Skip to main content
Erschienen in: Journal of Materials Science: Materials in Electronics 20/2017

05.07.2017

Pulse frequency and duty cycle effects on the electrodeposited Ni–Co reinforced with micro and nano-sized ZnO

verfasst von: Siavash Imanian Ghazanlou, A. H. S. Farhood, Sahand Hosouli, Somayeh Ahmadiyeh, Ali Rasooli

Erschienen in: Journal of Materials Science: Materials in Electronics | Ausgabe 20/2017

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Ni–Co/ZnO nano and micro composite coating were prepared by PC electrodeposition methods on the pure copper substrate. X-ray diffraction, scanning electron microscopy, energy dispersive X-ray spectroscopy, EDAX mapping and atomic force microscopy were employed for investigating of phase structure, surface morphology, elemental analysis, elemental distribution and surface roughness of coatings, respectively. The effects of pulse frequency and duty cycle on the microhardness of coating were investigated. Microhardness of nanocomposite coating was more than that of the microcomposite coating. There were optimum values for pulse frequency and duty cycle (20 Hz, 40% and 10 Hz, 60% for nanocomposite and microcomposite, respectively). Any detour from those optimum values led the microhardness to reduce. Actually pulse frequency and duty cycle influenced the TON (electrical current on time) and TOFF (electrical current off time) values. Optimum TON is required to prepare enough electrical attraction force between the particles (surrounded by cationic cloud) and cathode surface. Optimum TOFF prepared sufficient conditions for particles which be surrounded by cationic cloud and then reach to the cathode surface (using agitation of electrolyte) and reduce there. ZnO microparticles are so greater than ZnO nanoparticles, so more electrical attraction force (lower pulse frequency and higher duty cycle) is required to make them adhere to the cathode surface and prevent from dislodging them from cathode surface by hydrodynamic forces in the electrolyte. Corrosion and wear behaviors of nanocomposite were better than those of microcomposite.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
2.
Zurück zum Zitat M. Srivastava, V.K. William Grips, K.S. Rajam, Electrochemical deposition and tribological behaviour of Ni and Ni–Co metal matrix composites with SiC nano-particles. Appl. Surf. Sci. 253, 3814–3824 (2007)CrossRef M. Srivastava, V.K. William Grips, K.S. Rajam, Electrochemical deposition and tribological behaviour of Ni and Ni–Co metal matrix composites with SiC nano-particles. Appl. Surf. Sci. 253, 3814–3824 (2007)CrossRef
3.
Zurück zum Zitat Anabela Gomes, Isabel Pereira, Beatriz Fernández and Rosario Pereiro, in Electrodeposition of Metal Matrix Nanocomposites: Improvement of the Chemical Characterization Techniques, ed. By Boreddy Reddy. Advances in nanocomposites—synthesis, characterization and industrial applications (InTech, Rijeka, 2011) Anabela Gomes, Isabel Pereira, Beatriz Fernández and Rosario Pereiro, in Electrodeposition of Metal Matrix Nanocomposites: Improvement of the Chemical Characterization Techniques, ed. By Boreddy Reddy. Advances in nanocomposites—synthesis, characterization and industrial applications (InTech, Rijeka, 2011)
4.
Zurück zum Zitat G. Devaraj et.al., Pulse plating. Mater. Chem. Phys. 25, 439–461 (1990)CrossRef G. Devaraj et.al., Pulse plating. Mater. Chem. Phys. 25, 439–461 (1990)CrossRef
5.
Zurück zum Zitat Y. Yang, Y.F. Cheng, Fabrication of Ni–Co–SiC composite coatings by pulse electrodeposition—effects of duty cycle and pulse frequency. Surf. Coat. Technol. 216, 282–288 (2013)CrossRef Y. Yang, Y.F. Cheng, Fabrication of Ni–Co–SiC composite coatings by pulse electrodeposition—effects of duty cycle and pulse frequency. Surf. Coat. Technol. 216, 282–288 (2013)CrossRef
6.
