Skip to main content
Erschienen in: Journal of Computational Neuroscience 3/2012

01.12.2012

Quantitative prediction of vasopressin secretion using a computational population model of rat magnocellular neurons

verfasst von: Louis Nadeau, Didier Mouginot

Erschienen in: Journal of Computational Neuroscience | Ausgabe 3/2012

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The goal of this study was to create a realistic and quantitative simulation of vasopressin (AVP) secretion under iso-osmotic and short-term challenged plasma osmolality. The relationship between AVP concentration ([AVP]) and plasma osmolality was computed using a sophisticated and integrated model that chronologically simulates (1) the overall firing rate of the hypothalamus’ magnocellular neuronal (MCN) population, (2) the propagation of the spike activity down the axons, (3) the fatigue and facilitation mechanisms of AVP release at the axon terminals and (4) the [AVP] pharmacodynamics based on the trains of AVP release. This global simulation predicted that the differential MCN sensitivity to dynorphin would be the most critical mechanism underlying the individual variability of MCN firing behaviors (silence, irregular, phasic and continuous firing patterns). However, at the level of the MCN population, the simulation predicted that the dynorphin factor must be combined with the distribution of the resting membrane potentials among the MCNs to obtain a realistic overall firing rate in response to a change in osmolality. Moreover, taking advantage of the integrated model, the simulation predicted that the selective removal of the frequency-dependent facilitation of AVP secretion has a major impact on the overall [AVP]-to-osmolality relationship (mean absolute change of 2.59 pg/ml); the action potential propagation failure, while critical, has a smaller quantitative impact on the overall [AVP] (0.58 pg/ml). The present integrated model (from a single MCN to a quantitative plasma [AVP]) improves our knowledge of the mechanisms underlying overall MCN firing and AVP excitation-secretion coupling.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
Zurück zum Zitat Bicknell, R. J. (1988). Optimizing release from peptide hormone secretory nerve terminals. Journal of Experimental Biology, 139, 51–65.PubMed Bicknell, R. J. (1988). Optimizing release from peptide hormone secretory nerve terminals. Journal of Experimental Biology, 139, 51–65.PubMed
Zurück zum Zitat Bicknell, R. J., Brown, D., Chapman, C., Hancock, P. D., & Leng, G. (1984). Reversible fatigue of stimulus-secretion coupling in the rat neurohypophysis. Journal of Physiology (London), 348, 601–613. Bicknell, R. J., Brown, D., Chapman, C., Hancock, P. D., & Leng, G. (1984). Reversible fatigue of stimulus-secretion coupling in the rat neurohypophysis. Journal of Physiology (London), 348, 601–613.
Zurück zum Zitat Bielefeldt, K., & Jackson, M. B. (1993). A calcium-activated potassium channel causes frequency-dependent action-potential failures in a mammalian nerve terminal. Journal of Neurophysiology, 70, 284–298.PubMed Bielefeldt, K., & Jackson, M. B. (1993). A calcium-activated potassium channel causes frequency-dependent action-potential failures in a mammalian nerve terminal. Journal of Neurophysiology, 70, 284–298.PubMed
Zurück zum Zitat Bondy, C. A., Gainer, H., & Russell, J. T. (1987). Effects of stimulus frequency and potassium channel blockade on the secretion of vasopressin and oxytocin from the neurohypophysis. Neuroendocrinology, 46, 258–267.PubMedCrossRef Bondy, C. A., Gainer, H., & Russell, J. T. (1987). Effects of stimulus frequency and potassium channel blockade on the secretion of vasopressin and oxytocin from the neurohypophysis. Neuroendocrinology, 46, 258–267.PubMedCrossRef
Zurück zum Zitat Bourque, C. W. (1998). Osmoregulation of vasopressin neurons: a synergy of intrinsic and synaptic processes. Progress in Brain Research, 119, 59–76.PubMedCrossRef Bourque, C. W. (1998). Osmoregulation of vasopressin neurons: a synergy of intrinsic and synaptic processes. Progress in Brain Research, 119, 59–76.PubMedCrossRef
Zurück zum Zitat Bourque, C. W., & Renaud, L. P. (1991). Membrane properties of rat magnocellular neuroendocrine cells in vivo. Brain Research, 540, 349–352.PubMedCrossRef Bourque, C. W., & Renaud, L. P. (1991). Membrane properties of rat magnocellular neuroendocrine cells in vivo. Brain Research, 540, 349–352.PubMedCrossRef
Zurück zum Zitat Brimble, M. J., & Dyball, R. E. (1977). Characterization of the responses of oxytocin- and vasopressin-secreting neurones in the supraoptic nucleus to osmotic stimulation. Journal of Physiology (London), 271, 253–271. Brimble, M. J., & Dyball, R. E. (1977). Characterization of the responses of oxytocin- and vasopressin-secreting neurones in the supraoptic nucleus to osmotic stimulation. Journal of Physiology (London), 271, 253–271.
