Skip to main content
Erschienen in: Journal of Computational Neuroscience 3/2012

01.12.2012

Calcium control of triphasic hippocampal STDP

verfasst von: Daniel Bush, Yaochu Jin

Erschienen in: Journal of Computational Neuroscience | Ausgabe 3/2012

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Synaptic plasticity is believed to represent the neural correlate of mammalian learning and memory function. It has been demonstrated that changes in synaptic conductance can be induced by approximately synchronous pairings of pre- and post- synaptic action potentials delivered at low frequencies. It has also been established that NMDAr-dependent calcium influx into dendritic spines represents a critical signal for plasticity induction, and can account for this spike-timing dependent plasticity (STDP) as well as experimental data obtained using other stimulation protocols. However, subsequent empirical studies have delineated a more complex relationship between spike-timing, firing rate, stimulus duration and post-synaptic bursting in dictating changes in the conductance of hippocampal excitatory synapses. Here, we present a detailed biophysical model of single dendritic spines on a CA1 pyramidal neuron, describe the NMDAr-dependent calcium influx generated by different stimulation protocols, and construct a parsimonious model of calcium driven kinase and phosphatase dynamics that dictate the probability of stochastic transitions between binary synaptic weight states in a Markov model. We subsequently demonstrate that this approach can account for a range of empirical observations regarding the dynamics of synaptic plasticity induced by different stimulation protocols, under regimes of pharmacological blockade and metaplasticity. Finally, we highlight the strengths and weaknesses of this parsimonious, unified computational synaptic plasticity model, discuss differences between the properties of cortical and hippocampal plasticity highlighted by the experimental literature, and the manner in which further empirical and theoretical research might elucidate the cellular basis of mammalian learning and memory function.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
Zurück zum Zitat Abarbanel, H. D. I., Gibb, L., Huerta, R., & Rabinovich, M. I. (2003). Biophysical model of synaptic plasticity dynamics. Biological Cybernetics, 89, 214–226.PubMedCrossRef Abarbanel, H. D. I., Gibb, L., Huerta, R., & Rabinovich, M. I. (2003). Biophysical model of synaptic plasticity dynamics. Biological Cybernetics, 89, 214–226.PubMedCrossRef
Zurück zum Zitat Abarbanel, H. D. I., Talathi, S. S., Gibb, L., & Rabinovich, M. I. (2005). Synaptic plasticity with discrete state synapses. Physical Review E, 72, 031914.CrossRef Abarbanel, H. D. I., Talathi, S. S., Gibb, L., & Rabinovich, M. I. (2005). Synaptic plasticity with discrete state synapses. Physical Review E, 72, 031914.CrossRef
Zurück zum Zitat Aihara, T., Abiru, Y., Yamazaki, Y., Watanabe, H., Fukushima, Y., & Tsukuda, M. (2007). The relation between spike-timing dependent plasticity and Ca2+ dynamics in the hippocampal CA1 network. Neuroscience, 145, 80–87.PubMedCrossRef Aihara, T., Abiru, Y., Yamazaki, Y., Watanabe, H., Fukushima, Y., & Tsukuda, M. (2007). The relation between spike-timing dependent plasticity and Ca2+ dynamics in the hippocampal CA1 network. Neuroscience, 145, 80–87.PubMedCrossRef
Zurück zum Zitat Artola, A., & Singer, W. (1993). Long-term depression of excitatory synaptic transmission and its relationship to long-term potentiation. Trends in Neuroscience, 16, 480–487.CrossRef Artola, A., & Singer, W. (1993). Long-term depression of excitatory synaptic transmission and its relationship to long-term potentiation. Trends in Neuroscience, 16, 480–487.CrossRef
Zurück zum Zitat Bagal, A. A., Kao, J., Tang, C.-M., & Thompson, S. M. (2005). Long-term potentiation of exogenous glutamate responses at single dendritic spines. PNAS, 102, 14434–14439.PubMedCrossRef Bagal, A. A., Kao, J., Tang, C.-M., & Thompson, S. M. (2005). Long-term potentiation of exogenous glutamate responses at single dendritic spines. PNAS, 102, 14434–14439.PubMedCrossRef
Zurück zum Zitat Bender, V. A., Bender, K. J., Brasier, D. J., & Feldman, D. E. (2006). Two coincidence detectors for spike timing-dependent plasticity in somatosensory cortex. Journal of Neuroscience, 26, 4166–4177.PubMedCrossRef Bender, V. A., Bender, K. J., Brasier, D. J., & Feldman, D. E. (2006). Two coincidence detectors for spike timing-dependent plasticity in somatosensory cortex. Journal of Neuroscience, 26, 4166–4177.PubMedCrossRef
Zurück zum Zitat Bi, G.-Q., & Poo, M.-M. (1998). Synaptic modifications in cultured hippocampal neurons: dependence on spike timing, synaptic strength, and postsynaptic cell type. Journal of Neuroscience, 77, 551–555. Bi, G.-Q., & Poo, M.-M. (1998). Synaptic modifications in cultured hippocampal neurons: dependence on spike timing, synaptic strength, and postsynaptic cell type. Journal of Neuroscience, 77, 551–555.
Zurück zum Zitat Bienenstock, E. L., Cooper, L. N., & Munro, P. W. (1982). Theory for the development of neuron selectivity: orientation specificity and binocular interaction in visual cortex. Journal of Neuroscience, 2, 32–48.PubMed Bienenstock, E. L., Cooper, L. N., & Munro, P. W. (1982). Theory for the development of neuron selectivity: orientation specificity and binocular interaction in visual cortex. Journal of Neuroscience, 2, 32–48.PubMed
Zurück zum Zitat Bliss, T., Collingridge, G., & Morris, R. (2007). Synaptic plasticity in the hippocampus. In P. Andersen, R. Morris, D. Amaral, T. Bliss, J. O’Keefe (Eds.), The hippocampus book (pp. 343–474). Oxford University Press. Bliss, T., Collingridge, G., & Morris, R. (2007). Synaptic plasticity in the hippocampus. In P. Andersen, R. Morris, D. Amaral, T. Bliss, J. O’Keefe (Eds.), The hippocampus book (pp. 343–474). Oxford University Press.