Zurück zum Zitat P. Baghery, M. Farzam, A.B. Mousavi, M. Hosseini, Ni–TiO2 nanocomposite coating with high resistance to corrosion and wear. Surf. Coat. Technol. 204, 3804–3810 (2010)CrossRef P. Baghery, M. Farzam, A.B. Mousavi, M. Hosseini, Ni–TiO2 nanocomposite coating with high resistance to corrosion and wear. Surf. Coat. Technol. 204, 3804–3810 (2010)CrossRef
7.
Zurück zum Zitat M.R. Vaezi, S.K. Ssadrnezhaad, L. Nikzad, Electrodeposition of Ni–SiC nano-composite coatings and evaluation of wear and corrosion resistance and electroplating characteristics. Colloids Surf. A 315, 176–182 (2008)CrossRef M.R. Vaezi, S.K. Ssadrnezhaad, L. Nikzad, Electrodeposition of Ni–SiC nano-composite coatings and evaluation of wear and corrosion resistance and electroplating characteristics. Colloids Surf. A 315, 176–182 (2008)CrossRef
8.
Zurück zum Zitat Z. Shahri, S.R. Allahkaram, Effect of particles concentration and current density on the cobalt/hexagonal boron nitride nano-composite coatings properties. Iran. J. Mater. Sci. Eng. 9(4), 1–7 (2012) Z. Shahri, S.R. Allahkaram, Effect of particles concentration and current density on the cobalt/hexagonal boron nitride nano-composite coatings properties. Iran. J. Mater. Sci. Eng. 9(4), 1–7 (2012)
9.
Zurück zum Zitat Y. Yao, S. Yao, L. Zhang, H. Wang, Electrodeposition and mechanical and corrosion resistance properties of Ni–W/SiC nanocomposite coatings. Mater. Lett. 61, 67–70 (2007)CrossRef Y. Yao, S. Yao, L. Zhang, H. Wang, Electrodeposition and mechanical and corrosion resistance properties of Ni–W/SiC nanocomposite coatings. Mater. Lett. 61, 67–70 (2007)CrossRef
10.
Zurück zum Zitat M. Karbasi, N. Yazdian A. Vahidian, Development of electro-co-deposited Ni–TiC nano-particle reinforced nanocomposite coatings. Surf. Coat. Technol. 207, 587–593 (2012)CrossRef M. Karbasi, N. Yazdian A. Vahidian, Development of electro-co-deposited Ni–TiC nano-particle reinforced nanocomposite coatings. Surf. Coat. Technol. 207, 587–593 (2012)CrossRef
11.
Zurück zum Zitat S.A. Lajevardi, T. Shahrabi, Effects of pulse electrodeposition parameters on the properties of Ni–TiO2 nanocomposite coatings. Appl. Surf. Sci. 256, 6775–6781 (2010)CrossRef S.A. Lajevardi, T. Shahrabi, Effects of pulse electrodeposition parameters on the properties of Ni–TiO2 nanocomposite coatings. Appl. Surf. Sci. 256, 6775–6781 (2010)CrossRef
12.
Zurück zum Zitat D.K. Singh, V.B. Singh, Electrodeposition and characterization of Ni–TiC composite using N-methylformamide bath. Mater. Sci. Eng. A 532, 493–499 (2012)CrossRef D.K. Singh, V.B. Singh, Electrodeposition and characterization of Ni–TiC composite using N-methylformamide bath. Mater. Sci. Eng. A 532, 493–499 (2012)CrossRef
13.
Zurück zum Zitat S. Pouladi, M.H. Shariat, M.E. Bahrololoom, Electrodeposition and characterization of Ni–Zn–P and Ni–Zn–P/nano-SiC coatings. Surf. Coat. Technol. 213, 33–40 (2012)CrossRef S. Pouladi, M.H. Shariat, M.E. Bahrololoom, Electrodeposition and characterization of Ni–Zn–P and Ni–Zn–P/nano-SiC coatings. Surf. Coat. Technol. 213, 33–40 (2012)CrossRef
14.
15.
Zurück zum Zitat S. Ozkan et al., Electrodeposited Ni/SiC nanocomposite coatings and evaluation of wear and corrosion properties, Surf. Coat. Technol. 232, 734–741 (2013)CrossRef S. Ozkan et al., Electrodeposited Ni/SiC nanocomposite coatings and evaluation of wear and corrosion properties, Surf. Coat. Technol. 232, 734–741 (2013)CrossRef
16.