Zurück zum Zitat Brown, C. H., Ludwig, M., & Leng, G. (1998). kappa-opioid regulation of neuronal activity in the rat supraoptic nucleus in vivo. Journal of Neuroscience, 18, 9480–9488.PubMed Brown, C. H., Ludwig, M., & Leng, G. (1998). kappa-opioid regulation of neuronal activity in the rat supraoptic nucleus in vivo. Journal of Neuroscience, 18, 9480–9488.PubMed
Zurück zum Zitat Brown, C. H., Ruan, M., Scott, V., Tobin, V. A., & Ludwig, M. (2008). Multi-factorial somato-dendritic regulation of phasic spike discharge in vasopressin neurons. Progress in Brain Research, 170, 219–228.PubMedCrossRef Brown, C. H., Ruan, M., Scott, V., Tobin, V. A., & Ludwig, M. (2008). Multi-factorial somato-dendritic regulation of phasic spike discharge in vasopressin neurons. Progress in Brain Research, 170, 219–228.PubMedCrossRef
Zurück zum Zitat Cazalis, M., Dayanithi, G., & Nordmann, J. J. (1985). The role of patterned burst and interburst interval on the excitation-coupling mechanism in the isolated rat neural lobe. Journal of Physiology (London), 369, 45–60. Cazalis, M., Dayanithi, G., & Nordmann, J. J. (1985). The role of patterned burst and interburst interval on the excitation-coupling mechanism in the isolated rat neural lobe. Journal of Physiology (London), 369, 45–60.
Zurück zum Zitat Clayton, T. F., Murray, A. F., & Leng, G. (2010). Modeling the in vivo spike activity of phasically-firing vasopressin cells. Journal of Neuroendocrinology, 22, 1290–1300.PubMedCrossRef Clayton, T. F., Murray, A. F., & Leng, G. (2010). Modeling the in vivo spike activity of phasically-firing vasopressin cells. Journal of Neuroendocrinology, 22, 1290–1300.PubMedCrossRef
Zurück zum Zitat Czaczkes, J. W., & Kleeman, C. R. (1964). The effects of various states of hydration and the plasma concentration on the turnover of antidiuretic hormone in mammals. Journal of Clinical Investigation, 43, 1649–1658.PubMedCrossRef Czaczkes, J. W., & Kleeman, C. R. (1964). The effects of various states of hydration and the plasma concentration on the turnover of antidiuretic hormone in mammals. Journal of Clinical Investigation, 43, 1649–1658.PubMedCrossRef
Zurück zum Zitat Dunn, F. L., Brennan, T. J., Nelson, A. E., & Robertson, G. L. (1973). The role of blood osmolality and volume in regulating vasopressin secretion in the rat. Journal of Clinical Investigation, 52, 3212–3219.PubMedCrossRef Dunn, F. L., Brennan, T. J., Nelson, A. E., & Robertson, G. L. (1973). The role of blood osmolality and volume in regulating vasopressin secretion in the rat. Journal of Clinical Investigation, 52, 3212–3219.PubMedCrossRef
Zurück zum Zitat Dyball, R. E., Grossmann, R., Leng, G., & Shibuki, K. (1988). Spike propagation and conduction failure in the rat neural lobe. Journal of Physiology (London), 401, 241–256. Dyball, R. E., Grossmann, R., Leng, G., & Shibuki, K. (1988). Spike propagation and conduction failure in the rat neural lobe. Journal of Physiology (London), 401, 241–256.
