Skip to main content
Erschienen in: Electrical Engineering 4/2020

11.06.2020 | Original Paper

PV-tied three-port DC–DC converter-operated four-wheel-drive hybrid electric vehicle (HEV)

verfasst von: J. Kumaresan, C. Govindaraju

Erschienen in: Electrical Engineering | Ausgabe 4/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This paper presents a photovoltaic (PV)-interfaced dual-drive hybrid electric vehicle (PV-DDHEV) based on dual boost three-port DC–DC converter to increase the fuel efficiency of the electric vehicle by increasing the conversion efficiency of the converters. HEV designed with the photovoltaic (PV) power system requires a DC–DC converter to enhance the PV array output voltage to the level demanded by the drive inverters. Normally, the high gain of DC conversion is obtained by connecting two or more DC–DC converters in series with each other. The series connection of the converters reduces the conversion efficiency and increases the cost of the unit. In this paper, a three-port DC–DC converter designed with a two-winding high-frequency transformer is proposed to offer high voltage gain with reduced number of active and passive elements. In addition to this, the power management algorithm incorporated with the proposed PV-DDHEV reduces the power consumption of the drive motor by estimating the drive torque requirement. The MATLAB simulink and experimental prototype results are presented to validate the proposed PV-DDHEV.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Oh K, Kim D, Kim T, Kim C, Kim H (2004) Operation algorithm for a parallel hybrid electric vehicle with a relatively small electric motor. KSME Int J 18(1):30–36CrossRef Oh K, Kim D, Kim T, Kim C, Kim H (2004) Operation algorithm for a parallel hybrid electric vehicle with a relatively small electric motor. KSME Int J 18(1):30–36CrossRef
2.
Zurück zum Zitat Mi C, Lin H, Zhang Y (2005) Iterative learning control of antilock braking of electric and hybrid vehicles. IEEE Trans Veh Technol 54(2):484–494CrossRef Mi C, Lin H, Zhang Y (2005) Iterative learning control of antilock braking of electric and hybrid vehicles. IEEE Trans Veh Technol 54(2):484–494CrossRef
3.
Zurück zum Zitat Ko S, Song C, Kim H (2016) Cooperative control of the motor and the electric booster brake to improve the stability of an in-wheel electric vehicle. Int J Automot Technol 17:447–456CrossRef Ko S, Song C, Kim H (2016) Cooperative control of the motor and the electric booster brake to improve the stability of an in-wheel electric vehicle. Int J Automot Technol 17:447–456CrossRef
4.
Zurück zum Zitat Gao DW, Mi C, Emadi A (2007) Modeling and simulation of electric and hybrid vehicles. Proc IEEE 95(4):729–745CrossRef Gao DW, Mi C, Emadi A (2007) Modeling and simulation of electric and hybrid vehicles. Proc IEEE 95(4):729–745CrossRef
5.
Zurück zum Zitat Madanipour V, Montazeri-Gh M, Mahmoodi-k M (2017) Erratum to: multi-objective component sizing of plug-in hybrid electric vehicle for optimal energy management. Clean Technol Environ Policy 19:291CrossRef Madanipour V, Montazeri-Gh M, Mahmoodi-k M (2017) Erratum to: multi-objective component sizing of plug-in hybrid electric vehicle for optimal energy management. Clean Technol Environ Policy 19:291CrossRef
6.
Zurück zum Zitat Chau KT, Chan CC, Liu C (2008) Overview of permanent-magnet brushless drives for electric and hybrid electric vehicles. IEEE Trans Ind Electron 55(6):2246–2257CrossRef Chau KT, Chan CC, Liu C (2008) Overview of permanent-magnet brushless drives for electric and hybrid electric vehicles. IEEE Trans Ind Electron 55(6):2246–2257CrossRef
7.
Zurück zum Zitat Armghan H, Ahmad I, Ali N, Munir MF, Khan S, Armghan A (2018) Nonlinear controller analysis of fuel cell–battery–ultracapacitor-based hybrid energy storage systems in electric vehicles. Arab J Sci Eng 43(6):3123–3133CrossRef Armghan H, Ahmad I, Ali N, Munir MF, Khan S, Armghan A (2018) Nonlinear controller analysis of fuel cell–battery–ultracapacitor-based hybrid energy storage systems in electric vehicles. Arab J Sci Eng 43(6):3123–3133CrossRef
8.
Zurück zum Zitat Chan CC (2007) The state of the art of electric, hybrid, and fuel cell vehicles. Proc IEEE 95(4):704–718CrossRef Chan CC (2007) The state of the art of electric, hybrid, and fuel cell vehicles. Proc IEEE 95(4):704–718CrossRef