Zurück zum Zitat M. Arab Juneghani, M. Farzam, H. Zohdirad, Wear and corrosion resistance and electroplating characteristics of electrodeposited Cr–SiC nano-composite coatings. Trans. Nonferrous Met. Soc. China 23, 1993–2001 (2013)CrossRef M. Arab Juneghani, M. Farzam, H. Zohdirad, Wear and corrosion resistance and electroplating characteristics of electrodeposited Cr–SiC nano-composite coatings. Trans. Nonferrous Met. Soc. China 23, 1993–2001 (2013)CrossRef
18.
Zurück zum Zitat L.M. Chang, M.Z. An, H.F. Guo, S.Y. Shi, Microstructure and properties of Ni–Co/nano-Al2O3 composite coatings by pulse reversal current electrodeposition. Appl. Surf. Sci. 253, 2132–2137 (2006)CrossRef L.M. Chang, M.Z. An, H.F. Guo, S.Y. Shi, Microstructure and properties of Ni–Co/nano-Al2O3 composite coatings by pulse reversal current electrodeposition. Appl. Surf. Sci. 253, 2132–2137 (2006)CrossRef
19.
Zurück zum Zitat B. Bahadormanesh, A. Dolati, The kinetic of Ni-Co/SiC composite coating electrodeposition. J. Alloys Compd. 504, 514–518 (2010)CrossRef B. Bahadormanesh, A. Dolati, The kinetic of Ni-Co/SiC composite coating electrodeposition. J. Alloys Compd. 504, 514–518 (2010)CrossRef
20.
Zurück zum Zitat K.A. Kumar, G.P. Kalaignan, V.S. Muralidharan, Direct and pulse current electrodeposition of Ni–W–TiO2 nanocomposite coatings, Ceram. Int. 39, 2827–2834 (2013)CrossRef K.A. Kumar, G.P. Kalaignan, V.S. Muralidharan, Direct and pulse current electrodeposition of Ni–W–TiO2 nanocomposite coatings, Ceram. Int. 39, 2827–2834 (2013)CrossRef
21.
Zurück zum Zitat V. Zarghami, M. Ghorbani, Alteration of corrosion and nanomechanical properties of pulse electrodeposited Ni/SiC nanocomposite coatings. J. Alloys Compd. 598, 236–242 (2014)CrossRef V. Zarghami, M. Ghorbani, Alteration of corrosion and nanomechanical properties of pulse electrodeposited Ni/SiC nanocomposite coatings. J. Alloys Compd. 598, 236–242 (2014)CrossRef
22.
Zurück zum Zitat R. Sen, S. Das, K. Das, The effect of bath temperature on the crystallite size and microstructure of Ni–CeO2 nanocomposite coating. Mater. Charact. 62, 257–262 (2011)CrossRef R. Sen, S. Das, K. Das, The effect of bath temperature on the crystallite size and microstructure of Ni–CeO2 nanocomposite coating. Mater. Charact. 62, 257–262 (2011)CrossRef
23.
Zurück zum Zitat B. Bakhit, A. Akbari, Synthesis and characterization of Ni–Co/SiC nanocomposite coatings using sediment co-deposition technique. J. Alloys Compd. 560, 92–104 (2013)CrossRef B. Bakhit, A. Akbari, Synthesis and characterization of Ni–Co/SiC nanocomposite coatings using sediment co-deposition technique. J. Alloys Compd. 560, 92–104 (2013)CrossRef
24.
Zurück zum Zitat J.L. Wang et al., Influence of SiO2 nano-particles on microstructures and properties of Ni-W-P/CeO2-SiO2 composites prepared by pulse electrodeposition. Trans. Nonferrous Met. Soc. China 20, 839–843 (2010)CrossRef J.L. Wang et al., Influence of SiO2 nano-particles on microstructures and properties of Ni-W-P/CeO2-SiO2 composites prepared by pulse electrodeposition. Trans. Nonferrous Met. Soc. China 20, 839–843 (2010)CrossRef
25.
