Skip to main content
Erschienen in: Polymer Bulletin 3/2021

10.03.2020 | Original Paper

Quantitative probing of static and dynamic mechanical properties of different bio-filler-reinforced epoxy composite under assorted constraints

verfasst von: Rahul Kumar, Sumit Bhowmik

Erschienen in: Polymer Bulletin | Ausgabe 3/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The present research work is focussed on the development of agro-waste-based bio-filler-reinforced polymer composites with reinforcement derived from three different plants sources and investigating its static and dynamic mechanical properties with strain rate and temperature variation. The chosen plant sources are wood, bamboo and coconut, derived from the stem and fruit part of the plant. The reinforcing fillers are subjected to alkali treatment to make its surface rougher and suppress moisture absorption. A specific grade epoxy composite is prepared using five different weight fractions of all three micro size treated particle fillers. The composite specimens are tested in uniaxial tension loading with varying crosshead speeds to evaluate its effect on strength and stiffness of bio-composite samples. Moreover, the linear elastic fracture mechanics is applied to reveal the fracture toughness value and mechanism of fracture initiation and propagation. The glass transition temperature and damping factor of the produced reinforced plastic material are evaluated with dynamic mechanical analysis over a spectrum of temperature from RT to 150 °C. It is observed from the result that Young’s modulus value increased by approximately 16% as filler type is changed from bamboo to wood. For the best static mechanical properties, coir and wood filler are found to be the most suitable amongst all three filler materials. Moreover, the glass transition temperature was observed to be increased as filler type changes from stem kind to fruit kind for most of the filler loading.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Song J, Chen C, Zhu S, Zhu M, Dai J, Ray U, Li Y, Kuang Y, Li Y, Quispe N, Yao Y (2018) Processing bulk natural wood into a high-performance structural material. Nature 554:224–228CrossRef Song J, Chen C, Zhu S, Zhu M, Dai J, Ray U, Li Y, Kuang Y, Li Y, Quispe N, Yao Y (2018) Processing bulk natural wood into a high-performance structural material. Nature 554:224–228CrossRef
2.
Zurück zum Zitat Picard MC, Rodriguez-Uribe A, Thimmanagari M, Misra M, Mohanty AK (2019) Sustainable biocomposites from poly (butylene succinate) and apple pomace: a study on compatibilization performance. Waste Biomass Valoriz 10:1–13CrossRef Picard MC, Rodriguez-Uribe A, Thimmanagari M, Misra M, Mohanty AK (2019) Sustainable biocomposites from poly (butylene succinate) and apple pomace: a study on compatibilization performance. Waste Biomass Valoriz 10:1–13CrossRef
3.
Zurück zum Zitat Shi S, Yang C, Nie M (2017) Enhanced interfacial strength of natural fiber/polypropylene composite with mechanical-interlocking interface. ACS Sustain Chem Eng 5:10413–10420CrossRef Shi S, Yang C, Nie M (2017) Enhanced interfacial strength of natural fiber/polypropylene composite with mechanical-interlocking interface. ACS Sustain Chem Eng 5:10413–10420CrossRef
4.
Zurück zum Zitat Efendy MA, Pickering KL (2016) Fibre orientation of novel dynamically sheet formed discontinuous natural fibre PLA composites. Compos Part A Appl Sci Manuf 90:82–89CrossRef Efendy MA, Pickering KL (2016) Fibre orientation of novel dynamically sheet formed discontinuous natural fibre PLA composites. Compos Part A Appl Sci Manuf 90:82–89CrossRef
5.
Zurück zum Zitat Li Y, Jiang L, Xiong C, Peng W (2015) Effect of different surface treatment for bamboo fiber on the crystallization behavior and mechanical property of bamboo fiber/nanohydroxyapatite/poly (lactic-co-glycolic) composite. Ind Eng Chem Res 54:12017–12024CrossRef Li Y, Jiang L, Xiong C, Peng W (2015) Effect of different surface treatment for bamboo fiber on the crystallization behavior and mechanical property of bamboo fiber/nanohydroxyapatite/poly (lactic-co-glycolic) composite. Ind Eng Chem Res 54:12017–12024CrossRef
6.
Zurück zum Zitat Kabir MM, Wang H, Lau KT, Cardona F (2012) Chemical treatments on plant-based natural fibre reinforced polymer composites: an overview. Compos B 43:2883–2892CrossRef Kabir MM, Wang H, Lau KT, Cardona F (2012) Chemical treatments on plant-based natural fibre reinforced polymer composites: an overview. Compos B 43:2883–2892CrossRef
7.