Zurück zum Zitat Buchanan, K. A., & Mellor, J. R. (2007). The development of synaptic plasticity induction rules and the requirement for postsynaptic spikes in rat hippocampal CA1 pyramidal neurones. The Journal of Physiology, 585, 429–445.PubMedCrossRef Buchanan, K. A., & Mellor, J. R. (2007). The development of synaptic plasticity induction rules and the requirement for postsynaptic spikes in rat hippocampal CA1 pyramidal neurones. The Journal of Physiology, 585, 429–445.PubMedCrossRef
Zurück zum Zitat Buchanan, K. A., & Mellor, J. R. (2010). The activity requirements for spike timing-dependent plasticity in the hippocampus. Frontiers in Synaptic Neuroscience, 2, 11.PubMedCrossRef Buchanan, K. A., & Mellor, J. R. (2010). The activity requirements for spike timing-dependent plasticity in the hippocampus. Frontiers in Synaptic Neuroscience, 2, 11.PubMedCrossRef
Zurück zum Zitat Buchler, N. E., & Cross, F. R. (2009). Protein sequestration generates a flexible ultrasensitive response in a genetic network. Molecular Systems Biology, 5, 272.PubMedCrossRef Buchler, N. E., & Cross, F. R. (2009). Protein sequestration generates a flexible ultrasensitive response in a genetic network. Molecular Systems Biology, 5, 272.PubMedCrossRef
Zurück zum Zitat Buonomano, D. V. (2005). A learning rule for the emergence of stable dynamics and timing in recurrent networks. Journal of Neurophysiology, 94, 2275–2283.PubMedCrossRef Buonomano, D. V. (2005). A learning rule for the emergence of stable dynamics and timing in recurrent networks. Journal of Neurophysiology, 94, 2275–2283.PubMedCrossRef
Zurück zum Zitat Bush, D., Philippides, A., Husbands, P., & O’Shea, M. (2010). Dual coding with STDP in an auto-associative network model of the hippocampus. PLoS Computational Biology, 6, e1000839.PubMedCrossRef Bush, D., Philippides, A., Husbands, P., & O’Shea, M. (2010). Dual coding with STDP in an auto-associative network model of the hippocampus. PLoS Computational Biology, 6, e1000839.PubMedCrossRef
Zurück zum Zitat Buzsáki, G. (2010). Neural syntax: cell assemblies, synapsembles, and readers. Neuron, 68, 362–385.PubMedCrossRef Buzsáki, G. (2010). Neural syntax: cell assemblies, synapsembles, and readers. Neuron, 68, 362–385.PubMedCrossRef
Zurück zum Zitat Canepari, M., Djurisic, M., & Zecevic, D. (2007). Dendritic signals from rat hippocampal CA1 pyramidal neurons during coincident pre- and post- synaptic activity: a combined voltage- and calcium- imaging study. The Journal of Physiology, 580, 463–484.PubMedCrossRef Canepari, M., Djurisic, M., & Zecevic, D. (2007). Dendritic signals from rat hippocampal CA1 pyramidal neurons during coincident pre- and post- synaptic activity: a combined voltage- and calcium- imaging study. The Journal of Physiology, 580, 463–484.PubMedCrossRef
Zurück zum Zitat Caporale, N., & Dan, Y. (2008). Spike timing-dependent plasticity: a Hebbian learning rule. Annual Reviews in Neuroscience, 31, 25–46.CrossRef Caporale, N., & Dan, Y. (2008). Spike timing-dependent plasticity: a Hebbian learning rule. Annual Reviews in Neuroscience, 31, 25–46.CrossRef
Zurück zum Zitat Christie, B. R., Magee, J. C., & Johnston, D. (1996). The role of dendritic action potentials and Ca2+ influx in the induction of homosynaptic long-term depression in hippocampal CA1 pyramidal neurons. Learning and Memory, 3, 160–169.PubMedCrossRef Christie, B. R., Magee, J. C., & Johnston, D. (1996). The role of dendritic action potentials and Ca2+ influx in the induction of homosynaptic long-term depression in hippocampal CA1 pyramidal neurons. Learning and Memory, 3, 160–169.PubMedCrossRef
Zurück zum Zitat Citri, A., & Malenka, R. C. (2008). Synaptic plasticity: multiple forms, functions, and mechanisms. Neuropsychopharmacology, 33, 18–41.PubMedCrossRef Citri, A., & Malenka, R. C. (2008). Synaptic plasticity: multiple forms, functions, and mechanisms. Neuropsychopharmacology, 33, 18–41.PubMedCrossRef
Zurück zum Zitat Cooke, S. F., & Bliss, T. V. P. (2006). Plasticity in the human central nervous system. Brain, 129, 1659–1673.PubMedCrossRef Cooke, S. F., & Bliss, T. V. P. (2006). Plasticity in the human central nervous system. Brain, 129, 1659–1673.PubMedCrossRef
Zurück zum Zitat Cormier, R. J., Greenwood, A. C., & Connor, J. A. (2001). Bidirectional synaptic plasticity correlated with the magnitude of dendritic calcium transients above a threshold. Journal of Neurophysiology, 85, 399–406.PubMed Cormier, R. J., Greenwood, A. C., & Connor, J. A. (2001). Bidirectional synaptic plasticity correlated with the magnitude of dendritic calcium transients above a threshold. Journal of Neurophysiology, 85, 399–406.PubMed
Zurück zum Zitat Dayan, P., & Abbott, L. F. (2001). Theoretical neuroscience (pp. 180–183). London: MIT. Dayan, P., & Abbott, L. F. (2001). Theoretical neuroscience (pp. 180–183). London: MIT.