Zurück zum Zitat Hobbach, H., Hurth, S., Jost, D., & Racké, K. (1988). Effects of tetraethylammonium ions on frequency-dependent vasopressin release from the rat neurohypophysis. Journal of Physiology (London), 397, 539–554. Hobbach, H., Hurth, S., Jost, D., & Racké, K. (1988). Effects of tetraethylammonium ions on frequency-dependent vasopressin release from the rat neurohypophysis. Journal of Physiology (London), 397, 539–554.
Zurück zum Zitat Iremonger, K. J., & Bains, J. S. (2007). Integration of asynchronously released quanta prolongs the postsynaptic spike window. Journal of Neuroscience, 27, 6684–6691.PubMedCrossRef Iremonger, K. J., & Bains, J. S. (2007). Integration of asynchronously released quanta prolongs the postsynaptic spike window. Journal of Neuroscience, 27, 6684–6691.PubMedCrossRef
Zurück zum Zitat Jackson, M. B., Konnerth, A., & Augustine, G. J. (1991). Action potential broadening and frequency-dependent facilitation of calcium signals in pituitary nerve terminals. Proceedings of the National Academy of Sciences of the United States of America, 88, 380–384.PubMedCrossRef Jackson, M. B., Konnerth, A., & Augustine, G. J. (1991). Action potential broadening and frequency-dependent facilitation of calcium signals in pituitary nerve terminals. Proceedings of the National Academy of Sciences of the United States of America, 88, 380–384.PubMedCrossRef
Zurück zum Zitat Komandantov, A. O., Trayanova, N. A., & Tasker, J. G. (2007). Somato-dendritic mechanisms underlying the electrophysiological properties of hypothalamic magnocellular neuroendocrine cells: a multicompartmental model study. Journal of Computational Neuroscience, 23, 143–168.CrossRef Komandantov, A. O., Trayanova, N. A., & Tasker, J. G. (2007). Somato-dendritic mechanisms underlying the electrophysiological properties of hypothalamic magnocellular neuroendocrine cells: a multicompartmental model study. Journal of Computational Neuroscience, 23, 143–168.CrossRef
Zurück zum Zitat Leng, G., & Ludwig, M. (2008). Neurotransmitters and peptides: whispered secrets and public announcements. Journal of Physiology (London), 586, 5625–5632.CrossRef Leng, G., & Ludwig, M. (2008). Neurotransmitters and peptides: whispered secrets and public announcements. Journal of Physiology (London), 586, 5625–5632.CrossRef
Zurück zum Zitat Leng, G., Brown, C., Sabatier, N., & Scott, V. (2008a). Population dynamics in vasopressin cells. Neuroendocrinology, 88, 160–172.PubMedCrossRef Leng, G., Brown, C., Sabatier, N., & Scott, V. (2008a). Population dynamics in vasopressin cells. Neuroendocrinology, 88, 160–172.PubMedCrossRef
Zurück zum Zitat Leng, G., Onaka, T., Caquineau, C., Sabatier, N., Tobin, V. A., & Takayanagi, Y. (2008b). Oxytocin and appetite. Progress in Brain Research, 170, 137–151.PubMedCrossRef Leng, G., Onaka, T., Caquineau, C., Sabatier, N., Tobin, V. A., & Takayanagi, Y. (2008b). Oxytocin and appetite. Progress in Brain Research, 170, 137–151.PubMedCrossRef
