Skip to main content
Erschienen in: Quantum Information Processing 1/2021

01.01.2021

Quantum network probing with indefinite routing

verfasst von: Michael Frey

Erschienen in: Quantum Information Processing | Ausgabe 1/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Quantum network probing is experimental estimation of network parameters by passing probes through the network. In probing with indefinite routing (IR), the probe traces a quantum mechanical superposition of different paths through the network. We consider a quantum network modeled by three identical qudit depolarizing channels, each channel with state preservation probability \(\theta \) and dimension d. Using quantum Fisher (QF) information as our measure of merit, we comprehensively assess the advantage associated with maximal IR for estimating the network depolarization rate \(1-\theta \). A three-channel network admits three distinctive types of IR, cyclical, directional, and full. Definite routing is the case where the probe is confined to a single path through the network. We find that compared to this baseline case all three IR types yield a gain in QF information, the gain being greatest with full IR. Comparing the information gains with cyclical and directional IR shows that, for \(\theta \) above a dimensional threshold, directional IR offers greater advantage, while below this threshold cyclical IR is more advantageous. Our results show further that the joint effect of cyclical IR and directional IR can be synergistic or antagonistic, depending on \(\theta \) and d. With our analytical approach, the network output states are quasi-classical, greatly simplifying the derivation of the QF information involved. This approach can be extended to larger networks with different IR schemes.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Fußnoten
1
The term quasi-classical is used here in the specific sense stated; it does not refer to physical modeling in the Planck limit \(h\rightarrow 0\) as, for example, in the WKB approximation [22].
 
2
The size \(\xi = \mu \lambda \) of an eigenspace is the product of its eigenvalue \(\lambda \) and its dimension \(\mu \).
 
3
The dihedral group is the abstract group of symmetries of a regular polygon, including reflections and cyclic shifts. In particular, the dihedral group \(D_3\) is the symmetry group of an equilateral triangle.
 