Zurück zum Zitat Debanne, D., Gähwiler, B. H., & Thompson, S. M. (1998). Long-term synaptic plasticity between pairs of individual CA3 pyramidal cells in rat hippocampal slice cultures. The Journal of Physiology, 507, 237–247.PubMedCrossRef Debanne, D., Gähwiler, B. H., & Thompson, S. M. (1998). Long-term synaptic plasticity between pairs of individual CA3 pyramidal cells in rat hippocampal slice cultures. The Journal of Physiology, 507, 237–247.PubMedCrossRef
Zurück zum Zitat Desai, N. S. (2003). Homeostatic plasticity in the CNS: synaptic and intrinsic forms. Journal of Physiology, Paris, 97, 391–402.PubMedCrossRef Desai, N. S. (2003). Homeostatic plasticity in the CNS: synaptic and intrinsic forms. Journal of Physiology, Paris, 97, 391–402.PubMedCrossRef
Zurück zum Zitat Destexhe, A., Mainen, Z., & Sejnowski, T. (1994). Synthesis of models for excitable membranes, synaptic transmission and neuromodulation using a common kinetic formalism. Journal of Computational Neuroscience, 1, 195–230.PubMedCrossRef Destexhe, A., Mainen, Z., & Sejnowski, T. (1994). Synthesis of models for excitable membranes, synaptic transmission and neuromodulation using a common kinetic formalism. Journal of Computational Neuroscience, 1, 195–230.PubMedCrossRef
Zurück zum Zitat Dudek, S. M., & Bear, M. F. (1992). Homosynaptic long-term depression in area CA1 of hippocampus and effects of N-methyl-D-aspartate receptor blockade. PNAS, 89, 4363–4367.PubMedCrossRef Dudek, S. M., & Bear, M. F. (1992). Homosynaptic long-term depression in area CA1 of hippocampus and effects of N-methyl-D-aspartate receptor blockade. PNAS, 89, 4363–4367.PubMedCrossRef
Zurück zum Zitat Dudman, J. T., Tsay, D., & Siegelbaum, S. A. (2007). A role for synaptic inputs at distal dendrites: instructive signals for hippocampal long-term plasticity. Neuron, 56, 866–879.PubMedCrossRef Dudman, J. T., Tsay, D., & Siegelbaum, S. A. (2007). A role for synaptic inputs at distal dendrites: instructive signals for hippocampal long-term plasticity. Neuron, 56, 866–879.PubMedCrossRef
Zurück zum Zitat Erreger, K., Dravid, S. M., Banke, T. G., Wyllie, D. J. A., & Traynelis, S. F. (2005). Subunit-specific gating controls rat NR1/NR2A and NR1/NR2B NMDA channel kinetics and synaptic signalling profiles. The Journal of Physiology, 563, 345–358.PubMedCrossRef Erreger, K., Dravid, S. M., Banke, T. G., Wyllie, D. J. A., & Traynelis, S. F. (2005). Subunit-specific gating controls rat NR1/NR2A and NR1/NR2B NMDA channel kinetics and synaptic signalling profiles. The Journal of Physiology, 563, 345–358.PubMedCrossRef
Zurück zum Zitat Fan, Y., Fricker, D., Brager, D. H., Chen, X., Lu, H.-C., Chitwood, R. A., & Johnston, D. (2005). Activity-dependent decrease of excitability in rat hippocampal neurons through increases in Ih. Nature Neuroscience, 8, 1542–1551.PubMedCrossRef Fan, Y., Fricker, D., Brager, D. H., Chen, X., Lu, H.-C., Chitwood, R. A., & Johnston, D. (2005). Activity-dependent decrease of excitability in rat hippocampal neurons through increases in Ih. Nature Neuroscience, 8, 1542–1551.PubMedCrossRef
Zurück zum Zitat Fernandez de Sevilla, D., Fuenzalida, M., Porto Pazos, A. B., & Buno, W. (2007). Selective shunting of the NMDA EPSP component by the slow afterhyperpolarisation in rat CA1 pyramidal neurons. Journal of Neurophysiology, 97, 3242–3255.PubMedCrossRef Fernandez de Sevilla, D., Fuenzalida, M., Porto Pazos, A. B., & Buno, W. (2007). Selective shunting of the NMDA EPSP component by the slow afterhyperpolarisation in rat CA1 pyramidal neurons. Journal of Neurophysiology, 97, 3242–3255.PubMedCrossRef
Zurück zum Zitat Fiete, I. R., Senn, W., Wang, C., & Hahnloser, R. H. R. (2010). Spike time-dependent plasticity and heterosynaptic competition organize networks to produce long scale-free sequences of neural activity. Neuron, 65, 563–576.PubMedCrossRef Fiete, I. R., Senn, W., Wang, C., & Hahnloser, R. H. R. (2010). Spike time-dependent plasticity and heterosynaptic competition organize networks to produce long scale-free sequences of neural activity. Neuron, 65, 563–576.PubMedCrossRef
Zurück zum Zitat Frey, U., & Morris, R. G. (1997). Synaptic tagging and long-term potentiation. Nature, 385, 533–536.PubMedCrossRef Frey, U., & Morris, R. G. (1997). Synaptic tagging and long-term potentiation. Nature, 385, 533–536.PubMedCrossRef
Zurück zum Zitat Frick, A., Magee, J., & Johnston, D. (2004). LTP is accompanied by an enhanced local excitability of pyramidal neuron dendrites. Nature Neuroscience, 7, 126–135.PubMedCrossRef Frick, A., Magee, J., & Johnston, D. (2004). LTP is accompanied by an enhanced local excitability of pyramidal neuron dendrites. Nature Neuroscience, 7, 126–135.PubMedCrossRef
Zurück zum Zitat Froemke, R. C., Poo, M. M., & Dan, Y. (2005). Spike-timing-dependent synaptic plasticity depends on dendritic location. Nature, 434, 221–225.PubMedCrossRef Froemke, R. C., Poo, M. M., & Dan, Y. (2005). Spike-timing-dependent synaptic plasticity depends on dendritic location. Nature, 434, 221–225.PubMedCrossRef
Zurück zum Zitat Froemke, R. C., Tsay, I. H., Raad, M., Long, J. D., & Dan, Y. (2006). Contribution of individual spikes in burst-induced long-term synaptic modification. Journal of Neurophysiology, 95, 1620–1629.PubMedCrossRef Froemke, R. C., Tsay, I. H., Raad, M., Long, J. D., & Dan, Y. (2006). Contribution of individual spikes in burst-induced long-term synaptic modification. Journal of Neurophysiology, 95, 1620–1629.PubMedCrossRef