Zurück zum Zitat Kumar R, Bhowmik S, Kumar K (2017) Establishment and effect of constraint on different mechanical properties of bamboo filler reinforced epoxy composite. Int Polym Process 32:308–315CrossRef Kumar R, Bhowmik S, Kumar K (2017) Establishment and effect of constraint on different mechanical properties of bamboo filler reinforced epoxy composite. Int Polym Process 32:308–315CrossRef
8.
Zurück zum Zitat Nagarajan V, Mohanty AK, Misra M (2016) Biocomposites with size-fractionated biocarbon: influence of the microstructure on macroscopic properties. ACS Omega 1:636–647CrossRef Nagarajan V, Mohanty AK, Misra M (2016) Biocomposites with size-fractionated biocarbon: influence of the microstructure on macroscopic properties. ACS Omega 1:636–647CrossRef
9.
Zurück zum Zitat Pérez E, Famá L, Pardo SG, Abad MJ, Bernal C (2012) Tensile and fracture behaviour of PP/wood flour composites. Compos B Eng 43:2795–2800CrossRef Pérez E, Famá L, Pardo SG, Abad MJ, Bernal C (2012) Tensile and fracture behaviour of PP/wood flour composites. Compos B Eng 43:2795–2800CrossRef
10.
Zurück zum Zitat Sarki J, Hassan SB, Aigbodion VS, Oghenevweta JE (2011) Potential of using coconut shell particle fillers in eco-composite materials. J Alloys Compd 509:2381–2385CrossRef Sarki J, Hassan SB, Aigbodion VS, Oghenevweta JE (2011) Potential of using coconut shell particle fillers in eco-composite materials. J Alloys Compd 509:2381–2385CrossRef
11.
Zurück zum Zitat Goyat MS, Suresh S, Bahl S, Halder S, Ghosh PK (2015) Thermomechanical response and toughening mechanisms of a carbon nano bead reinforced epoxy composite. Mater Chem Phys 166:144–152CrossRef Goyat MS, Suresh S, Bahl S, Halder S, Ghosh PK (2015) Thermomechanical response and toughening mechanisms of a carbon nano bead reinforced epoxy composite. Mater Chem Phys 166:144–152CrossRef
12.
Zurück zum Zitat Khalil AHPS, Bhat IUH, Jawaid M, Zaidon A, Hermawan D, Hadi YS (2012) Bamboo fibre reinforced biocomposites: a review. Mater Des 42:353–368CrossRef Khalil AHPS, Bhat IUH, Jawaid M, Zaidon A, Hermawan D, Hadi YS (2012) Bamboo fibre reinforced biocomposites: a review. Mater Des 42:353–368CrossRef
13.
Zurück zum Zitat Anand P, Rajesh D, Kumar MS, Raj IS (2018) Investigations on the performances of treated jute/Kenaf hybrid natural fiber reinforced epoxy composite. J Polym Res 25:94–102CrossRef Anand P, Rajesh D, Kumar MS, Raj IS (2018) Investigations on the performances of treated jute/Kenaf hybrid natural fiber reinforced epoxy composite. J Polym Res 25:94–102CrossRef
14.
Zurück zum Zitat Gope PC, Rao DK (2016) Fracture behaviour of epoxy biocomposite reinforced with short coconut fibres (Cocos nucifera) and walnut particles (Juglansregia L.). J Thermoplast Compos Mater 29:1098–1117CrossRef Gope PC, Rao DK (2016) Fracture behaviour of epoxy biocomposite reinforced with short coconut fibres (Cocos nucifera) and walnut particles (Juglansregia L.). J Thermoplast Compos Mater 29:1098–1117CrossRef
15.
Zurück zum Zitat Li Y, Li Q, Ma H (2015) The voids formation mechanisms and their effects on the mechanical properties of flax fiber reinforced epoxy composites. Compos Part A Appl Sci Manuf 72:40–48CrossRef Li Y, Li Q, Ma H (2015) The voids formation mechanisms and their effects on the mechanical properties of flax fiber reinforced epoxy composites. Compos Part A Appl Sci Manuf 72:40–48CrossRef
16.
Zurück zum Zitat Gurunathan T, Mohanty S, Nayak SK (2015) A review of the recent developments in biocomposites based on natural fibres and their application perspectives. Compos Part A Appl Sci Manuf 77:1–25CrossRef Gurunathan T, Mohanty S, Nayak SK (2015) A review of the recent developments in biocomposites based on natural fibres and their application perspectives. Compos Part A Appl Sci Manuf 77:1–25CrossRef
18.
Zurück zum Zitat Rahman MM, Netravali AN, Tiimob BJ, Rangari VK (2014) Bioderived “green” composite from soy protein and eggshell Nanopowder. ACS Sustain Chem Eng 2:2329–2337CrossRef Rahman MM, Netravali AN, Tiimob BJ, Rangari VK (2014) Bioderived “green” composite from soy protein and eggshell Nanopowder. ACS Sustain Chem Eng 2:2329–2337CrossRef
19.