Literatur
1.
3.
Zurück zum Zitat Cirac, J.I., Zoller, P., Kimble, H.J., Mabuchi, H.: Quantum state transfer and entanglement distribution among distant nodes in a quantum network. Phys. Rev. Lett. 78(16), 3221–3224 (1997)ADSCrossRef Cirac, J.I., Zoller, P., Kimble, H.J., Mabuchi, H.: Quantum state transfer and entanglement distribution among distant nodes in a quantum network. Phys. Rev. Lett. 78(16), 3221–3224 (1997)ADSCrossRef
4.
Zurück zum Zitat Proctor, T.J., Knott, P.A., Dunningham, J.A.: Multiparameter estimation in networked quantum sensors. Phys. Rev. Lett. 120(8), 080501 (2018)ADSCrossRef Proctor, T.J., Knott, P.A., Dunningham, J.A.: Multiparameter estimation in networked quantum sensors. Phys. Rev. Lett. 120(8), 080501 (2018)ADSCrossRef
5.
Zurück zum Zitat Khabiboulline, E.T., Borregaard, J., De Greve, K., Lukin, M.D.: Optical interferometry with quantum networks. Phys. Rev. Lett. 123(7), 070504 (2019)ADSCrossRef Khabiboulline, E.T., Borregaard, J., De Greve, K., Lukin, M.D.: Optical interferometry with quantum networks. Phys. Rev. Lett. 123(7), 070504 (2019)ADSCrossRef
6.
Zurück zum Zitat Cleve, R., Gottesman, D., Lo, H.K.: How to share a quantum secret. Phys. Rev. Lett. 83(3), 648 (1999)ADSCrossRef Cleve, R., Gottesman, D., Lo, H.K.: How to share a quantum secret. Phys. Rev. Lett. 83(3), 648 (1999)ADSCrossRef
7.
Zurück zum Zitat Aaronson, S., Farhi, E., Gosset, D., Hassidim, A., Kelner, J., Lutomirski, A.: Quantum money. Commun. ACM 55(8), 84–92 (2012)CrossRef Aaronson, S., Farhi, E., Gosset, D., Hassidim, A., Kelner, J., Lutomirski, A.: Quantum money. Commun. ACM 55(8), 84–92 (2012)CrossRef
8.
Zurück zum Zitat Cacciapuoti, A.S., Caleffi, M., Tafuri, F., Cataliotti, F.S., Gherardini, S., Bianchi, G.: Quantum internet: networking challenges in distributed quantum computing. IEEE Netw. 34(1), 137–143 (2019)CrossRef Cacciapuoti, A.S., Caleffi, M., Tafuri, F., Cataliotti, F.S., Gherardini, S., Bianchi, G.: Quantum internet: networking challenges in distributed quantum computing. IEEE Netw. 34(1), 137–143 (2019)CrossRef
9.
Zurück zum Zitat Fitzsimons, J.F.: Private quantum computation: an introduction to blind quantum computing and related protocols. Quantum Inf. 3(1), 23 (2017)CrossRef Fitzsimons, J.F.: Private quantum computation: an introduction to blind quantum computing and related protocols. Quantum Inf. 3(1), 23 (2017)CrossRef
10.
Zurück zum Zitat Ben-Av, R., Exman, I.: Optimized multiparty quantum clock synchronization. Phys. Rev. A 84(1), 014301 (2011)ADSCrossRef Ben-Av, R., Exman, I.: Optimized multiparty quantum clock synchronization. Phys. Rev. A 84(1), 014301 (2011)ADSCrossRef
11.
Zurück zum Zitat Komar, P., Kessler, E.M., Bishof, M., Jiang, L., Sørensen, A.S., Ye, J., Lukin, M.D.: A quantum network of clocks. Nat. Phys. 10(8), 582 (2014)CrossRef Komar, P., Kessler, E.M., Bishof, M., Jiang, L., Sørensen, A.S., Ye, J., Lukin, M.D.: A quantum network of clocks. Nat. Phys. 10(8), 582 (2014)CrossRef
12.
Zurück zum Zitat Frey, M.: Indefinite causal order aids quantum depolarizing channel identification. Quantum Inf. Process. 18(4), 96 (2019)ADSCrossRef Frey, M.: Indefinite causal order aids quantum depolarizing channel identification. Quantum Inf. Process. 18(4), 96 (2019)ADSCrossRef
13.
Zurück zum Zitat Frey, M.: Probing the quantum depolarizing channel with mixed indefinite causal order. In: Quantum Information Science, Sensing, and Computation XI, vol. 10984, p. 109840D. International Society for Optics and Photonics (2019) Frey, M.: Probing the quantum depolarizing channel with mixed indefinite causal order. In: Quantum Information Science, Sensing, and Computation XI, vol. 10984, p. 109840D. International Society for Optics and Photonics (2019)
14.
Zurück zum Zitat Ebler, D., Salek, S., Chiribella, G.: Enhanced communication with the assistance of indefinite causal order. Phys. Rev. Lett. 120(12), 120502 (2018)ADSCrossRef Ebler, D., Salek, S., Chiribella, G.: Enhanced communication with the assistance of indefinite causal order. Phys. Rev. Lett. 120(12), 120502 (2018)ADSCrossRef
15.
Zurück zum Zitat Procopio, L.M., Delgado, F., Enríquez, M., Belabas, N., Levenson, J.A.: Communication enhancement through quantum coherent control of \(N\) channels in an indefinite causal-order scenario. Entropy 21(10), 1012 (2019)ADSMathSciNetCrossRef Procopio, L.M., Delgado, F., Enríquez, M., Belabas, N., Levenson, J.A.: Communication enhancement through quantum coherent control of \(N\) channels in an indefinite causal-order scenario. Entropy 21(10), 1012 (2019)ADSMathSciNetCrossRef
16.
Zurück zum Zitat Helstrom, C.W.: Minimum mean-squared error of estimates in quantum statistics. Phys. Lett. A 25(2), 101–102 (1967)ADSCrossRef Helstrom, C.W.: Minimum mean-squared error of estimates in quantum statistics. Phys. Lett. A 25(2), 101–102 (1967)ADSCrossRef
