Skip to main content
Erschienen in: Journal of Engineering Mathematics 1/2017

24.09.2015

Gas-cushioned droplet impacts with a thin layer of porous media

verfasst von: Peter D. Hicks, Richard Purvis

Erschienen in: Journal of Engineering Mathematics | Ausgabe 1/2017

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The pre-impact gas cushioning behaviour of a droplet approaching touchdown onto a thin layer of porous substrate is investigated. Although the model is applicable to droplet impacts with any porous substrate of limited height, a thin layer of porous medium is used as an idealized approximation of a regular array of pillars, which are frequently used to produced superhydrophobic- and superhydrophilic-textured surfaces. Bubble entrainment is predicted across a range of permeabilities and substrate heights, as a result of a gas pressure build-up in the viscous-gas squeeze film decelerating the droplet free-surface immediately below the centre of the droplet. For a droplet of water of radius 1 mm and impact approach speed 0.5 m s\(^{-1}\), the change from a flat rigid impermeable plate to a porous substrate of height \(5~\upmu \)m and permeability \(2.5~\upmu \)m\(^2\) reduces the initial horizontal extent of the trapped air pocket by \(48~\%\), as the porous substrate provides additional pathways through which the gas can escape. Further increases in either the substrate permeability or substrate height can entirely eliminate the formation of a trapped gas pocket in the initial touchdown phase, with the droplet then initially hitting the top surface of the porous media at a single point. Droplet impacts with a porous substrate are qualitatively compared to droplet impacts with a rough impermeable surface, which provides a second approximation for a textured surface. This indicates that only small pillars can be successfully modelled by the porous media approximation. The effect of surface tension on gas-cushioned droplet impacts with porous substrates is also investigated. In contrast to the numerical predictions of a droplet free-surface above flat plate, when a porous substrate is included, the droplet free-surface touches down in finite time. Mathematically, this is due to the regularization of the parabolic degeneracy associated with the small gas-film-height limit the gas squeeze film equation, by non-zero substrate permeability and height, and physically suggests that the level of surface roughness is a critical parameter in determining the initial touchdown characteristics.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat van Dam DB, Le Clerc C (2004) Experimental study of the impact of an ink-jet printed droplet on a solid substrate. Phys Fluids 16(9):3403–3414ADSCrossRefMATH van Dam DB, Le Clerc C (2004) Experimental study of the impact of an ink-jet printed droplet on a solid substrate. Phys Fluids 16(9):3403–3414ADSCrossRefMATH
2.
Zurück zum Zitat Lembach AN, Tan HB, Roisman IV, Gambaryan-Roisman T, Zhang Y, Tropea C, Yarin AL (2010) Drop impact, spreading, splashing, and penetration into electrospun nanofiber mats. Langmuir 26(12):9516–9523CrossRef Lembach AN, Tan HB, Roisman IV, Gambaryan-Roisman T, Zhang Y, Tropea C, Yarin AL (2010) Drop impact, spreading, splashing, and penetration into electrospun nanofiber mats. Langmuir 26(12):9516–9523CrossRef
3.
Zurück zum Zitat Raza MA, van Swigchem J, Jansen HP, Zandvliet HJW, Poelsema B, Kooij ES (2014) Droplet impact on hydrophobic surfaces with hierarchical roughness. Surf Topogr 2(3):035002CrossRef Raza MA, van Swigchem J, Jansen HP, Zandvliet HJW, Poelsema B, Kooij ES (2014) Droplet impact on hydrophobic surfaces with hierarchical roughness. Surf Topogr 2(3):035002CrossRef
4.
Zurück zum Zitat Tran T, Staat HJJ, Susarrey-Arce A, Foertsch TC, van Houselt A, Gardeniers HJGE, Prosperetti A, Lohse D, Sun C (2013) Droplet impact on superheated micro-structured surfaces. Soft Matter 9:3272–3282ADSCrossRef Tran T, Staat HJJ, Susarrey-Arce A, Foertsch TC, van Houselt A, Gardeniers HJGE, Prosperetti A, Lohse D, Sun C (2013) Droplet impact on superheated micro-structured surfaces. Soft Matter 9:3272–3282ADSCrossRef
