Skip to main content
Erschienen in: Journal of Engineering Mathematics 1/2017

07.11.2015

Pushed and pulled fronts in a discrete reaction–diffusion equation

verfasst von: J. R. King, R. D. O’Dea

Erschienen in: Journal of Engineering Mathematics | Ausgabe 1/2017

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

We consider the propagation of wave fronts connecting unstable and stable uniform solutions to a discrete reaction–diffusion equation on a one-dimensional integer lattice. The dependence of the wavespeed on the coupling strength \(\mu \) between lattice points and on a detuning parameter (a) appearing in a nonlinear forcing is investigated thoroughly. Via asymptotic and numerical studies, the speed both of ‘pulled’ fronts (whereby the wavespeed can be characterised by the linear behaviour at the leading edge of the wave) and of ‘pushed’ fronts (for which the nonlinear dynamics of the entire front determine the wavespeed) is investigated in detail. The asymptotic and numerical techniques employed complement each other in highlighting the transition between pushed and pulled fronts under variations of \(\mu \) and a.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Fußnoten
1
An early description of the distinct classes of wave in reaction–diffusion equations of the form (7) was given by Hadeler and Rothe [20]; detailed analysis of the different front types in such a PDE, as well as the pushed/pulled terminology, is due to Stokes [21].
 
2
Due to the rescaling of j, the constant c in the remainder of this section corresponds to dividing that elsewhere in the paper by \(\sqrt{\mu }\).
 
3
We stress that, because \(x=j/\sqrt{\mu }\), the quantities z, S, c and \(\lambda \) henceforth are scaled differently from those in the previous section.
 
4
Provided—as in the case of the cubic nonlinearity on which we mainly focus—only one such transition occurs; a characterisation of the nonlinearities f(ua) in such regards would be valuable.
 
5
We suppress the dependence of U on \(\mu \) in our far-field expressions.
 
6
Note that \(c^\dag (a_T,\mu )=c^*(\mu )\).
 
7
The far-field expansion (39) will also in general contain a contribution of the form (40) with \(A_+^\dag \) replaced by \(A_+(a,c)\), with \(A_+^\dag (a)=A_+(a,c^\dag )\).
 
8
Significantly, the coefficient of the pre-exponential term linear in z is positive in (41) and negative in (42).
 
9
Here we assume \(a={O}(1)\); the behaviour differs significantly for \(a={O}(\varepsilon )\)—see Sect. 5.3 below.
 
10
Setting the coefficient of the exponential to unity in the initial condition requires appropriate choice of the \({O}\left( 1/\ln (1/\varepsilon ) \right) \) contribution to \(T_j(\varepsilon )\).
 
11
The ‘\(-1\)’ in (67), which arises from the \(U(z-1)\) term in (26), is the only leading-order contribution of the difference operator in (26) to enter either of these regions.
 
12
That the other terms from the central difference operator are negligible in (85) follows from the factors \(\mathrm{e}^{-s}\) arising from the transformation from U to V.
 
13
Because \(\zeta \ll s\) in (78), this fully nonlinear region makes no leading-order contribution to the integral in (109), though the contribution it does make is only logarithmically smaller: self-consistency checks incorporating such correction terms have been undertaken to confirm that they do not lead to the expansions derived in this section becoming invalid in the regimes considered.
 
14
The notation \(\lambda _-\) is that of Appendix 2, not that above; the two usages of \(\lambda _\pm \) are in correspondence, however.
 
15
It will be clear by now that we are, in the interests of brevity, including in a number of such expressions terms that may not be of the same order. We affirm, in line with the footnote before last, that the analysis is nevertheless not ad hoc: that the various terms that contribute to the final conclusions (and only such terms) have each been retained has been subject to post hoc analysis; the linearity of (87) plays an important part in such considerations.
 
16
Again, it can be confirmed that the above expressions remain valid at leading order under this scaling, notwithstanding the title of this subsection.
 