Zurück zum Zitat Kumar R, Kumar K, Bhowmik S (2018) Assessment and response of treated Cocos nucifera reinforced toughened epoxy composite towards fracture and viscoelastic properties. J Polym Environ 26:2522–2535CrossRef Kumar R, Kumar K, Bhowmik S (2018) Assessment and response of treated Cocos nucifera reinforced toughened epoxy composite towards fracture and viscoelastic properties. J Polym Environ 26:2522–2535CrossRef
20.
Zurück zum Zitat Kumar R, Kumar K, Bhowmik S (2018) Mechanical characterization and quantification of tensile, fracture and viscoelastic characteristics of wood filler reinforced epoxy composite. Wood Sci Technol 52:677–699CrossRef Kumar R, Kumar K, Bhowmik S (2018) Mechanical characterization and quantification of tensile, fracture and viscoelastic characteristics of wood filler reinforced epoxy composite. Wood Sci Technol 52:677–699CrossRef
21.
Zurück zum Zitat Kumar R, Kumar K, Bhowmik S, Sarkhel G (2019) Tailoring the performance of bamboo filler reinforced epoxy composite: insights into fracture properties and fracture mechanism. J Polym Res 26:54–68CrossRef Kumar R, Kumar K, Bhowmik S, Sarkhel G (2019) Tailoring the performance of bamboo filler reinforced epoxy composite: insights into fracture properties and fracture mechanism. J Polym Res 26:54–68CrossRef
22.
Zurück zum Zitat Daniel IM, Hsiao HM, Cordes RD (1995) In high strain rate effects on polymer, metal and ceramic matrix composites and other advanced materials. ASME 48:167–177 Daniel IM, Hsiao HM, Cordes RD (1995) In high strain rate effects on polymer, metal and ceramic matrix composites and other advanced materials. ASME 48:167–177
23.
Zurück zum Zitat Aggarwal S, Hozalski RM (2012) Effect of strain rate on the mechanical properties of Staphylococcus epidermidis biofilms. Langmuir 28:2812–2816CrossRef Aggarwal S, Hozalski RM (2012) Effect of strain rate on the mechanical properties of Staphylococcus epidermidis biofilms. Langmuir 28:2812–2816CrossRef
24.
Zurück zum Zitat Hudspeth M, Nie X, Chen W, Lewis R (2012) Effect of loading rate on mechanical properties and fracture morphology of spider silk. Biomacromol 13:2240–2246CrossRef Hudspeth M, Nie X, Chen W, Lewis R (2012) Effect of loading rate on mechanical properties and fracture morphology of spider silk. Biomacromol 13:2240–2246CrossRef
25.
Zurück zum Zitat Ndiaye D, Gueye M, Diop B (2013) Characterization, physical and mechanical properties of polypropylene/wood-flour composites. Arab J Sci Eng 38:59–68CrossRef Ndiaye D, Gueye M, Diop B (2013) Characterization, physical and mechanical properties of polypropylene/wood-flour composites. Arab J Sci Eng 38:59–68CrossRef
26.
Zurück zum Zitat Karmarkar A, Chauhan SS, Modak JM, Chanda M (2007) Mechanical properties of wood–fiber reinforced polypropylene composites: effect of a novel compatibilizer with isocyanate functional group. Compos Part A Appl Sci Manuf 38:227–233CrossRef Karmarkar A, Chauhan SS, Modak JM, Chanda M (2007) Mechanical properties of wood–fiber reinforced polypropylene composites: effect of a novel compatibilizer with isocyanate functional group. Compos Part A Appl Sci Manuf 38:227–233CrossRef
27.
Zurück zum Zitat Jordi G, Loan V, Stéphanie A, Maryse BH, Patrick N (2016) Miscanthus stem fragment—reinforced polypropylene composites: development of an optimized preparation procedure at small scale and its validation for differentiating genotypes. Polym Test 55:166–172CrossRef Jordi G, Loan V, Stéphanie A, Maryse BH, Patrick N (2016) Miscanthus stem fragment—reinforced polypropylene composites: development of an optimized preparation procedure at small scale and its validation for differentiating genotypes. Polym Test 55:166–172CrossRef
28.
Zurück zum Zitat Hassan A, Salema AA, Ani FN, Bakar AA (2010) A review on oil palm empty fruit bunch fiber-reinforced polymer composite materials. Polym Compos 31:2079–2101CrossRef Hassan A, Salema AA, Ani FN, Bakar AA (2010) A review on oil palm empty fruit bunch fiber-reinforced polymer composite materials. Polym Compos 31:2079–2101CrossRef
29.