Zurück zum Zitat Mason, W. T. (1983). Electrical properties of neurons recorded from the rat supraoptic nucleus in vitro. Proceedings of the Royal Society B: Biological Sciences, 217, 141–161.CrossRef Mason, W. T. (1983). Electrical properties of neurons recorded from the rat supraoptic nucleus in vitro. Proceedings of the Royal Society B: Biological Sciences, 217, 141–161.CrossRef
Zurück zum Zitat Morris, J. F. (1976). Hormone storage in individual neurosecretory granules of the pituitary gland: a quantitative ultrastructural approach to hormone storage in the neural lobe. Journal of Endocrinology, 68, 209–224.PubMedCrossRef Morris, J. F. (1976). Hormone storage in individual neurosecretory granules of the pituitary gland: a quantitative ultrastructural approach to hormone storage in the neural lobe. Journal of Endocrinology, 68, 209–224.PubMedCrossRef
Zurück zum Zitat Nadeau, L., & Mouginot, D. (2011). New determinants of firing rates and patterns of vasopressinergic magnocellular neurons: predictions using a mathematical model of osmodetection. Journal of Computational Neuroscience, 31, 441–451.PubMedCrossRef Nadeau, L., & Mouginot, D. (2011). New determinants of firing rates and patterns of vasopressinergic magnocellular neurons: predictions using a mathematical model of osmodetection. Journal of Computational Neuroscience, 31, 441–451.PubMedCrossRef
Zurück zum Zitat Nadeau, L., Arbour, D., & Mouginot, D. (2010). Computational simulation of vasopressin secretion using a rat model of the water and electrolyte homeostasis. BMC Physiology, 10, 17.PubMedCrossRef Nadeau, L., Arbour, D., & Mouginot, D. (2010). Computational simulation of vasopressin secretion using a rat model of the water and electrolyte homeostasis. BMC Physiology, 10, 17.PubMedCrossRef
Zurück zum Zitat Nordmann, J. J., & Stuenkel, E. L. (1986). Electrical properties of axons and neurohypophysial nerve terminals and their relationship to secretion in the rat. The Journal of Physiology (London), 380, 521–539. Nordmann, J. J., & Stuenkel, E. L. (1986). Electrical properties of axons and neurohypophysial nerve terminals and their relationship to secretion in the rat. The Journal of Physiology (London), 380, 521–539.
Zurück zum Zitat Poulain, D. A., Brown, D., & Wakerley, J. (1988). Statistical analysis of patterns of electrical activity in vasopressin and oxytocin-secreting neurones. In: Pulsatility in neuroendocrine systems (ed. Leng G), 119–154. CRC Press, Boca Raton, FL, U.S.A Poulain, D. A., Brown, D., & Wakerley, J. (1988). Statistical analysis of patterns of electrical activity in vasopressin and oxytocin-secreting neurones. In: Pulsatility in neuroendocrine systems (ed. Leng G), 119–154. CRC Press, Boca Raton, FL, U.S.A
Zurück zum Zitat Richard, D., & Bourque, C. W. (1995). Synaptic control of rat supraoptic neurones during osmotic stimulation of the organum vasculosum lamina terminalis in vitro. The Journal of Physiology (London), 489, 567–577. Richard, D., & Bourque, C. W. (1995). Synaptic control of rat supraoptic neurones during osmotic stimulation of the organum vasculosum lamina terminalis in vitro. The Journal of Physiology (London), 489, 567–577.