Literatur
1.
Zurück zum Zitat Cahn JW (1960) Theory of crystal growth and interface motion in crystalline materials. Acta Metall 8(8):554–562CrossRef Cahn JW (1960) Theory of crystal growth and interface motion in crystalline materials. Acta Metall 8(8):554–562CrossRef
3.
Zurück zum Zitat Chua LO, Yang L (1988) Cellular neural networks: applications. IEEE Trans Circuits Syst 35:1273–1290 Chua LO, Yang L (1988) Cellular neural networks: applications. IEEE Trans Circuits Syst 35:1273–1290
4.
Zurück zum Zitat Chua LO, Yang L (1988) Cellular neural networks: theory. IEEE Trans Circuits Syst 35:1257–1272 Chua LO, Yang L (1988) Cellular neural networks: theory. IEEE Trans Circuits Syst 35:1257–1272
5.
Zurück zum Zitat Ma S, Zou X (2005) Existence, uniqueness and stability of travelling waves in a discrete reaction–diffusion monostable equation with delay. J Diff Equ 217:54–87ADSMathSciNetCrossRefMATH Ma S, Zou X (2005) Existence, uniqueness and stability of travelling waves in a discrete reaction–diffusion monostable equation with delay. J Diff Equ 217:54–87ADSMathSciNetCrossRefMATH
6.
7.
Zurück zum Zitat Muratov CB, Shvartsman SY (2004) Signal propagation and failure in discrete autocrine relays. Phys Rev Lett 93(11):118101ADSCrossRef Muratov CB, Shvartsman SY (2004) Signal propagation and failure in discrete autocrine relays. Phys Rev Lett 93(11):118101ADSCrossRef
8.
Zurück zum Zitat Plahte E, Øyehaug L (2007) Pattern-generating travelling waves in a discrete multicellular system with lateral inhibition. Physica D 226(2):117–128ADSMathSciNetCrossRefMATH Plahte E, Øyehaug L (2007) Pattern-generating travelling waves in a discrete multicellular system with lateral inhibition. Physica D 226(2):117–128ADSMathSciNetCrossRefMATH
9.
Zurück zum Zitat O’Dea RD, King JR (2013) The isolation of spatial patterning modes in a mathematical model of juxtacrine cell signalling. Math Med Biol 30:95–113MathSciNetCrossRefMATH O’Dea RD, King JR (2013) The isolation of spatial patterning modes in a mathematical model of juxtacrine cell signalling. Math Med Biol 30:95–113MathSciNetCrossRefMATH
10.
Zurück zum Zitat Cook HE, De Fontaine D, Hilliard JE (1969) A model for diffusion on cubic lattices and its application to the early stages of ordering. Acta Metall 17:765–773CrossRef Cook HE, De Fontaine D, Hilliard JE (1969) A model for diffusion on cubic lattices and its application to the early stages of ordering. Acta Metall 17:765–773CrossRef
11.
12.
Zurück zum Zitat Elmer CE, van Vleck ES (1996) Computation of travelling waves for spatially discrete bistable reaction–diffusion equations. Appl Numer Math 20(1):157–170MathSciNetCrossRefMATH Elmer CE, van Vleck ES (1996) Computation of travelling waves for spatially discrete bistable reaction–diffusion equations. Appl Numer Math 20(1):157–170MathSciNetCrossRefMATH
13.
Zurück zum Zitat Cahn JW, Mallet-Paret J, Van Vleck ES (1998) Travelling wave solutions for systems of ODEs on a two-dimensional spatial lattice. SIAM J Appl Math 59(2):455–493CrossRefMATH Cahn JW, Mallet-Paret J, Van Vleck ES (1998) Travelling wave solutions for systems of ODEs on a two-dimensional spatial lattice. SIAM J Appl Math 59(2):455–493CrossRefMATH
16.
Zurück zum Zitat King JR, Chapman SJ (2001) Asymptotics beyond all orders and stokes lines in nonlinear differential–difference equations. Eur J Appl Math 12:433–463MathSciNetMATH King JR, Chapman SJ (2001) Asymptotics beyond all orders and stokes lines in nonlinear differential–difference equations. Eur J Appl Math 12:433–463MathSciNetMATH
17.
Zurück zum Zitat Zinner B, Harris G, Hudson W (1993) Travelling wavefronts for the discrete Fisher’s equation. J Diff Equ 105:46–62ADSCrossRefMATH Zinner B, Harris G, Hudson W (1993) Travelling wavefronts for the discrete Fisher’s equation. J Diff Equ 105:46–62ADSCrossRefMATH
18.
Zurück zum Zitat Guo JS, Morita Y (2005) Entire solutions of reaction–diffusion equations and an application to discrete diffusive equations. Discrete Contin Dyn Syst 12:193–212MathSciNetMATH Guo JS, Morita Y (2005) Entire solutions of reaction–diffusion equations and an application to discrete diffusive equations. Discrete Contin Dyn Syst 12:193–212MathSciNetMATH
22.
Zurück zum Zitat Lucia M, Muratov CB, Novaga M (2004) Linear versus nonlinear selection for the propagation speed of the solutions of scalar reaction–diffusion equations invading an unstable equilibrium. Commun Pure Appl Math 57:616–636CrossRefMATH Lucia M, Muratov CB, Novaga M (2004) Linear versus nonlinear selection for the propagation speed of the solutions of scalar reaction–diffusion equations invading an unstable equilibrium. Commun Pure Appl Math 57:616–636CrossRefMATH
23.
Zurück zum Zitat Fisher RA (1937) The wave of advance of advantageous genes. Ann Hum Genet 7:355–369MATH Fisher RA (1937) The wave of advance of advantageous genes. Ann Hum Genet 7:355–369MATH
24.
Zurück zum Zitat Kolmogorov AN, Petrovskii IG, Piskunov NS (1937) A study of the equation of diffusion with increase in the quantity of matter, and its application to a biological problem. Bull Mosk Gos Univ 1:1–26 Kolmogorov AN, Petrovskii IG, Piskunov NS (1937) A study of the equation of diffusion with increase in the quantity of matter, and its application to a biological problem. Bull Mosk Gos Univ 1:1–26
26.
Zurück zum Zitat Cuesta CM, King JR (2010) Front propagation in a heterogeneous Fisher equation: the homogeneous case is non-generic. Q J Mech Appl Math 63:521–571MathSciNetCrossRefMATH Cuesta CM, King JR (2010) Front propagation in a heterogeneous Fisher equation: the homogeneous case is non-generic. Q J Mech Appl Math 63:521–571MathSciNetCrossRefMATH
Metadaten
Titel
Pushed and pulled fronts in a discrete reaction–diffusion equation
verfasst von
J. R. King
R. D. O’Dea
Publikationsdatum
07.11.2015
Verlag
Springer Netherlands
Erschienen in
Journal of Engineering Mathematics / Ausgabe 1/2017
Print ISSN: 0022-0833
Elektronische ISSN: 1573-2703
DOI
https://doi.org/10.1007/s10665-015-9829-3

Weitere Artikel der Ausgabe 1/2017

Journal of Engineering Mathematics 1/2017 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.