5.
Zurück zum Zitat Tsai P, van der Veen RCA, van de Raa M, Lohse D (2010) How micropatterns and air pressure affect splashing on surfaces. Langmuir 26(20):16090–16095CrossRef Tsai P, van der Veen RCA, van de Raa M, Lohse D (2010) How micropatterns and air pressure affect splashing on surfaces. Langmuir 26(20):16090–16095CrossRef
6.
Zurück zum Zitat Han D, Steckl AJ (2009) Superhydrophobic and oleophobic fibers by coaxial electrospinning. Langmuir 25(16):9454–9462CrossRef Han D, Steckl AJ (2009) Superhydrophobic and oleophobic fibers by coaxial electrospinning. Langmuir 25(16):9454–9462CrossRef
7.
Zurück zum Zitat Srikar R, Gambaryan-Roisman T, Steffes C, Stephan P, Tropea C, Yarin AL (2009) Nanofiber coating of surfaces for intensification of drop or spray impact cooling. Int J Heat Mass Transf 52(25–26):5814–5826CrossRefMATH Srikar R, Gambaryan-Roisman T, Steffes C, Stephan P, Tropea C, Yarin AL (2009) Nanofiber coating of surfaces for intensification of drop or spray impact cooling. Int J Heat Mass Transf 52(25–26):5814–5826CrossRefMATH
8.
Zurück zum Zitat Delbos A, Lorenceau E, Pitois O (2010) Forced impregnation of a capillary tube with drop impact. J Colloid Interface Sci 341(1):171–177 Delbos A, Lorenceau E, Pitois O (2010) Forced impregnation of a capillary tube with drop impact. J Colloid Interface Sci 341(1):171–177
9.
Zurück zum Zitat Ding H, Theofanous TG (2012) The inertial regime of drop impact on an anisotropic porous substrate. J Fluid Mech 691:546–567ADSCrossRefMATH Ding H, Theofanous TG (2012) The inertial regime of drop impact on an anisotropic porous substrate. J Fluid Mech 691:546–567ADSCrossRefMATH
10.
Zurück zum Zitat Maitra T, Antonini C, Tiwari MK, Mularczyk A, Imeri Z, Schoch P, Poulikakos D (2014) Supercooled water drops impacting superhydrophobic textures. Langmuir 30(36):10855–10861CrossRef Maitra T, Antonini C, Tiwari MK, Mularczyk A, Imeri Z, Schoch P, Poulikakos D (2014) Supercooled water drops impacting superhydrophobic textures. Langmuir 30(36):10855–10861CrossRef
11.
Zurück zum Zitat Maitra T, Tiwari MK, Antonini C, Schoch P, Jung S, Eberle P, Poulikakos D (2014) On the nanoengineering of superhydrophobic and impalement resistant surface textures below the freezing temperature. Nano Lett 14(1):172–182ADSCrossRef Maitra T, Tiwari MK, Antonini C, Schoch P, Jung S, Eberle P, Poulikakos D (2014) On the nanoengineering of superhydrophobic and impalement resistant surface textures below the freezing temperature. Nano Lett 14(1):172–182ADSCrossRef
12.
Zurück zum Zitat Chandra S, Avedisian CT (1991) On the collision of a droplet with a solid surface. Proc R Soc Lond A 432(1884):13–41ADSCrossRef Chandra S, Avedisian CT (1991) On the collision of a droplet with a solid surface. Proc R Soc Lond A 432(1884):13–41ADSCrossRef
13.
Zurück zum Zitat Thoroddsen ST, Etoh TG, Takehara K (2003) Air entrapment under an impacting drop. J Fluid Mech 478:125–134ADSCrossRefMATH Thoroddsen ST, Etoh TG, Takehara K (2003) Air entrapment under an impacting drop. J Fluid Mech 478:125–134ADSCrossRefMATH
14.
Zurück zum Zitat Thoroddsen ST, Etoh TG, Takehara K, Ootsuka N, Hatsuki Y (2005) The air bubble entrapped under a drop impacting on a solid surface. J Fluid Mech 545:203–212ADSCrossRefMATH Thoroddsen ST, Etoh TG, Takehara K, Ootsuka N, Hatsuki Y (2005) The air bubble entrapped under a drop impacting on a solid surface. J Fluid Mech 545:203–212ADSCrossRefMATH
15.
Zurück zum Zitat Driscoll MM, Nagel SR (2011) Ultrafast interference imaging of air in splashing dynamics. Phys Rev Lett 107(15):154502ADSCrossRef Driscoll MM, Nagel SR (2011) Ultrafast interference imaging of air in splashing dynamics. Phys Rev Lett 107(15):154502ADSCrossRef
16.
Zurück zum Zitat Liu Y, Tan P, Xu L (2013) Compressible air entrapment in high-speed drop impacts on solid surfaces. J Fluid Mech 716:R9ADSCrossRefMATH Liu Y, Tan P, Xu L (2013) Compressible air entrapment in high-speed drop impacts on solid surfaces. J Fluid Mech 716:R9ADSCrossRefMATH
17.