26.
Zurück zum Zitat IU Haq et al., Electrodeposition of Ni–Fe2O3 nanocomposite coating on steel, Surf. Coat. Technol. 235, 691–698 (2013)CrossRef IU Haq et al., Electrodeposition of Ni–Fe2O3 nanocomposite coating on steel, Surf. Coat. Technol. 235, 691–698 (2013)CrossRef
27.
Zurück zum Zitat M. Rostami et al., Characterization of electrodeposited Ni–SiC–Cg nanocomposite coating. Appl. Surf. Sci. 265, 369–374 (2013)CrossRef M. Rostami et al., Characterization of electrodeposited Ni–SiC–Cg nanocomposite coating. Appl. Surf. Sci. 265, 369–374 (2013)CrossRef
28.
Zurück zum Zitat H.J. Zhang et al., Preparation and oxidation behaviour of electrodeposited Ni–CeO2 nanocomposite coatings. Trans. Nonferrous Met. Soc. China 23, 2011–2020 (2013)CrossRef H.J. Zhang et al., Preparation and oxidation behaviour of electrodeposited Ni–CeO2 nanocomposite coatings. Trans. Nonferrous Met. Soc. China 23, 2011–2020 (2013)CrossRef
29.
Zurück zum Zitat Y.B. Zhou et al., Fabrication and wear properties of co-deposited Ni–Cr nanocomposite coatings. Trans. Nonferrous Met. Soc. China 20, 104–109 (2010)CrossRef Y.B. Zhou et al., Fabrication and wear properties of co-deposited Ni–Cr nanocomposite coatings. Trans. Nonferrous Met. Soc. China 20, 104–109 (2010)CrossRef
30.
Zurück zum Zitat L. Shi et al., Mechanical properties and wear and corrosion resistance of electrodeposited Ni–Co/SiC nanocomposite coating. Appl. Surf. Sci. 252, 3591–3599 (2006)CrossRef L. Shi et al., Mechanical properties and wear and corrosion resistance of electrodeposited Ni–Co/SiC nanocomposite coating. Appl. Surf. Sci. 252, 3591–3599 (2006)CrossRef
31.
Zurück zum Zitat Y.B. Zhou, Y.Z. Ding, Oxidation resistance of co-deposited Ni-SiC nanocomposite coating. Trans. Nonferrous Met. Soc. China 17, 925–928 (2007)CrossRef Y.B. Zhou, Y.Z. Ding, Oxidation resistance of co-deposited Ni-SiC nanocomposite coating. Trans. Nonferrous Met. Soc. China 17, 925–928 (2007)CrossRef
32.
Zurück zum Zitat M. Lekka et al., Corrosion properties of micro- and nanocomposite copper matrix coatings produced from a copper pyrophosphate bath under pulse current. Surf. Coat. Technol. 205, 3438–3447 (2011)CrossRef M. Lekka et al., Corrosion properties of micro- and nanocomposite copper matrix coatings produced from a copper pyrophosphate bath under pulse current. Surf. Coat. Technol. 205, 3438–3447 (2011)CrossRef
33.
Zurück zum Zitat A.A. Aal, S.M. El-Sheikh, Y.M.Z. Ahmed, Electrodeposited composite coating of Ni–W–P with nano-sized rod- and spherical-shaped SiC particles. Mater. Res. Bull. 44, 151–159 (2009)CrossRef A.A. Aal, S.M. El-Sheikh, Y.M.Z. Ahmed, Electrodeposited composite coating of Ni–W–P with nano-sized rod- and spherical-shaped SiC particles. Mater. Res. Bull. 44, 151–159 (2009)CrossRef
34.
Zurück zum Zitat F. Kılıc, H. Gul, S. Aslan, A. Alp, H. Akbulut, Effect of CTAB concentration in the electrolyte on the tribological properties of nanoparticle SiC reinforced Ni metal matrix composite (MMC) coatings produced by electrodeposition. Colloids Surf. A 419, 53–60 (2013)CrossRef F. Kılıc, H. Gul, S. Aslan, A. Alp, H. Akbulut, Effect of CTAB concentration in the electrolyte on the tribological properties of nanoparticle SiC reinforced Ni metal matrix composite (MMC) coatings produced by electrodeposition. Colloids Surf. A 419, 53–60 (2013)CrossRef
35.