Zurück zum Zitat Roper, P., Callaway, J., & Armstrong, W. (2004). Burst initiation and termination in phasic vasopressin cells of the rat supraoptic nucleus: a combined mathematical, electrical, and calcium fluorescence study. Journal of Neuroscience, 24, 4818–4831.PubMedCrossRef Roper, P., Callaway, J., & Armstrong, W. (2004). Burst initiation and termination in phasic vasopressin cells of the rat supraoptic nucleus: a combined mathematical, electrical, and calcium fluorescence study. Journal of Neuroscience, 24, 4818–4831.PubMedCrossRef
Zurück zum Zitat Scott, V., Bishop, V. R., Leng, G., & Brown, C. H. (2009). Dehydration-induced modulation of kappa-opioid inhibition of vasopressin neurone activity. Journal of Physiology (London), 587, 5679–5689.CrossRef Scott, V., Bishop, V. R., Leng, G., & Brown, C. H. (2009). Dehydration-induced modulation of kappa-opioid inhibition of vasopressin neurone activity. Journal of Physiology (London), 587, 5679–5689.CrossRef
Zurück zum Zitat Verbalis, J. G. (2003). Disorders of body water homeostasis. Best Practice & Research Clinical Endocrinololgy & Metabolism, 17, 471–503.CrossRef Verbalis, J. G. (2003). Disorders of body water homeostasis. Best Practice & Research Clinical Endocrinololgy & Metabolism, 17, 471–503.CrossRef
Zurück zum Zitat Wakerley, J. B., Poulain, D. A., & Brown, D. (1978). Comparison of firing patterns in oxytocin- and vasopressin-releasing neurones during progressive dehydration. Brain Research, 148, 425–440.PubMedCrossRef Wakerley, J. B., Poulain, D. A., & Brown, D. (1978). Comparison of firing patterns in oxytocin- and vasopressin-releasing neurones during progressive dehydration. Brain Research, 148, 425–440.PubMedCrossRef
Zurück zum Zitat Wakerley, J. B., Poulain, D. A., Dyball, R. E., & Cross, B. A. (1975). Activity of phasic neurosecretory cells during haemorrhage. Nature, 258, 82–84.PubMedCrossRef Wakerley, J. B., Poulain, D. A., Dyball, R. E., & Cross, B. A. (1975). Activity of phasic neurosecretory cells during haemorrhage. Nature, 258, 82–84.PubMedCrossRef
Zurück zum Zitat Walters, J. K., & Hatton, G. I. (1974). Supraoptic neuronal activity in rats during five days of water deprivation. Physiology & Behavior, 13, 661–667.CrossRef Walters, J. K., & Hatton, G. I. (1974). Supraoptic neuronal activity in rats during five days of water deprivation. Physiology & Behavior, 13, 661–667.CrossRef
Zurück zum Zitat Weisinger, R. S., Burns, P., Eddie, L. W., & Wintour, E. M. (1993). Relaxin alters the plasm a osmolality-arginine vasopressin relationship in the rat. Journal of Endocrinology, 137, 505–510.PubMedCrossRef Weisinger, R. S., Burns, P., Eddie, L. W., & Wintour, E. M. (1993). Relaxin alters the plasm a osmolality-arginine vasopressin relationship in the rat. Journal of Endocrinology, 137, 505–510.PubMedCrossRef
Zurück zum Zitat Wilson, K. C., Weitzman, R. E., & Fisher, D. A. (1978). Arginine vasopressin metabolism in dogs. II. Modeling and system analysis. American Journal of Physiology, 235, E598–605.PubMed Wilson, K. C., Weitzman, R. E., & Fisher, D. A. (1978). Arginine vasopressin metabolism in dogs. II. Modeling and system analysis. American Journal of Physiology, 235, E598–605.PubMed
Metadaten
Titel
Quantitative prediction of vasopressin secretion using a computational population model of rat magnocellular neurons
verfasst von
Louis Nadeau
Didier Mouginot
Publikationsdatum
01.12.2012
Verlag
Springer US
Erschienen in
Journal of Computational Neuroscience / Ausgabe 3/2012
Print ISSN: 0929-5313
Elektronische ISSN: 1573-6873
DOI
https://doi.org/10.1007/s10827-012-0399-3

Weitere Artikel der Ausgabe 3/2012

Journal of Computational Neuroscience 3/2012 Zur Ausgabe

Premium Partner