Zurück zum Zitat Froemke, R. C., Debanne, D., & Bi, G. Q. (2010). Temporal modulation of spike-timing-dependent plasticity. Frontiers in Synaptic Neuroscience, 2, 19.PubMed Froemke, R. C., Debanne, D., & Bi, G. Q. (2010). Temporal modulation of spike-timing-dependent plasticity. Frontiers in Synaptic Neuroscience, 2, 19.PubMed
Zurück zum Zitat Fukunaga, K., Muller, D., Ohmitsu, M., Bako, E., DePaoli-Roach, A. A., & Miyamoto, E. (2000). Decreased protein phosphatase 2A activity in hippocampal long-term potentiation. Journal of Neurochemistry, 74, 807–817.PubMedCrossRef Fukunaga, K., Muller, D., Ohmitsu, M., Bako, E., DePaoli-Roach, A. A., & Miyamoto, E. (2000). Decreased protein phosphatase 2A activity in hippocampal long-term potentiation. Journal of Neurochemistry, 74, 807–817.PubMedCrossRef
Zurück zum Zitat Gerkin, R. C., Lau, P.-M., Nauen, D. W., Wang, Y. T., & Bi, G.-Q. (2007). Modular competition driven by NMDA receptor subtypes in spike-timing-dependent plasticity. Journal of Neurophysiology, 97, 2851–2862.PubMedCrossRef Gerkin, R. C., Lau, P.-M., Nauen, D. W., Wang, Y. T., & Bi, G.-Q. (2007). Modular competition driven by NMDA receptor subtypes in spike-timing-dependent plasticity. Journal of Neurophysiology, 97, 2851–2862.PubMedCrossRef
Zurück zum Zitat Graupner, M., & Brunel, N. (2007). STDP in a bistable synapse model based on CaMKII and associated signalling pathways. PLoS Computational Biology, 3(11), e221.PubMedCrossRef Graupner, M., & Brunel, N. (2007). STDP in a bistable synapse model based on CaMKII and associated signalling pathways. PLoS Computational Biology, 3(11), e221.PubMedCrossRef
Zurück zum Zitat Graupner, M., & Brunel, N. (2010). Mechanisms of induction and maintenance of spike-timing dependent plasticity in biophysical synapse models. Frontiers in Computational Neuroscience, 4, 136.PubMedCrossRef Graupner, M., & Brunel, N. (2010). Mechanisms of induction and maintenance of spike-timing dependent plasticity in biophysical synapse models. Frontiers in Computational Neuroscience, 4, 136.PubMedCrossRef
Zurück zum Zitat Hanson, P. I., & Schulman, H. (1992). Neuronal Ca2+ / Calmodulin-dependent protein kinase. Annual Review of Biochemistry, 61, 559–601.PubMedCrossRef Hanson, P. I., & Schulman, H. (1992). Neuronal Ca2+ / Calmodulin-dependent protein kinase. Annual Review of Biochemistry, 61, 559–601.PubMedCrossRef
Zurück zum Zitat Harris, K. M., & Kater, S. B. (1994). Dendritic spines: cellular specialisations imparting both stability and flexibility to synaptic function. Annual Reviews in Neuroscience, 17, 341–371.CrossRef Harris, K. M., & Kater, S. B. (1994). Dendritic spines: cellular specialisations imparting both stability and flexibility to synaptic function. Annual Reviews in Neuroscience, 17, 341–371.CrossRef
Zurück zum Zitat Harris, K. D., Hirase, H., Leinekugel, X., Henze, D. A., & Buzsaki, G. (2001). Temporal interaction between single spikes and complex spike bursts in hippocampal pyramidal cells. Neuron, 32, 141–149.PubMedCrossRef Harris, K. D., Hirase, H., Leinekugel, X., Henze, D. A., & Buzsaki, G. (2001). Temporal interaction between single spikes and complex spike bursts in hippocampal pyramidal cells. Neuron, 32, 141–149.PubMedCrossRef
Zurück zum Zitat Hebb, D. O. (1949). The organisation of behaviour. New York: Wiley. Hebb, D. O. (1949). The organisation of behaviour. New York: Wiley.
Zurück zum Zitat Jahr, C. E., & Stevens, C. F. (1990). A quantitative description of NMDA receptor-channel kinetic behaviour. Journal of Neuroscience, 10, 1830–1837.PubMed Jahr, C. E., & Stevens, C. F. (1990). A quantitative description of NMDA receptor-channel kinetic behaviour. Journal of Neuroscience, 10, 1830–1837.PubMed
Zurück zum Zitat Johnston, D., Christie, B. R., Frick, A., Gray, R., Hoffman, D. A., Schexnayder, L. K., Watanabe, S., & Yuan, L.-L. (2003). Active dendrites, potassium channels and synaptic plasticity. Philosophical Transactions of the Royal Society B, 358, 667–674.CrossRef Johnston, D., Christie, B. R., Frick, A., Gray, R., Hoffman, D. A., Schexnayder, L. K., Watanabe, S., & Yuan, L.-L. (2003). Active dendrites, potassium channels and synaptic plasticity. Philosophical Transactions of the Royal Society B, 358, 667–674.CrossRef
Zurück zum Zitat Kampa, B. M., Letzkus, J. J., & Stuart, G. J. (2007). Dendritic mechanisms controlling spike-timing dependent plasticity. Trends in Neuroscience, 30, 456–463.CrossRef Kampa, B. M., Letzkus, J. J., & Stuart, G. J. (2007). Dendritic mechanisms controlling spike-timing dependent plasticity. Trends in Neuroscience, 30, 456–463.CrossRef
Zurück zum Zitat Karmarkar, U. R., & Buonomano, D. V. (2002). A model of spike-timing dependent plasticity: one or two coincidence detectors? Journal of Neurophysiology, 88, 507–513.PubMed Karmarkar, U. R., & Buonomano, D. V. (2002). A model of spike-timing dependent plasticity: one or two coincidence detectors? Journal of Neurophysiology, 88, 507–513.PubMed