Zurück zum Zitat B. Ranjith, G.P. Kalaignan, Ni–Co–TiO2 nanocomposite coating prepared by pulse and pulse reversal methods using acetate bath. Appl. Surf. Sci. 257, 42–47 (2010)CrossRef B. Ranjith, G.P. Kalaignan, Ni–Co–TiO2 nanocomposite coating prepared by pulse and pulse reversal methods using acetate bath. Appl. Surf. Sci. 257, 42–47 (2010)CrossRef
36.
Zurück zum Zitat W. Junli, X. Ruidong, Y. Zhang, Study on characteristics of Ni-W-B composites containing CeO2 nano-particles prepared by pulse electrodeposition. J. Rare Earths, 30(1), 43 (2012)CrossRef W. Junli, X. Ruidong, Y. Zhang, Study on characteristics of Ni-W-B composites containing CeO2 nano-particles prepared by pulse electrodeposition. J. Rare Earths, 30(1), 43 (2012)CrossRef
37.
Zurück zum Zitat Y.T. Wu et al., Investigation in electroless Ni–P–Cg (graphite)–SiC composite coating. Surf. Coat. Technol. 201, 441–445 (2006)CrossRef Y.T. Wu et al., Investigation in electroless Ni–P–Cg (graphite)–SiC composite coating. Surf. Coat. Technol. 201, 441–445 (2006)CrossRef
38.
Zurück zum Zitat H.S. Maharana et al., Surface-mechanical properties of electrodeposited Cu-Al2O3 composite coating and effects of processing parameters, Metallurgical Mater Trans A (2015). doi:10.1007/s11661-015-3238-0 H.S. Maharana et al., Surface-mechanical properties of electrodeposited Cu-Al2O3 composite coating and effects of processing parameters, Metallurgical Mater Trans A (2015). doi:10.​1007/​s11661-015-3238-0
41.
Zurück zum Zitat N Li et al., Preparation and mechanical property of electrodeposited Al-graphene composite coating. Mater. Des. 111, 522–527 (2016)CrossRef N Li et al., Preparation and mechanical property of electrodeposited Al-graphene composite coating. Mater. Des. 111, 522–527 (2016)CrossRef
43.
44.
Zurück zum Zitat S. Kasturibai, G.P. Kalaignan, Pulse electro-deposition and corrosion properties of Ni–Si3N4 nanocomposite coatings, Bull. Mater. Sci. 37, 721–728 (2014)CrossRef S. Kasturibai, G.P. Kalaignan, Pulse electro-deposition and corrosion properties of Ni–Si3N4 nanocomposite coatings, Bull. Mater. Sci. 37, 721–728 (2014)CrossRef
45.
Zurück zum Zitat M.R. Vaezi et al., Corrosion properties of micro- and nanocomposite copper matrix coatings produced from a copper pyrophosphate bath under pulse current. Surf. Coat. Technol. 205, 3438–3447 (2011)CrossRef M.R. Vaezi et al., Corrosion properties of micro- and nanocomposite copper matrix coatings produced from a copper pyrophosphate bath under pulse current. Surf. Coat. Technol. 205, 3438–3447 (2011)CrossRef
46.
Zurück zum Zitat C.L. Pavithra, B.V. Sarada, K.V. Rajulapati, T.N. Rao, G. Sundararajan, Process optimization for pulse reverse electrodeposition of graphene reinforced copper nanocomposites, Mater. Manuf. Process. (2015), doi:10.1080/10426914.2015.1127938. C.L. Pavithra, B.V. Sarada, K.V. Rajulapati, T.N. Rao, G. Sundararajan, Process optimization for pulse reverse electrodeposition of graphene reinforced copper nanocomposites, Mater. Manuf. Process. (2015), doi:10.​1080/​10426914.​2015.​1127938.
47.