Zurück zum Zitat de Ruiter J, van den Ende D, Mugele F (2015) Air cushioning in droplet impact. II. Experimental characterization of the air film evolution. Phys Fluids 27(1):012105ADSCrossRef de Ruiter J, van den Ende D, Mugele F (2015) Air cushioning in droplet impact. II. Experimental characterization of the air film evolution. Phys Fluids 27(1):012105ADSCrossRef
18.
Zurück zum Zitat Tran T, de Maleprade H, Sun C, Lohse D (2013) Air entrainment during impact of droplets on liquid surfaces. J Fluid Mech 726:R6CrossRefMATH Tran T, de Maleprade H, Sun C, Lohse D (2013) Air entrainment during impact of droplets on liquid surfaces. J Fluid Mech 726:R6CrossRefMATH
19.
Zurück zum Zitat van der Veen RCA, Tran T, Lohse D, Sun C (2012) Direct measurements of air layer profiles under impacting droplets using high-speed color interferometry. Phys Rev E 85:026315ADSCrossRef van der Veen RCA, Tran T, Lohse D, Sun C (2012) Direct measurements of air layer profiles under impacting droplets using high-speed color interferometry. Phys Rev E 85:026315ADSCrossRef
20.
Zurück zum Zitat Dell’Aversana P, Tontodonato V, Carotenuto L (1997) Suppression of coalescence and of wetting: the shape of the interstitial film. Phys Fluids 9(9):2475–2485ADSCrossRef Dell’Aversana P, Tontodonato V, Carotenuto L (1997) Suppression of coalescence and of wetting: the shape of the interstitial film. Phys Fluids 9(9):2475–2485ADSCrossRef
21.
Zurück zum Zitat Cooker MJ (2012) A theory for the impact of a wave breaking onto a permeable barrier with jet generation. J Eng Math 79:1–12MathSciNetCrossRefMATH Cooker MJ (2012) A theory for the impact of a wave breaking onto a permeable barrier with jet generation. J Eng Math 79:1–12MathSciNetCrossRefMATH
22.
Zurück zum Zitat Iafrati A, Korobkin AA (2005) Self-similar solutions for porous/perforated wedge entry problem. In: Proceedings of the 20th international workshop on water waves and floating bodies, Longyearbyen, Norway, 29 May – 1 June 2005 Iafrati A, Korobkin AA (2005) Self-similar solutions for porous/perforated wedge entry problem. In: Proceedings of the 20th international workshop on water waves and floating bodies, Longyearbyen, Norway, 29 May – 1 June 2005
23.
26.
Zurück zum Zitat Fitt AD, Howell PD, King JR, Please CP, Schwendeman DW (2002) Multiphase flow in a roll press nip. Eur J Appl Math 13(3):225–259 Fitt AD, Howell PD, King JR, Please CP, Schwendeman DW (2002) Multiphase flow in a roll press nip. Eur J Appl Math 13(3):225–259
28.
Zurück zum Zitat Hicks PD, Purvis R (2011) Air cushioning in droplet impacts with liquid layers and other droplets. Phys Fluids 23(6):062104ADSCrossRefMATH Hicks PD, Purvis R (2011) Air cushioning in droplet impacts with liquid layers and other droplets. Phys Fluids 23(6):062104ADSCrossRefMATH
29.
Zurück zum Zitat Mandre S, Mani M, Brenner MP (2009) Precursors to splashing of liquid droplets on a solid surface. Phys Rev Lett 102(13):134502ADSCrossRef Mandre S, Mani M, Brenner MP (2009) Precursors to splashing of liquid droplets on a solid surface. Phys Rev Lett 102(13):134502ADSCrossRef
31.
Zurück zum Zitat Beavers GS, Joseph DD (1967) Boundary conditions at a naturally permeable wall. J Fluid Mech 30:197–207ADSCrossRef Beavers GS, Joseph DD (1967) Boundary conditions at a naturally permeable wall. J Fluid Mech 30:197–207ADSCrossRef
32.
Zurück zum Zitat Nield DA (2009) The Beavers–Joseph boundary condition and related matters: a historical and critical note. Transp Porous Med 78(3):537–540MathSciNetCrossRef Nield DA (2009) The Beavers–Joseph boundary condition and related matters: a historical and critical note. Transp Porous Med 78(3):537–540MathSciNetCrossRef
33.
Zurück zum Zitat Wilson SK (1991) A mathematical model for the initial stages of fluid impact in the presence of a cushioning fluid layer. J Eng Math 25(3):265–285MathSciNetCrossRefMATH Wilson SK (1991) A mathematical model for the initial stages of fluid impact in the presence of a cushioning fluid layer. J Eng Math 25(3):265–285MathSciNetCrossRefMATH
34.