Zurück zum Zitat Krug, M., Lossner, B., & Ott, T. (1984). Anisomycin blocks the late phase of long-term potentiation in the dentate gyrus of freely moving rats. Brain Research Bulletins, 13, 39–42.CrossRef Krug, M., Lossner, B., & Ott, T. (1984). Anisomycin blocks the late phase of long-term potentiation in the dentate gyrus of freely moving rats. Brain Research Bulletins, 13, 39–42.CrossRef
Zurück zum Zitat Larkum, M. E., Zhu, J. J., & Sakmann, B. (2001). Dendritic mechanisms underlying the coupling of the dendritic with the axonal action potential initiation zone of adult rat layer 5 pyramidal neurons. The Journal of Physiology, 533, 447–466.PubMedCrossRef Larkum, M. E., Zhu, J. J., & Sakmann, B. (2001). Dendritic mechanisms underlying the coupling of the dendritic with the axonal action potential initiation zone of adult rat layer 5 pyramidal neurons. The Journal of Physiology, 533, 447–466.PubMedCrossRef
Zurück zum Zitat Larson, J., Wong, D., & Lynch, G. (1986). Patterned stimulation at the theta frequency is optimal for the induction of hippocampal long-term potentiation. Brain Research, 368, 347–350.PubMedCrossRef Larson, J., Wong, D., & Lynch, G. (1986). Patterned stimulation at the theta frequency is optimal for the induction of hippocampal long-term potentiation. Brain Research, 368, 347–350.PubMedCrossRef
Zurück zum Zitat Lazar, A., Pipa, G., & Triesch, J. (2009). SORN: a self-organizing recurrent neural network. Frontiers in Computational Neuroscience, 3, 23.PubMed Lazar, A., Pipa, G., & Triesch, J. (2009). SORN: a self-organizing recurrent neural network. Frontiers in Computational Neuroscience, 3, 23.PubMed
Zurück zum Zitat Lee, H.-K., Barbarosie, M., Kameyama, K., Bear, M. F., & Huganir, R. L. (2000). Regulation of distinct AMPA receptor phosphorylation sites during bidirectional synaptic plasticity. Nature, 405, 955–959.PubMedCrossRef Lee, H.-K., Barbarosie, M., Kameyama, K., Bear, M. F., & Huganir, R. L. (2000). Regulation of distinct AMPA receptor phosphorylation sites during bidirectional synaptic plasticity. Nature, 405, 955–959.PubMedCrossRef
Zurück zum Zitat Legenstein, R., & Maass, W. (2011). Branch-specific plasticity enables self-organisation of nonlinear computation in single neurons. Journal of Neuroscience, 31, 10787–10802.PubMedCrossRef Legenstein, R., & Maass, W. (2011). Branch-specific plasticity enables self-organisation of nonlinear computation in single neurons. Journal of Neuroscience, 31, 10787–10802.PubMedCrossRef
Zurück zum Zitat Lisman, J. (1989). A mechanism for the Hebb and the anti-Hebb processes underlying learning and memory. PNAS, 86, 9574–9578.PubMedCrossRef Lisman, J. (1989). A mechanism for the Hebb and the anti-Hebb processes underlying learning and memory. PNAS, 86, 9574–9578.PubMedCrossRef
Zurück zum Zitat Lisman, J. E. (1997). Bursts as a unit of neural information: making unreliable synapses reliable. Trends in Neurosciences, 20, 38–43.PubMedCrossRef Lisman, J. E. (1997). Bursts as a unit of neural information: making unreliable synapses reliable. Trends in Neurosciences, 20, 38–43.PubMedCrossRef
Zurück zum Zitat Lisman, J., & Spruston, N. (2005). Postsynaptic depolarisation requirements for LTP and LTD: a critique of spike-timing dependent plasticity. Nature Neuroscience, 8, 839–841.PubMed Lisman, J., & Spruston, N. (2005). Postsynaptic depolarisation requirements for LTP and LTD: a critique of spike-timing dependent plasticity. Nature Neuroscience, 8, 839–841.PubMed
Zurück zum Zitat Lomo, T., & Bliss, T. V. (1973). Long-lasting potentiation of synaptic transmission in the dentate area of the anaesthetized rabbit following stimulation of the perforant path. The Journal of Physiology, 232, 331–356.PubMed Lomo, T., & Bliss, T. V. (1973). Long-lasting potentiation of synaptic transmission in the dentate area of the anaesthetized rabbit following stimulation of the perforant path. The Journal of Physiology, 232, 331–356.PubMed
Zurück zum Zitat Losonczy, A., Makara, J. K., & Magee, J. C. (2008). Compartmentalised dendritic plasticity and input feature storage in neurons. Nature, 452, 436–441.PubMedCrossRef Losonczy, A., Makara, J. K., & Magee, J. C. (2008). Compartmentalised dendritic plasticity and input feature storage in neurons. Nature, 452, 436–441.PubMedCrossRef
Zurück zum Zitat Magee, J. C., & Johnston, D. (1997). A synaptically controlled, associative signal for Hebbian plasticity in hippocampal neurons. Science, 275, 209–213.PubMedCrossRef Magee, J. C., & Johnston, D. (1997). A synaptically controlled, associative signal for Hebbian plasticity in hippocampal neurons. Science, 275, 209–213.PubMedCrossRef
Zurück zum Zitat Malenka, R. C., & Bear, M. F. (2004). LTP and LTD: an embarrassment of riches. Neuron, 44, 5–21.PubMedCrossRef Malenka, R. C., & Bear, M. F. (2004). LTP and LTD: an embarrassment of riches. Neuron, 44, 5–21.PubMedCrossRef
Zurück zum Zitat Malenka, R. C., & Nicoll, R. A. (1999). Long-term potentiation—a decade of progress? Science, 285, 1870–1874.PubMedCrossRef Malenka, R. C., & Nicoll, R. A. (1999). Long-term potentiation—a decade of progress? Science, 285, 1870–1874.PubMedCrossRef
Zurück zum Zitat Malenka, R. C., Kauer, J. A., Perkel, D. J., Mauk, M. D., Kelly, P. T., Nicoll, R. A., & Waxham, M. N. (1989). An essential role for postsynaptic calmodulin and protein kinase activity in long-term potentiation. Nature, 340, 554–557.PubMedCrossRef Malenka, R. C., Kauer, J. A., Perkel, D. J., Mauk, M. D., Kelly, P. T., Nicoll, R. A., & Waxham, M. N. (1989). An essential role for postsynaptic calmodulin and protein kinase activity in long-term potentiation. Nature, 340, 554–557.PubMedCrossRef