17.
Zurück zum Zitat Tóth, G., Apellaniz, I.: Quantum metrology from a quantum information science perspective. J. Phys. A Math. Theor. 47(42), 424006 (2014)ADSMathSciNetCrossRef Tóth, G., Apellaniz, I.: Quantum metrology from a quantum information science perspective. J. Phys. A Math. Theor. 47(42), 424006 (2014)ADSMathSciNetCrossRef
18.
Zurück zum Zitat Frey, M.R., Miller, A.L., Mentch, L.K., Graham, J.: Score operators of a qubit with applications. Quantum Inf. Process. 9(5), 629–641 (2010)MathSciNetCrossRef Frey, M.R., Miller, A.L., Mentch, L.K., Graham, J.: Score operators of a qubit with applications. Quantum Inf. Process. 9(5), 629–641 (2010)MathSciNetCrossRef
19.
Zurück zum Zitat Paris, M.G.: Quantum estimation for quantum technology. Int. J. Quantum Inf. 7(supp01), 125–137 (2009)CrossRef Paris, M.G.: Quantum estimation for quantum technology. Int. J. Quantum Inf. 7(supp01), 125–137 (2009)CrossRef
20.
Zurück zum Zitat Zhang, Y.M., Li, X.W., Yang, W., Jin, G.R.: Quantum Fisher information of entangled coherent states in the presence of photon loss. Phys. Rev. A 88(4), 043832 (2013)ADSCrossRef Zhang, Y.M., Li, X.W., Yang, W., Jin, G.R.: Quantum Fisher information of entangled coherent states in the presence of photon loss. Phys. Rev. A 88(4), 043832 (2013)ADSCrossRef
21.
Zurück zum Zitat Safránek, D.: Simple expression for the quantum Fisher information matrix. Phys. Rev. A 97(4), 042322 (2018)ADSCrossRef Safránek, D.: Simple expression for the quantum Fisher information matrix. Phys. Rev. A 97(4), 042322 (2018)ADSCrossRef
22.
Zurück zum Zitat Griffiths, D.J., Schroeter, D.F.: Introduction to Quantum Mechanics. Cambridge University Press, Cambridge (2018)CrossRef Griffiths, D.J., Schroeter, D.F.: Introduction to Quantum Mechanics. Cambridge University Press, Cambridge (2018)CrossRef
23.
Zurück zum Zitat Frey, M., Collins, D., Gerlach, K.: Probing the qudit depolarizing channel. J. Phys. A Math. Theor. 44(20), 205306 (2011)ADSMathSciNetCrossRef Frey, M., Collins, D., Gerlach, K.: Probing the qudit depolarizing channel. J. Phys. A Math. Theor. 44(20), 205306 (2011)ADSMathSciNetCrossRef
24.
Zurück zum Zitat Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2010)CrossRef Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2010)CrossRef
25.
26.
Zurück zum Zitat Dragan, A., Wódkiewicz, K.: Depolarization channels with zero-bandwidth noises. Phys. Rev. A 71(1), 012322 (2005)ADSCrossRef Dragan, A., Wódkiewicz, K.: Depolarization channels with zero-bandwidth noises. Phys. Rev. A 71(1), 012322 (2005)ADSCrossRef
27.
Zurück zum Zitat Slimen, I.B., Trabelsi, O., Rezig, H., Bouallègue, R., Bouallègue, A.: Stop conditions of BB84 protocol via a depolarizing channel (quantum cryptography). J. Comput. Sci. 3(6), 424–429 (2007)CrossRef Slimen, I.B., Trabelsi, O., Rezig, H., Bouallègue, R., Bouallègue, A.: Stop conditions of BB84 protocol via a depolarizing channel (quantum cryptography). J. Comput. Sci. 3(6), 424–429 (2007)CrossRef
28.
Zurück zum Zitat Boixo, S., Monras, A.: Operational interpretation for global multipartite entanglement. Phys. Rev. Lett. 100(10), 100503 (2008)ADSCrossRef Boixo, S., Monras, A.: Operational interpretation for global multipartite entanglement. Phys. Rev. Lett. 100(10), 100503 (2008)ADSCrossRef
29.
Zurück zum Zitat Fujiwara, A.: Quantum channel identification problem. Phys. Rev. A 63(4), 042304 (2001)ADSCrossRef Fujiwara, A.: Quantum channel identification problem. Phys. Rev. A 63(4), 042304 (2001)ADSCrossRef
30.
Zurück zum Zitat Chiribella, G.: Perfect discrimination of no-signalling channels via quantum superposition of causal structures. Phys. Rev. A 86(4), 040301 (2012)ADSMathSciNetCrossRef Chiribella, G.: Perfect discrimination of no-signalling channels via quantum superposition of causal structures. Phys. Rev. A 86(4), 040301 (2012)ADSMathSciNetCrossRef
31.
Zurück zum Zitat Chiribella, G., D’Ariano, G.M., Perinotti, P., Valiron, B.: Quantum computations without definite causal structure. Phys. Rev. A 88(2), 022318 (2013)ADSCrossRef Chiribella, G., D’Ariano, G.M., Perinotti, P., Valiron, B.: Quantum computations without definite causal structure. Phys. Rev. A 88(2), 022318 (2013)ADSCrossRef
Metadaten
Titel
Quantum network probing with indefinite routing
verfasst von
Michael Frey
Publikationsdatum
01.01.2021
Verlag
Springer US
Erschienen in
Quantum Information Processing / Ausgabe 1/2021
Print ISSN: 1570-0755
Elektronische ISSN: 1573-1332
DOI
https://doi.org/10.1007/s11128-020-02946-5

Weitere Artikel der Ausgabe 1/2021

Quantum Information Processing 1/2021 Zur Ausgabe

Neuer Inhalt