Skip to main content
Erschienen in: Telecommunication Systems 4/2023

05.06.2023

Quality of service driven hierarchical resource allocation for network slicing-enabled hybrid wireless–wireline access networks

verfasst von: Fareha Nizam, Teong Chee Chuah, Ying Loong Lee

Erschienen in: Telecommunication Systems | Ausgabe 4/2023

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Hybrid wireless–wireline access networks (HWWANs), which allow coordinated and simultaneous use of wireless and wireline interfaces, are a promising network architecture for achieving more coverage, better reliability, and higher throughput, particularly for underserved wireline networks. Existing resource management schemes lack the flexibility and scalability to cope with the dynamic traffic fluctuations from users with diverse quality of service (QoS) requirements. Moreover, these schemes lack resource isolation capability and are incompatible with the HWWAN architecture. This paper proposes a hierarchical radio resource allocation framework for a network slicing-enabled HWWAN, which consists of an upper inter-slice layer and a lower intra-slice layer. Firstly, an inter-slice radio resource allocation problem is formulated to maximize the aggregate network throughput by allocating a pool of resource blocks among the slices, subject to slice-specific QoS requirements. An efficient, low-complexity, demand-oriented greedy resource allocation algorithm is then developed to solve this problem. Secondly, an intra-slice radio resource allocation problem is formulated to maximize the total throughput of individual slices by reallocating the resource blocks secured by individual slices in the upper inter-slice layer to their respective users, subject to their QoS requirements. This problem is decomposed into two smaller sub-problems and solved using convex optimization. Simulation results show that the proposed scheme outperforms other baseline schemes in terms of average throughput, fairness, and customer satisfaction rate, thereby providing service providers with a flexible and efficient resource allocation solution in the era of next-generation fixed mobile convergence.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Fußnoten
1
Throughout this paper, users are also referred to as either UEs or HCPEs.
 