Zurück zum Zitat Malinow, R., Schulman, H., & Tsien, R. W. (1989). Inhibition of postsynaptic PKC or CaMKII blocks induction but not expression of LTP. Science, 245, 862–866.PubMedCrossRef Malinow, R., Schulman, H., & Tsien, R. W. (1989). Inhibition of postsynaptic PKC or CaMKII blocks induction but not expression of LTP. Science, 245, 862–866.PubMedCrossRef
Zurück zum Zitat Martin, S. J., Grimwood, P. D., & Morris, R. G. M. (2000). Synaptic plasticity and memory: an evaluation of the hypothesis. Annual Review of Neuroscience, 23, 649–711.PubMedCrossRef Martin, S. J., Grimwood, P. D., & Morris, R. G. M. (2000). Synaptic plasticity and memory: an evaluation of the hypothesis. Annual Review of Neuroscience, 23, 649–711.PubMedCrossRef
Zurück zum Zitat Meredith, R. M., Floyer-Lea, A. M., & Paulsen, O. (2003). Maturation of long-term potentiation induction rules in rodent hippocampus: role of GABAergic inhibition. Journal of Neuroscience, 23, 11142–11146.PubMed Meredith, R. M., Floyer-Lea, A. M., & Paulsen, O. (2003). Maturation of long-term potentiation induction rules in rodent hippocampus: role of GABAergic inhibition. Journal of Neuroscience, 23, 11142–11146.PubMed
Zurück zum Zitat Mizuno, T., Kanazawa, I., & Sakurai, M. (2001). Differential induction of LTP and LTD is not determined solely by instantaneous calcium concentration: an essential involvement of a temporal factor. European Journal of Neuroscience, 14, 701–708.PubMedCrossRef Mizuno, T., Kanazawa, I., & Sakurai, M. (2001). Differential induction of LTP and LTD is not determined solely by instantaneous calcium concentration: an essential involvement of a temporal factor. European Journal of Neuroscience, 14, 701–708.PubMedCrossRef
Zurück zum Zitat Morgan, D. O. (2007). The cell cycle: Principles of control. Sunderland: New Science Press. Morgan, D. O. (2007). The cell cycle: Principles of control. Sunderland: New Science Press.
Zurück zum Zitat Mulkey, R. M., Herron, C. E., & Malenka, R. C. (1993). An essential role for protein phosphatases in hippocampal long-term depression. Science, 261, 1104–1107.CrossRef Mulkey, R. M., Herron, C. E., & Malenka, R. C. (1993). An essential role for protein phosphatases in hippocampal long-term depression. Science, 261, 1104–1107.CrossRef
Zurück zum Zitat Nelson, S. B., & Turrigiano, G. G. (2008). Strength through diversity. Neuron, 60, 477–482.PubMedCrossRef Nelson, S. B., & Turrigiano, G. G. (2008). Strength through diversity. Neuron, 60, 477–482.PubMedCrossRef
Zurück zum Zitat Neves, G., Cooke, S. F., & Bliss, T. V. P. (2008). Synaptic plasticity, memory and the hippocampus: a neural network approach to causality. Nature Reviews Neuroscience, 9, 65–75.PubMedCrossRef Neves, G., Cooke, S. F., & Bliss, T. V. P. (2008). Synaptic plasticity, memory and the hippocampus: a neural network approach to causality. Nature Reviews Neuroscience, 9, 65–75.PubMedCrossRef
Zurück zum Zitat Nevian, T., & Sakmann, B. (2006). Spine Ca2+ signaling in spike-timing-dependent plasticity. Journal of Neuroscience, 26, 11001–11013.PubMedCrossRef Nevian, T., & Sakmann, B. (2006). Spine Ca2+ signaling in spike-timing-dependent plasticity. Journal of Neuroscience, 26, 11001–11013.PubMedCrossRef
Zurück zum Zitat Ngezahayo, A., Schachner, M., & Artola, A. (2000). Synaptic activity modulates the induction of bidirectional synaptic changes in adult mouse hippocampus. Journal of Neuroscience, 20, 2451–2458.PubMed Ngezahayo, A., Schachner, M., & Artola, A. (2000). Synaptic activity modulates the induction of bidirectional synaptic changes in adult mouse hippocampus. Journal of Neuroscience, 20, 2451–2458.PubMed
Zurück zum Zitat Nguyen, P. V., Abel, T., & Kandel, E. R. (1994). Requirement of a critical period of transcription for induction of a late phase of LTP. Science, 165, 1104–1107.CrossRef Nguyen, P. V., Abel, T., & Kandel, E. R. (1994). Requirement of a critical period of transcription for induction of a late phase of LTP. Science, 165, 1104–1107.CrossRef
Zurück zum Zitat Nishiyama, M., Hong, K., Mikoshiba, K., Poo, M. M., & Kato, K. (2000). Calcium stores regulate the polarity and input specificity of synaptic modification. Nature, 408, 584–588.PubMedCrossRef Nishiyama, M., Hong, K., Mikoshiba, K., Poo, M. M., & Kato, K. (2000). Calcium stores regulate the polarity and input specificity of synaptic modification. Nature, 408, 584–588.PubMedCrossRef
Zurück zum Zitat O’Connor, D. H., Wittenberg, G. M., & Wang, S. S. H. (2005a). Graded bidirectional synaptic plasticity is composed of switch-like unitary events. PNAS, 102, 9679–9684.PubMedCrossRef O’Connor, D. H., Wittenberg, G. M., & Wang, S. S. H. (2005a). Graded bidirectional synaptic plasticity is composed of switch-like unitary events. PNAS, 102, 9679–9684.PubMedCrossRef
Zurück zum Zitat O’Connor, D. H., Wittenberg, G. M., & Wang, S. S. H. (2005b). Dissection of bidirectional synaptic plasticity into saturable unidirectional processes. Journal of Neurophysiology, 94, 1565–1573.PubMedCrossRef O’Connor, D. H., Wittenberg, G. M., & Wang, S. S. H. (2005b). Dissection of bidirectional synaptic plasticity into saturable unidirectional processes. Journal of Neurophysiology, 94, 1565–1573.PubMedCrossRef
