossRef Ferrier M et al (2019) Radiographic and clinical comparison of proximal interphalangeal joint arthrodesis between a static and dynamic implant. J Foot Ankle Surg 58(4):657–662CrossRef
75.
Zurück zum Zitat Payo-Ollero J et al (2019) The efficacy of an intramedullary nitinol implant in the correction of claw toe or hammertoe deformities. Arch Orthop Trauma Surg 139(12):1681–1690CrossRef Payo-Ollero J et al (2019) The efficacy of an intramedullary nitinol implant in the correction of claw toe or hammertoe deformities. Arch Orthop Trauma Surg 139(12):1681–1690CrossRef
Metadaten
Titel
Pseudoelastic NiTiNOL in Orthopaedic Applications
verfasst von
David Safranski
Kenneth Dupont
Ken Gall
Publikationsdatum
24.06.2020
Verlag
Springer US
Erschienen in
Shape Memory and Superelasticity / Ausgabe 3/2020
Print ISSN: 2199-384X
Elektronische ISSN: 2199-3858
DOI
https://doi.org/10.1007/s40830-020-00294-y

Weitere Artikel der Ausgabe 3/2020

Shape Memory and Superelasticity 3/2020 Zur Ausgabe

Special Issue: A Tribute to Prof. Dr. Gunther Eggeler, Invited Paper

Development of Nickel-Rich Nickel–Titanium–Hafnium Alloys for Tribological Applications

Special Issue: A Tribute to Prof. Dr. Gunther Eggeler, Invited Paper

Recent Developments in Small-Scale Shape Memory Oxides

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.