Zurück zum Zitat Bouwhuis W, van der Veen RCA, Tran T, Keij DL, Winkels KG, Peters IR, van der Meer D, Sun C, Snoeijer JH, Lohse D (2012) Maximal air bubble entrainment at liquid-drop impact. Phys Rev Lett 109:264501ADSCrossRef Bouwhuis W, van der Veen RCA, Tran T, Keij DL, Winkels KG, Peters IR, van der Meer D, Sun C, Snoeijer JH, Lohse D (2012) Maximal air bubble entrainment at liquid-drop impact. Phys Rev Lett 109:264501ADSCrossRef
35.
Zurück zum Zitat Alizadeh A, Bahadur V, Zhong S, Shang W, Li R, Ruud J, Yamada M, Ge L, Dhinojwala A, Sohal M (2012) Temperature dependent droplet impact dynamics on flat and textured surfaces. Appl Phys Lett 100(11):111601ADSCrossRef Alizadeh A, Bahadur V, Zhong S, Shang W, Li R, Ruud J, Yamada M, Ge L, Dhinojwala A, Sohal M (2012) Temperature dependent droplet impact dynamics on flat and textured surfaces. Appl Phys Lett 100(11):111601ADSCrossRef
36.
Zurück zum Zitat Liu Y, Moevius L, Xu X, Qian T, Yeomans JM, Wang Z (2014) Pancake bouncing on superhydrophobic surfaces. Nat Phys 10:515–519CrossRef Liu Y, Moevius L, Xu X, Qian T, Yeomans JM, Wang Z (2014) Pancake bouncing on superhydrophobic surfaces. Nat Phys 10:515–519CrossRef
37.
Zurück zum Zitat van der Veen RCA, Hendrix MHW, Tran T, Sun C, Tsai PA, Lohse D (2014) How microstructures affect air film dynamics prior to drop impact. Soft Matter 10:3703–3707ADSCrossRef van der Veen RCA, Hendrix MHW, Tran T, Sun C, Tsai PA, Lohse D (2014) How microstructures affect air film dynamics prior to drop impact. Soft Matter 10:3703–3707ADSCrossRef
38.
Zurück zum Zitat Ellis AS, Smith FT, White AH (2011) Droplet impact onto a rough surface. Q J Mech Appl Math 64(2):107–139CrossRefMATH Ellis AS, Smith FT, White AH (2011) Droplet impact onto a rough surface. Q J Mech Appl Math 64(2):107–139CrossRefMATH
39.
Zurück zum Zitat Saffman PG (1971) On the boundary condition at the surface of a porous medium. Stud Appl Math 50:93–101CrossRefMATH Saffman PG (1971) On the boundary condition at the surface of a porous medium. Stud Appl Math 50:93–101CrossRefMATH
40.
Zurück zum Zitat Hicks PD, Ermanyuk EV, Gavrilov NV, Purvis R (2012) Air trapping at impact of a rigid sphere onto a liquid. J Fluid Mech 695:310–320ADSCrossRefMATH Hicks PD, Ermanyuk EV, Gavrilov NV, Purvis R (2012) Air trapping at impact of a rigid sphere onto a liquid. J Fluid Mech 695:310–320ADSCrossRefMATH
41.
Zurück zum Zitat Le Bars M, Worster MG (2006) Interfacial conditions between a pure fluid and a porous medium: implications for binary alloy solidification. J Fluid Mech 550:149–173ADSMathSciNetCrossRefMATH Le Bars M, Worster MG (2006) Interfacial conditions between a pure fluid and a porous medium: implications for binary alloy solidification. J Fluid Mech 550:149–173ADSMathSciNetCrossRefMATH
42.
Zurück zum Zitat Nabhani M, El Khlifi M, Bou-saïd B (2010) A numerical simulation of viscous shear effects on porous squeeze-film using the Darcy–Brinkman model. Mech Ind 11:327–337 Nabhani M, El Khlifi M, Bou-saïd B (2010) A numerical simulation of viscous shear effects on porous squeeze-film using the Darcy–Brinkman model. Mech Ind 11:327–337
43.
Zurück zum Zitat Jones IP (1973) Low Reynolds number flow past a porous spherical shell. Math Proc Camb Philos Soc 73:231–238ADSCrossRefMATH Jones IP (1973) Low Reynolds number flow past a porous spherical shell. Math Proc Camb Philos Soc 73:231–238ADSCrossRefMATH
44.
Zurück zum Zitat King FW (2009) Hilbert transforms. Encyclopedia of mathematics and its applications, vol 1. Cambridge University Press, Cambridge King FW (2009) Hilbert transforms. Encyclopedia of mathematics and its applications, vol 1. Cambridge University Press, Cambridge
Metadaten
Titel
Gas-cushioned droplet impacts with a thin layer of porous media
verfasst von
Peter D. Hicks
Richard Purvis
Publikationsdatum
24.09.2015
Verlag
Springer Netherlands
Erschienen in
Journal of Engineering Mathematics / Ausgabe 1/2017
Print ISSN: 0022-0833
Elektronische ISSN: 1573-2703
DOI
https://doi.org/10.1007/s10665-015-9821-y

Weitere Artikel der Ausgabe 1/2017

Journal of Engineering Mathematics 1/2017 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.