Zurück zum Zitat Palmer, L. M., & Stuart, G. J. (2009). Membrane potential changes in dendritic spines during action potentials and synaptic input. Journal of Neuroscience, 29, 6897–6903.PubMedCrossRef Palmer, L. M., & Stuart, G. J. (2009). Membrane potential changes in dendritic spines during action potentials and synaptic input. Journal of Neuroscience, 29, 6897–6903.PubMedCrossRef
Zurück zum Zitat Perez-Otano, I., & Ehlers, M. D. (2005). Homeostatic plasticity and NMDA receptor trafficking. Trends in Neurosciences, 28, 229–238.PubMedCrossRef Perez-Otano, I., & Ehlers, M. D. (2005). Homeostatic plasticity and NMDA receptor trafficking. Trends in Neurosciences, 28, 229–238.PubMedCrossRef
Zurück zum Zitat Petersen, C. C. N., Malenka, R. C., Nicoll, R. A., & Hopfield, J. J. (1998). All-or-none potentiation at CA3-CA1 synapses. PNAS, 95, 4732–4737.PubMedCrossRef Petersen, C. C. N., Malenka, R. C., Nicoll, R. A., & Hopfield, J. J. (1998). All-or-none potentiation at CA3-CA1 synapses. PNAS, 95, 4732–4737.PubMedCrossRef
Zurück zum Zitat Pfister, J.-P., & Gerstner, W. (2006). Triplets of spikes in a model of spike timing-dependent plasticity. Journal of Neuroscience, 26, 9673–9682.PubMedCrossRef Pfister, J.-P., & Gerstner, W. (2006). Triplets of spikes in a model of spike timing-dependent plasticity. Journal of Neuroscience, 26, 9673–9682.PubMedCrossRef
Zurück zum Zitat Pi, H. J., & Lisman, J. E. (2008). Coupled phosphatase and kinase switches produce the tristability required for long-term potentiation and long-term depression. Journal of Neuroscience, 28, 13132–13138.PubMedCrossRef Pi, H. J., & Lisman, J. E. (2008). Coupled phosphatase and kinase switches produce the tristability required for long-term potentiation and long-term depression. Journal of Neuroscience, 28, 13132–13138.PubMedCrossRef
Zurück zum Zitat Pike, F. G., Meredith, R. M., Olding, A. W., & Paulsen, O. (1999). Postsynaptic bursting is essential for 'Hebbian' induction of associative long-term potentiation at excitatory synapses in rat hippocampus. The Journal of Physiology, 518, 571–576.PubMedCrossRef Pike, F. G., Meredith, R. M., Olding, A. W., & Paulsen, O. (1999). Postsynaptic bursting is essential for 'Hebbian' induction of associative long-term potentiation at excitatory synapses in rat hippocampus. The Journal of Physiology, 518, 571–576.PubMedCrossRef
Zurück zum Zitat Rackham, O. J. L., Tsaneva-Atanasova, K., Ganesh, A., & Mellor, J. R. (2010). A Ca2+-based computational model for NMDA receptor-dependent synaptic plasticity at individual post-synaptic spines in the hippocampus. Frontiers in Synaptic Neuroscience, 2, 31.PubMed Rackham, O. J. L., Tsaneva-Atanasova, K., Ganesh, A., & Mellor, J. R. (2010). A Ca2+-based computational model for NMDA receptor-dependent synaptic plasticity at individual post-synaptic spines in the hippocampus. Frontiers in Synaptic Neuroscience, 2, 31.PubMed
Zurück zum Zitat Rodríguez-Moreno, A., & Paulsen, O. (2008). Spike timing-dependent long-term depression requires presynaptic NMDA receptors. Nature Neuroscience, 11, 744–745.PubMedCrossRef Rodríguez-Moreno, A., & Paulsen, O. (2008). Spike timing-dependent long-term depression requires presynaptic NMDA receptors. Nature Neuroscience, 11, 744–745.PubMedCrossRef
Zurück zum Zitat Rubin, J. E., Gerkin, R. C., Bi, G.-Q., & Chow, C. C. (2005). Calcium time course as a signal for spike-timing-dependent plasticity. Journal of Neurophysiology, 93, 2600–2613.PubMedCrossRef Rubin, J. E., Gerkin, R. C., Bi, G.-Q., & Chow, C. C. (2005). Calcium time course as a signal for spike-timing-dependent plasticity. Journal of Neurophysiology, 93, 2600–2613.PubMedCrossRef
Zurück zum Zitat Sabatini, B. L., Oertner, T. G., & Svoboda, K. (2002). The life cycle of Ca2+ ions in dendritic spines. Neuron, 33, 439–452.PubMedCrossRef Sabatini, B. L., Oertner, T. G., & Svoboda, K. (2002). The life cycle of Ca2+ ions in dendritic spines. Neuron, 33, 439–452.PubMedCrossRef
Zurück zum Zitat Shouval, H. Z., & Kalantzis, G. (2005). Stochastic properties of synaptic transmission affect the shape of spike time-dependent plasticity curves. Journal of Neurophysiology, 93, 1069–1073.PubMedCrossRef Shouval, H. Z., & Kalantzis, G. (2005). Stochastic properties of synaptic transmission affect the shape of spike time-dependent plasticity curves. Journal of Neurophysiology, 93, 1069–1073.PubMedCrossRef
Zurück zum Zitat Shouval, H. Z., Bear, M. F., & Cooper, L. N. (2002). A unified model of NMDA receptor-dependent bidirectional synaptic plasticity. PNAS, 99, 10831–11083.PubMedCrossRef Shouval, H. Z., Bear, M. F., & Cooper, L. N. (2002). A unified model of NMDA receptor-dependent bidirectional synaptic plasticity. PNAS, 99, 10831–11083.PubMedCrossRef
Zurück zum Zitat Shouval, H. Z., Wang, S. S.-H., & Wittenberg, G. M. (2010). Spike timing dependent plasticity: a consequence of more fundamental learning rules. Frontiers in Computational Neuroscience, 4, 19.PubMed Shouval, H. Z., Wang, S. S.-H., & Wittenberg, G. M. (2010). Spike timing dependent plasticity: a consequence of more fundamental learning rules. Frontiers in Computational Neuroscience, 4, 19.PubMed