Zurück zum Zitat Kumar R, Bhowmik S (2019) Elucidating the coir particle filler interaction in epoxy polymer composites at low strain rate. Fiber Polym 20:428–439CrossRef Kumar R, Bhowmik S (2019) Elucidating the coir particle filler interaction in epoxy polymer composites at low strain rate. Fiber Polym 20:428–439CrossRef
30.
Zurück zum Zitat Summerscales J, Dissanayake N, Virk A, Hall W (2010) A review of bast fibres and their composites. Part 2—composites. Compos Part A Appl Sci Manuf 41:1336–1344CrossRef Summerscales J, Dissanayake N, Virk A, Hall W (2010) A review of bast fibres and their composites. Part 2—composites. Compos Part A Appl Sci Manuf 41:1336–1344CrossRef
31.
Zurück zum Zitat Charlet K, Baley C, Morvan C, Jernot JP, Gomina M, Breard J (2007) Characteristics of Hermes flax fibres as a function of their location in the stem and properties of the derived unidirectional composites. Compos Part A Appl Sci Manuf 38:1912–1921CrossRef Charlet K, Baley C, Morvan C, Jernot JP, Gomina M, Breard J (2007) Characteristics of Hermes flax fibres as a function of their location in the stem and properties of the derived unidirectional composites. Compos Part A Appl Sci Manuf 38:1912–1921CrossRef
32.
Zurück zum Zitat Devi LU, Bhagawan SS, Thomas S (2011) Dynamic mechanical properties of pineapple leaf fiber polyester composites. Polym Compos 32:1741–1750CrossRef Devi LU, Bhagawan SS, Thomas S (2011) Dynamic mechanical properties of pineapple leaf fiber polyester composites. Polym Compos 32:1741–1750CrossRef
33.
Zurück zum Zitat Fiore V, Scalici T, Vitale G, Valenza A (2014) Static and dynamic mechanical properties of Arundo Donax fillers-epoxy composites. Mater Des 57:456–464CrossRef Fiore V, Scalici T, Vitale G, Valenza A (2014) Static and dynamic mechanical properties of Arundo Donax fillers-epoxy composites. Mater Des 57:456–464CrossRef
34.
Zurück zum Zitat Sun W, Tajvidi M, Hunt CG, McIntyre G, Gardner DJ (2019) fully bio-based hybrid composites made of wood, fungal mycelium and cellulose nanofibrils. Sci Rep 9:3766–3778CrossRef Sun W, Tajvidi M, Hunt CG, McIntyre G, Gardner DJ (2019) fully bio-based hybrid composites made of wood, fungal mycelium and cellulose nanofibrils. Sci Rep 9:3766–3778CrossRef
35.
Zurück zum Zitat Liu H, Wu Q, Han G, Yao F, Kojima Y, Suzuki S (2008) Compatibilizing and toughening bamboo flour-filled HDPE composites: mechanical properties and morphologies. Compos Part A Appl Sci Manuf 39:1891–1900CrossRef Liu H, Wu Q, Han G, Yao F, Kojima Y, Suzuki S (2008) Compatibilizing and toughening bamboo flour-filled HDPE composites: mechanical properties and morphologies. Compos Part A Appl Sci Manuf 39:1891–1900CrossRef
36.
Zurück zum Zitat Threepopnatkul P, Kaerkitcha N, Athipongarporn N (2009) Effect of surface treatment on performance of pineapple leaf fiber–polycarbonate composites. Compos Part B Eng 40:628–632CrossRef Threepopnatkul P, Kaerkitcha N, Athipongarporn N (2009) Effect of surface treatment on performance of pineapple leaf fiber–polycarbonate composites. Compos Part B Eng 40:628–632CrossRef
37.
Zurück zum Zitat Codou A, Misra M, Mohanty AK (2018) Sustainable biocarbon reinforced nylon 6/polypropylene compatibilized blends: effect of particle size and morphology on performance of the biocomposites. Compos Part A Appl Sci Manuf 112:1–10CrossRef Codou A, Misra M, Mohanty AK (2018) Sustainable biocarbon reinforced nylon 6/polypropylene compatibilized blends: effect of particle size and morphology on performance of the biocomposites. Compos Part A Appl Sci Manuf 112:1–10CrossRef
Metadaten
Titel
Quantitative probing of static and dynamic mechanical properties of different bio-filler-reinforced epoxy composite under assorted constraints
verfasst von
Rahul Kumar
Sumit Bhowmik
Publikationsdatum
10.03.2020
Verlag
Springer Berlin Heidelberg
Erschienen in
Polymer Bulletin / Ausgabe 3/2021
Print ISSN: 0170-0839
Elektronische ISSN: 1436-2449
DOI
https://doi.org/10.1007/s00289-020-03156-w

Weitere Artikel der Ausgabe 3/2021

Polymer Bulletin 3/2021 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.