Literatur
1.
Zurück zum Zitat Samdanis, K., Leitão, F., Oechsner, S., Riu, J. R. I., Ros, R. D. C., & Fabregas, G. (2017). From interworking to hybrid access systems and the road toward the next-generation of fixed-mobile convergence. IEEE Communications Standards Magazine, 1(1), 36–43.CrossRef Samdanis, K., Leitão, F., Oechsner, S., Riu, J. R. I., Ros, R. D. C., & Fabregas, G. (2017). From interworking to hybrid access systems and the road toward the next-generation of fixed-mobile convergence. IEEE Communications Standards Magazine, 1(1), 36–43.CrossRef
2.
Zurück zum Zitat Garg, A. K., & Vijay, Janyani. (2017). Resilient, bandwidth scalable, and energy-efficient hybrid PON architecture. Telecommunication Systems, 67(4), 687–698.CrossRef Garg, A. K., & Vijay, Janyani. (2017). Resilient, bandwidth scalable, and energy-efficient hybrid PON architecture. Telecommunication Systems, 67(4), 687–698.CrossRef
3.
Zurück zum Zitat Kumari, M., Sharma, R., & Sheetal, A. (2021). A hybrid next-generation passive optical network and visible light communication for future hospital applications. Optik, 242, 166978.CrossRef Kumari, M., Sharma, R., & Sheetal, A. (2021). A hybrid next-generation passive optical network and visible light communication for future hospital applications. Optik, 242, 166978.CrossRef
4.
Zurück zum Zitat Condoluci, M., Johnson, S. H., Ayadurai, V., Lema, M. A., Cuevas, M. A., Dohler, M., & Mahmoodi, T. (2019). Fixed-mobile convergence in the 5G era: From hybrid access to converged core. IEEE Network, 33(2), 138–145.CrossRef Condoluci, M., Johnson, S. H., Ayadurai, V., Lema, M. A., Cuevas, M. A., Dohler, M., & Mahmoodi, T. (2019). Fixed-mobile convergence in the 5G era: From hybrid access to converged core. IEEE Network, 33(2), 138–145.CrossRef
5.
Zurück zum Zitat Abdelsalam, A., Luglio, M., Roseti, C., & Zampognaro, F. (2019). Analysis of bandwidth aggregation techniques for combined use of satellite and x DSL broadband links. International Journal of Satellite Communications and Networking, 37(2), 76–90.CrossRef Abdelsalam, A., Luglio, M., Roseti, C., & Zampognaro, F. (2019). Analysis of bandwidth aggregation techniques for combined use of satellite and x DSL broadband links. International Journal of Satellite Communications and Networking, 37(2), 76–90.CrossRef
6.
Zurück zum Zitat Wei, T., Feng, W., Chen, Y., Wang, C. X., Ge, N., & Lu, J. (2021). Hybrid satellite-terrestrial communication networks for the maritime Internet of Things: Key technologies, opportunities, and challenges. IEEE Internet of things journal, 8(11), 8910–8934. Wei, T., Feng, W., Chen, Y., Wang, C. X., Ge, N., & Lu, J. (2021). Hybrid satellite-terrestrial communication networks for the maritime Internet of Things: Key technologies, opportunities, and challenges. IEEE Internet of things journal, 8(11), 8910–8934.
7.
Zurück zum Zitat Hybrid Access Broadband Network Architecture (2016), TR 348, Issue 1, July 2016. Hybrid Access Broadband Network Architecture (2016), TR 348, Issue 1, July 2016.
8.
Zurück zum Zitat The state of broadband 2018: broadband catalyzing sustainable development, Document ITU-BCSD, Sep. 2018. The state of broadband 2018: broadband catalyzing sustainable development, Document ITU-BCSD, Sep. 2018.
9.
Zurück zum Zitat Chuah, T. C., & Lee, Y. L. (2019). Qos-aware cross-layer optimization of hybrid DSL-LTE access networks. IEEE Systems Journal, 14(2), 2175–2186.CrossRef Chuah, T. C., & Lee, Y. L. (2019). Qos-aware cross-layer optimization of hybrid DSL-LTE access networks. IEEE Systems Journal, 14(2), 2175–2186.CrossRef
10.
Zurück zum Zitat Zhang, J., Shi, W., Zhang, R., & Liu, W. (2021). Computation offloading and shunting scheme in wireless wireline internetwork. IEEE Transactions on Communications, 69(10), 6808–6821.CrossRef Zhang, J., Shi, W., Zhang, R., & Liu, W. (2021). Computation offloading and shunting scheme in wireless wireline internetwork. IEEE Transactions on Communications, 69(10), 6808–6821.CrossRef
11.
Zurück zum Zitat Gong, S. L., Roh, H. T., & Lee, J. W. (2012). Cross-layer and end-to-end optimization for the integrated wireless and wireline network. Journal of Communications and Networks, 14(5), 554–565.CrossRef Gong, S. L., Roh, H. T., & Lee, J. W. (2012). Cross-layer and end-to-end optimization for the integrated wireless and wireline network. Journal of Communications and Networks, 14(5), 554–565.CrossRef