9.
Zurück zum Zitat Wang B, Dehghanian P, Wang S, Mitolo M (2019) Electrical safety considerations in large-scale electric vehicle charging stations. IEEE Trans Ind Appl 55(6):6603–6612CrossRef Wang B, Dehghanian P, Wang S, Mitolo M (2019) Electrical safety considerations in large-scale electric vehicle charging stations. IEEE Trans Ind Appl 55(6):6603–6612CrossRef
10.
Zurück zum Zitat Zhu J, Cheng KWE, Xue X, Zou Y (2017) Design of a new enhanced torque in-wheel switched reluctance motor with divided teeth for electric vehicles. IEEE Trans Magn 53(11):1–4 Zhu J, Cheng KWE, Xue X, Zou Y (2017) Design of a new enhanced torque in-wheel switched reluctance motor with divided teeth for electric vehicles. IEEE Trans Magn 53(11):1–4
11.
Zurück zum Zitat Xiong Y, Cheng X, Shen ZJ, Mi C, Wu H, Garg VK (2008) Prognostic and warning system for power-electronic modules in electric, hybrid electric, and fuel-cell vehicles. IEEE Trans Ind Electron 55(6):2268–2276CrossRef Xiong Y, Cheng X, Shen ZJ, Mi C, Wu H, Garg VK (2008) Prognostic and warning system for power-electronic modules in electric, hybrid electric, and fuel-cell vehicles. IEEE Trans Ind Electron 55(6):2268–2276CrossRef
12.
Zurück zum Zitat He JH, Yang L, Qiang JX, Chen ZQ, Zhu JX (2012) Novel flexible hybrid electric system and adaptive online-optimal energy management controller for plug-in hybrid electric vehicles. J Central South Univ 19(4):962–973CrossRef He JH, Yang L, Qiang JX, Chen ZQ, Zhu JX (2012) Novel flexible hybrid electric system and adaptive online-optimal energy management controller for plug-in hybrid electric vehicles. J Central South Univ 19(4):962–973CrossRef
13.
Zurück zum Zitat Zhang D, Liu G, Zhou H, Zhao W (2018) Adaptive sliding mode fault-tolerant coordination control for four-wheel independently driven electric vehicles. IEEE Trans Ind Electron 65(11):9090–9100CrossRef Zhang D, Liu G, Zhou H, Zhao W (2018) Adaptive sliding mode fault-tolerant coordination control for four-wheel independently driven electric vehicles. IEEE Trans Ind Electron 65(11):9090–9100CrossRef
14.
Zurück zum Zitat Xia CY, Zhang C (2016) Real-time optimization power-split strategy for hybrid electric vehicles. Sci China Technol Sci 59(5):814–824CrossRef Xia CY, Zhang C (2016) Real-time optimization power-split strategy for hybrid electric vehicles. Sci China Technol Sci 59(5):814–824CrossRef
15.
Zurück zum Zitat Liu X, Diallo D, Marchand C (2011) Design methodology of hybrid electric vehicle energy sources: application to fuel cell vehicles. Int J Automot Technol 12:433CrossRef Liu X, Diallo D, Marchand C (2011) Design methodology of hybrid electric vehicle energy sources: application to fuel cell vehicles. Int J Automot Technol 12:433CrossRef
16.
Zurück zum Zitat Malikopoulos AA (2014) Supervisory power management control algorithms for hybrid electric vehicles: a survey. IEEE Trans Intell Transp Syst 15(5):1869–1885CrossRef Malikopoulos AA (2014) Supervisory power management control algorithms for hybrid electric vehicles: a survey. IEEE Trans Intell Transp Syst 15(5):1869–1885CrossRef
17.
Zurück zum Zitat Eckert M, Gauterin F (2013) Efficiency optimised vehicle dynamics control in electric vehicles with wheel-individual drives. ATZ Elektron Worldw 8:50–57CrossRef Eckert M, Gauterin F (2013) Efficiency optimised vehicle dynamics control in electric vehicles with wheel-individual drives. ATZ Elektron Worldw 8:50–57CrossRef
18.
Zurück zum Zitat Berthold F, Ravey A, Blunier B, Bouquain D, Williamson S, Miraoui A (2015) Design and development of a smart control strategy for plug-in hybrid vehicles including vehicle-to-home functionality. IEEE Trans Transp Electr 1(2):168–177CrossRef Berthold F, Ravey A, Blunier B, Bouquain D, Williamson S, Miraoui A (2015) Design and development of a smart control strategy for plug-in hybrid vehicles including vehicle-to-home functionality. IEEE Trans Transp Electr 1(2):168–177CrossRef
19.