Zurück zum Zitat Y. Yao et al., Corrosion behavior of Ni–W/SiC nanocomposite coating in NaCl solution. Surf. Rev. Lett. 13(4), 489–494 (2006)CrossRef Y. Yao et al., Corrosion behavior of Ni–W/SiC nanocomposite coating in NaCl solution. Surf. Rev. Lett. 13(4), 489–494 (2006)CrossRef
48.
Zurück zum Zitat M.H. Allahyarzadeh, M. Aliofkhazraei, A.R.S. Rouhaghdam, V. Torabinejad, Electrodeposition of Ni-W-Al2O3 nanocomposite coating with functionally graded microstructure. J. Alloys Compd. (2016). doi:10.1016/j.jallcom.2016.01.031. M.H. Allahyarzadeh, M. Aliofkhazraei, A.R.S. Rouhaghdam, V. Torabinejad, Electrodeposition of Ni-W-Al2O3 nanocomposite coating with functionally graded microstructure. J. Alloys Compd. (2016). doi:10.​1016/​j.​jallcom.​2016.​01.​031.
50.
Zurück zum Zitat M.H. Allahyarzadeh et al., Gradient electrodeposition of Ni-Cu-W (alumina) nanocomposite coating. Mater. Des. 107, 74–81 (2016)CrossRef M.H. Allahyarzadeh et al., Gradient electrodeposition of Ni-Cu-W (alumina) nanocomposite coating. Mater. Des. 107, 74–81 (2016)CrossRef
51.
Zurück zum Zitat S. Ghazanlou et al., Influence of pulse electrodeposition parameters on microhardness, grain size and surface morphology of Ni-Co/SiO2 nanocomposite coating. Bull. Mater. Sci. 39, 1185–1195 (2016)CrossRef S. Ghazanlou et al., Influence of pulse electrodeposition parameters on microhardness, grain size and surface morphology of Ni-Co/SiO2 nanocomposite coating. Bull. Mater. Sci. 39, 1185–1195 (2016)CrossRef
53.
Zurück zum Zitat Y.W. Yao, Preparation, mechanical property and wear resistance of Ni-W/Al2O3 composite coatings. Surf. Eng. 24, 226–229 (2008)CrossRef Y.W. Yao, Preparation, mechanical property and wear resistance of Ni-W/Al2O3 composite coatings. Surf. Eng. 24, 226–229 (2008)CrossRef
54.
Zurück zum Zitat G. Gyawali et al., Effect of microtexturing on tribological performance of Ni/Ni–SiC composite coatings, Surf. Eng. 31, 701–707 (2015)CrossRef G. Gyawali et al., Effect of microtexturing on tribological performance of Ni/Ni–SiC composite coatings, Surf. Eng. 31, 701–707 (2015)CrossRef
56.
Zurück zum Zitat X.J. Sun, J.G. Li, Friction and wear properties of electrodeposited nickel–titania nanocomposite coatings. Tribol. Lett. 28, 223–228 (2007)CrossRef X.J. Sun, J.G. Li, Friction and wear properties of electrodeposited nickel–titania nanocomposite coatings. Tribol. Lett. 28, 223–228 (2007)CrossRef
57.
Zurück zum Zitat G. Gyawali et al., Preparation of Ni–W–Si3N4 composite coatings and evaluation of their scratch resistance properties. Ceram. Int. 42, 3497–3503 (2016)CrossRef G. Gyawali et al., Preparation of Ni–W–Si3N4 composite coatings and evaluation of their scratch resistance properties. Ceram. Int. 42, 3497–3503 (2016)CrossRef
58.
59.
Zurück zum Zitat D. Roy, A.K. Das, R. Saini, P.K. Singh, P. Kumar, M. Hussain, A. Mandal, A.R. Dixit, Pulse current Co-deposition of Ni-WS2 nano-composite film for solid lubrication. Mater. Manuf. Process. (2016). doi:10.1080/10426914.2016.1198011 D. Roy, A.K. Das, R. Saini, P.K. Singh, P. Kumar, M. Hussain, A. Mandal, A.R. Dixit, Pulse current Co-deposition of Ni-WS2 nano-composite film for solid lubrication. Mater. Manuf. Process. (2016). doi:10.​1080/​10426914.​2016.​1198011
60.