12.
Zurück zum Zitat Gong, X., Guo, L., & Fan, X. (2017). Design framework for optimizing maintenance efficiency in OFDMA-PONs supporting wireline-wireless convergence. Journal of Optical Communications and Networking, 9(5), 423–432.CrossRef Gong, X., Guo, L., & Fan, X. (2017). Design framework for optimizing maintenance efficiency in OFDMA-PONs supporting wireline-wireless convergence. Journal of Optical Communications and Networking, 9(5), 423–432.CrossRef
13.
Zurück zum Zitat Chow, C. W., Sung, J. Y., & Yeh, C. H. (2015). A convergent wireline and wireless time-and-wavelength-division-multiplexed passive optical network. IEEE Photonics Journal, 7(3), 1–7.CrossRef Chow, C. W., Sung, J. Y., & Yeh, C. H. (2015). A convergent wireline and wireless time-and-wavelength-division-multiplexed passive optical network. IEEE Photonics Journal, 7(3), 1–7.CrossRef
14.
Zurück zum Zitat Kim, D., & Kim, S. (2019). Network slicing as enablers for 5G services: State of the art and challenges for mobile industry. Telecommunication Systems, 71(3), 517–527.CrossRef Kim, D., & Kim, S. (2019). Network slicing as enablers for 5G services: State of the art and challenges for mobile industry. Telecommunication Systems, 71(3), 517–527.CrossRef
15.
Zurück zum Zitat AlQahtani, S. A., & Alhomiqani, W. A. (2020). A multi-stage analysis of network slicing architecture for 5G mobile networks. Telecommunication Systems, 73(2), 205–221.CrossRef AlQahtani, S. A., & Alhomiqani, W. A. (2020). A multi-stage analysis of network slicing architecture for 5G mobile networks. Telecommunication Systems, 73(2), 205–221.CrossRef
16.
Zurück zum Zitat Masoudi, M., Demir, Ö. T., Zander, J., & Cavdar, C. (2022). Energy-optimal end-to-end network slicing in cloud-based architecture. IEEE Open Journal of the Communications Society, 3, 574–592.CrossRef Masoudi, M., Demir, Ö. T., Zander, J., & Cavdar, C. (2022). Energy-optimal end-to-end network slicing in cloud-based architecture. IEEE Open Journal of the Communications Society, 3, 574–592.CrossRef
17.
Zurück zum Zitat Foukas, X., Patounas, G., Elmokashfi, A., & Marina, M. K. (2017). Network slicing in 5G: Survey and challenges. IEEE Communications Magazine, 55(5), 94–100.CrossRef Foukas, X., Patounas, G., Elmokashfi, A., & Marina, M. K. (2017). Network slicing in 5G: Survey and challenges. IEEE Communications Magazine, 55(5), 94–100.CrossRef
18.
Zurück zum Zitat Chuah, T. C., & Lee, Y. L. (2020). Intelligent RAN slicing for broadband access in the 5G and big data era. IEEE Communications Magazine, 58(8), 69–75.CrossRef Chuah, T. C., & Lee, Y. L. (2020). Intelligent RAN slicing for broadband access in the 5G and big data era. IEEE Communications Magazine, 58(8), 69–75.CrossRef
19.
Zurück zum Zitat Garey, M. R., & Johnson, D. S. (1979). Computers and intractability (Vol. 174). San Francisco: Freeman. Garey, M. R., & Johnson, D. S. (1979). Computers and intractability (Vol. 174). San Francisco: Freeman.
20.
Zurück zum Zitat Boyd, S., & Mutapcic, A. (2008). Stochastic sub-gradient methods. Lecture Notes for EE364b, Stanford University. Boyd, S., & Mutapcic, A. (2008). Stochastic sub-gradient methods. Lecture Notes for EE364b, Stanford University.
21.
Zurück zum Zitat Boyd, S., & Vandenberghe, L. (2004). Convex optimization. Cambridge University Press.CrossRef Boyd, S., & Vandenberghe, L. (2004). Convex optimization. Cambridge University Press.CrossRef
22.
Zurück zum Zitat 3GPP TS 23.107 Digital cellular telecommunication system (Phase 2+); Universal mobile telecommunications system (UMTS); LTE; Quality of Service (QoS) concept and architecture. version 11.0.0 Release 11. 3GPP TS 23.107 Digital cellular telecommunication system (Phase 2+); Universal mobile telecommunications system (UMTS); LTE; Quality of Service (QoS) concept and architecture. version 11.0.0 Release 11.
Metadaten
Titel
Quality of service driven hierarchical resource allocation for network slicing-enabled hybrid wireless–wireline access networks
verfasst von
Fareha Nizam
Teong Chee Chuah
Ying Loong Lee
Publikationsdatum
05.06.2023
Verlag
Springer US
Erschienen in
Telecommunication Systems / Ausgabe 4/2023
Print ISSN: 1018-4864
Elektronische ISSN: 1572-9451
DOI
https://doi.org/10.1007/s11235-023-01026-0

Weitere Artikel der Ausgabe 4/2023

Telecommunication Systems 4/2023 Zur Ausgabe

Neuer Inhalt