Zurück zum Zitat Sjostrom, P. J., & Nelson, S. B. (2002). Spike timing, calcium signals and synaptic plasticity. Current Opinion in Neurobiology, 12, 305–314.PubMedCrossRef Sjostrom, P. J., & Nelson, S. B. (2002). Spike timing, calcium signals and synaptic plasticity. Current Opinion in Neurobiology, 12, 305–314.PubMedCrossRef
Zurück zum Zitat Sjöström, P. J., Turrigiano, G. G., & Nelson, S. B. (2001). Rate, timing, and cooperativity jointly determine cortical synaptic plasticity. Neuron, 32, 1149–1164.PubMedCrossRef Sjöström, P. J., Turrigiano, G. G., & Nelson, S. B. (2001). Rate, timing, and cooperativity jointly determine cortical synaptic plasticity. Neuron, 32, 1149–1164.PubMedCrossRef
Zurück zum Zitat Sjöström, P. J., Turrigiano, G. G., & Nelson, S. B. (2003). Neocortical LTD via coincident activation of presynaptic NMDA and cannabinoid receptors. Neuron, 39, 641–654.PubMedCrossRef Sjöström, P. J., Turrigiano, G. G., & Nelson, S. B. (2003). Neocortical LTD via coincident activation of presynaptic NMDA and cannabinoid receptors. Neuron, 39, 641–654.PubMedCrossRef
Zurück zum Zitat Sjöström, P. J., Rancz, E. A., Roth, A., & Häusser, M. (2008). Dendritic excitability and synaptic plasticity. Physiological Reviews, 88, 769–840.PubMedCrossRef Sjöström, P. J., Rancz, E. A., Roth, A., & Häusser, M. (2008). Dendritic excitability and synaptic plasticity. Physiological Reviews, 88, 769–840.PubMedCrossRef
Zurück zum Zitat Song, S., Miller, K. D., & Abbott, L. F. (2000). Competitive Hebbian learning through spike-timing dependent synaptic plasticity. Nature Neuroscience, 3, 919–926.PubMedCrossRef Song, S., Miller, K. D., & Abbott, L. F. (2000). Competitive Hebbian learning through spike-timing dependent synaptic plasticity. Nature Neuroscience, 3, 919–926.PubMedCrossRef
Zurück zum Zitat Stuart, G. J., & Sakmann, B. (1994). Active propagation of somatic action potentials into neocortical pyramidal cell dendrites. Nature, 367, 69–72.PubMedCrossRef Stuart, G. J., & Sakmann, B. (1994). Active propagation of somatic action potentials into neocortical pyramidal cell dendrites. Nature, 367, 69–72.PubMedCrossRef
Zurück zum Zitat Urakubo, H., Honda, M., Froemke, R. C., & Kuroda, S. (2008). Requirement of an allosteric kinetics of NMDA receptors for spike-timing dependent plasticity. Journal of Neuroscience, 28, 3310–3323.PubMedCrossRef Urakubo, H., Honda, M., Froemke, R. C., & Kuroda, S. (2008). Requirement of an allosteric kinetics of NMDA receptors for spike-timing dependent plasticity. Journal of Neuroscience, 28, 3310–3323.PubMedCrossRef
Zurück zum Zitat Wang, H. X., Gerkin, R. C., Nauen, D. W., & Bi, G.-Q. (2005). Coactivation and timing-dependent integration of synaptic potentiation and depression. Nature Neuroscience, 8, 187–193.PubMedCrossRef Wang, H. X., Gerkin, R. C., Nauen, D. W., & Bi, G.-Q. (2005). Coactivation and timing-dependent integration of synaptic potentiation and depression. Nature Neuroscience, 8, 187–193.PubMedCrossRef
Zurück zum Zitat Watt, A. J., Sjostrom, P. J., Hausser, M., Nelson, S. B., & Turrigiano, G. G. (2004). A proportional but slower NMDA potentiation follows AMPA potentiation in LTP. Nature Neuroscience, 7, 518–524.PubMedCrossRef Watt, A. J., Sjostrom, P. J., Hausser, M., Nelson, S. B., & Turrigiano, G. G. (2004). A proportional but slower NMDA potentiation follows AMPA potentiation in LTP. Nature Neuroscience, 7, 518–524.PubMedCrossRef
Zurück zum Zitat Whitlock, J. R., Heynen, A. J., Shuler, M. G., & Bear, M. F. (2006). Learning induces long-term potentiation in the hippocampus. Science, 313, 1093–1097.PubMedCrossRef Whitlock, J. R., Heynen, A. J., Shuler, M. G., & Bear, M. F. (2006). Learning induces long-term potentiation in the hippocampus. Science, 313, 1093–1097.PubMedCrossRef
Zurück zum Zitat Wittenberg, G. M., & Wang, S.-S. H. (2006). Malleability of spike-timing-dependent plasticity at the CA3-CA1 synapse. Journal of Neuroscience, 26, 6610–6617.PubMedCrossRef Wittenberg, G. M., & Wang, S.-S. H. (2006). Malleability of spike-timing-dependent plasticity at the CA3-CA1 synapse. Journal of Neuroscience, 26, 6610–6617.PubMedCrossRef
Zurück zum Zitat Yang, S. N., Tang, Y. G., & Zucker, R. (1999). Selective induction of LTP and LTD by post-synaptic [Ca2+]i elevation. Journal of Neurophysiology, 81, 781–787.PubMed Yang, S. N., Tang, Y. G., & Zucker, R. (1999). Selective induction of LTP and LTD by post-synaptic [Ca2+]i elevation. Journal of Neurophysiology, 81, 781–787.PubMed
Zurück zum Zitat Zhabotinsky, A. M. (2000). Bistability in the Ca2+ / calmodulin-dependent protein kinase-phosphatase system. Biophysical Journal, 79, 2211–2221.PubMedCrossRef Zhabotinsky, A. M. (2000). Bistability in the Ca2+ / calmodulin-dependent protein kinase-phosphatase system. Biophysical Journal, 79, 2211–2221.PubMedCrossRef
Metadaten
Titel
Calcium control of triphasic hippocampal STDP
verfasst von
Daniel Bush
Yaochu Jin
Publikationsdatum
01.12.2012
Verlag
Springer US
Erschienen in
Journal of Computational Neuroscience / Ausgabe 3/2012
Print ISSN: 0929-5313
Elektronische ISSN: 1573-6873
DOI
https://doi.org/10.1007/s10827-012-0397-5

Weitere Artikel der Ausgabe 3/2012

Journal of Computational Neuroscience 3/2012 Zur Ausgabe

Premium Partner