Zurück zum Zitat H. Majidi et al., Corrosion and wear behaviour of multilayer pulse electrodeposited Ni–Al2O3 nanocomposite coatings assisted with ultrasound, Bull. Mater. Sci. 39, 1691–1699 (2016)CrossRef H. Majidi et al., Corrosion and wear behaviour of multilayer pulse electrodeposited Ni–Al2O3 nanocomposite coatings assisted with ultrasound, Bull. Mater. Sci. 39, 1691–1699 (2016)CrossRef
61.
Zurück zum Zitat Y. Jiang et al., High-frequency pulse electrodeposition and characterization of Ni–Co/ZrO2 nanocomposite coatings. J. Mater. Sci. Mater. Electron. 27, 8169–8176 (2016)CrossRef Y. Jiang et al., High-frequency pulse electrodeposition and characterization of Ni–Co/ZrO2 nanocomposite coatings. J. Mater. Sci. Mater. Electron. 27, 8169–8176 (2016)CrossRef
62.
Zurück zum Zitat Y. Jiang et al., Effects of pulse plating parameters on the microstructure and properties of high frequency pulse electrodeposited Ni–Co/ZrO2 nanocomposite coatings. J. Mater. Sci. Mater. Electron. 28, 610–616 (2017)CrossRef Y. Jiang et al., Effects of pulse plating parameters on the microstructure and properties of high frequency pulse electrodeposited Ni–Co/ZrO2 nanocomposite coatings. J. Mater. Sci. Mater. Electron. 28, 610–616 (2017)CrossRef
63.
Zurück zum Zitat Q. Yang, Y. He, Y. Fan et al., Pulse current electrodeposition and anticorrosion performance of Ni-W-mica composite coatings. J. Miner. Met. Mater. Soc. (2017). doi:10.1007/s11837-017-2325-7 Q. Yang, Y. He, Y. Fan et al., Pulse current electrodeposition and anticorrosion performance of Ni-W-mica composite coatings. J. Miner. Met. Mater. Soc. (2017). doi:10.​1007/​s11837-017-2325-7
64.
Zurück zum Zitat X. Jiang et al., High temperature tribology behaviors of brush plated Ni–W–Co/SiC composite coating. Surf. Coat. Technol. 194, 10–15 (2005)CrossRef X. Jiang et al., High temperature tribology behaviors of brush plated Ni–W–Co/SiC composite coating. Surf. Coat. Technol. 194, 10–15 (2005)CrossRef
65.
Zurück zum Zitat H.S. Maharana et al., Surface–mechanical properties of electrodeposited Cu–Al2O3 composite coating and effects of processing parameters. Metall. Mater. Trans. A (2016). doi:10.1007/s11661-015-3238-0 H.S. Maharana et al., Surface–mechanical properties of electrodeposited Cu–Al2O3 composite coating and effects of processing parameters. Metall. Mater. Trans. A (2016). doi:10.​1007/​s11661-015-3238-0
66.
Zurück zum Zitat M.K. Tripathi et al., Structure and properties of electrodeposited functional Ni–Fe/TiN nanocomposite coatings, Surf. Coat. Technol. 278, 146–156 (2015)CrossRef M.K. Tripathi et al., Structure and properties of electrodeposited functional Ni–Fe/TiN nanocomposite coatings, Surf. Coat. Technol. 278, 146–156 (2015)CrossRef
Metadaten
Titel
Pulse frequency and duty cycle effects on the electrodeposited Ni–Co reinforced with micro and nano-sized ZnO
verfasst von
Siavash Imanian Ghazanlou
A. H. S. Farhood
Sahand Hosouli
Somayeh Ahmadiyeh
Ali Rasooli
Publikationsdatum
05.07.2017
Verlag
Springer US
Erschienen in
Journal of Materials Science: Materials in Electronics / Ausgabe 20/2017
Print ISSN: 0957-4522
Elektronische ISSN: 1573-482X
DOI
https://doi.org/10.1007/s10854-017-7442-0

Weitere Artikel der Ausgabe 20/2017

Journal of Materials Science: Materials in Electronics 20/2017 Zur Ausgabe

Neuer Inhalt