Zurück zum Zitat Slah F, Mansour A, Abdelkarim A, Bacha F (2018) Analysis and design of an LC parallel-resonant DC–DC converter for a fuel cell used in an electrical vehicle. J Circuits Syst Comput 27(8):1850119CrossRef Slah F, Mansour A, Abdelkarim A, Bacha F (2018) Analysis and design of an LC parallel-resonant DC–DC converter for a fuel cell used in an electrical vehicle. J Circuits Syst Comput 27(8):1850119CrossRef
20.
Zurück zum Zitat Onar OC, Kobayashi J, Erb DC, Khaligh A (2012) A bidirectional high-power-quality grid interface with a novel bidirectional non-inverted buck-boost converter for PHEVs. IEEE Trans Veh Technol 61(5):2018–2032CrossRef Onar OC, Kobayashi J, Erb DC, Khaligh A (2012) A bidirectional high-power-quality grid interface with a novel bidirectional non-inverted buck-boost converter for PHEVs. IEEE Trans Veh Technol 61(5):2018–2032CrossRef
21.
Zurück zum Zitat Chiu HJ, Lin LW (2006) A bidirectional DC–DC converter for fuel cell electric vehicle driving system. IEEE Trans Power Electron 21(4):950–958CrossRef Chiu HJ, Lin LW (2006) A bidirectional DC–DC converter for fuel cell electric vehicle driving system. IEEE Trans Power Electron 21(4):950–958CrossRef
22.
Zurück zum Zitat Zhu H, Zhang D, Liu Q, Zhou Z (2016) Three-port DC/DC converter with all ports current ripple cancellation using integrated magnetic technique. IEEE Trans Power Electron 31(3):2174–2186CrossRef Zhu H, Zhang D, Liu Q, Zhou Z (2016) Three-port DC/DC converter with all ports current ripple cancellation using integrated magnetic technique. IEEE Trans Power Electron 31(3):2174–2186CrossRef
23.
Zurück zum Zitat Krishnaswami H, Mohan N (2009) Three-port series-resonant DC–DC converter to interface renewable energy sources with bidirectional load and energy storage ports. IEEE Trans Power Electron 24(10):2289–2297CrossRef Krishnaswami H, Mohan N (2009) Three-port series-resonant DC–DC converter to interface renewable energy sources with bidirectional load and energy storage ports. IEEE Trans Power Electron 24(10):2289–2297CrossRef
24.
Zurück zum Zitat Wu H, Wang H, Liu T, Yang T, Xing Y (2018) Modified SVPWM-controlled three-port three-phase AC–DC converters with reduced power conversion stages for wide voltage range applications. IEEE Trans Power Electron 33(8):6672–6686CrossRef Wu H, Wang H, Liu T, Yang T, Xing Y (2018) Modified SVPWM-controlled three-port three-phase AC–DC converters with reduced power conversion stages for wide voltage range applications. IEEE Trans Power Electron 33(8):6672–6686CrossRef
25.
Zurück zum Zitat Ramasamy M, Thangavel S (2013) Optimal utilization of PV solar system as DVR (PV-DVR) for a residence or small industry. J Appl Sci Eng 16(3):295–304 Ramasamy M, Thangavel S (2013) Optimal utilization of PV solar system as DVR (PV-DVR) for a residence or small industry. J Appl Sci Eng 16(3):295–304
26.
Zurück zum Zitat Sathayanarayanan TKS, Ramasamy M, Bharatiraja C, Munda JL (2016) Modeling, impedance design, and efficiency analysis of battery assists PV tied quasi-Z source inverter. Int J Power Electron Drive Syst 7(3):816–825 Sathayanarayanan TKS, Ramasamy M, Bharatiraja C, Munda JL (2016) Modeling, impedance design, and efficiency analysis of battery assists PV tied quasi-Z source inverter. Int J Power Electron Drive Syst 7(3):816–825
27.
Zurück zum Zitat Kanagaraj N, Ramasamy M, Manesh T, Rezk H (2018) Modified bidirectional DC–DC boost converter fed three-phase four-wire PV-DVR. J Test Eval 48(4):119–125 Kanagaraj N, Ramasamy M, Manesh T, Rezk H (2018) Modified bidirectional DC–DC boost converter fed three-phase four-wire PV-DVR. J Test Eval 48(4):119–125
28.
Zurück zum Zitat Ramasamy M, Thangavel S (2014) Optimal utilization of hybrid wind-solar system as DVR for voltage regulation and energy conservation. J Circuit Syst Comput 23:1450062CrossRef Ramasamy M, Thangavel S (2014) Optimal utilization of hybrid wind-solar system as DVR for voltage regulation and energy conservation. J Circuit Syst Comput 23:1450062CrossRef
Metadaten
Titel
PV-tied three-port DC–DC converter-operated four-wheel-drive hybrid electric vehicle (HEV)
verfasst von
J. Kumaresan
C. Govindaraju
Publikationsdatum
11.06.2020
Verlag
Springer Berlin Heidelberg
Erschienen in
Electrical Engineering / Ausgabe 4/2020
Print ISSN: 0948-7921
Elektronische ISSN: 1432-0487
DOI
https://doi.org/10.1007/s00202-020-01030-6

Weitere Artikel der Ausgabe 4/2020

Electrical Engineering 4/2020 Zur Ausgabe