Skip to main content
Erschienen in: Journal of Intelligent Manufacturing 3/2023

09.11.2021

Recognizing defects in stainless steel welds based on multi-domain feature expression and self-optimization

verfasst von: Rui Zhang, Na Zhao, Liuhu Fu, Xiaolu Bai, Jianghui Cai

Erschienen in: Journal of Intelligent Manufacturing | Ausgabe 3/2023

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The recognition of different welding defects is important for the assessment of the safety of welded structures. This study proposes a method to recognize defects in stainless steel welds based on multi-domain feature expression and self-optimization. This is because of the poor detection of feature-related information from signals, inadequate feature extraction by the convolutional network, the limited capability of intelligent techniques, network redundancy, and a lack of self-adaptive capability in prevalent methods, A 1D ultrasonic detection dataset of austenitic stainless steel welds in the time domain (TD) is first constructed and the 1D TD signals are rendered in the time–frequency domain, Gramain angular field, and the Markov transition field. The aim is to enrich the feature expression of 1D ultrasonic echo data of the weld defects. A comparison among a variety of lightweight convolutional neural networks on multi-spatial domain datasets is used to identify a combination of network and spatial domain datasets that are suitable for recognizing welding defects. Finally, a multi-scale depthwise separable convolution is designed, and is subjected to adaptive compression and parameter-adaptive optimization based on the sparrow search algorithm to construct the self-optimizing lightweight multi-scale MobileNetV3 (SLM-MobileNetV3) model. The results of experiments showed that the SLM-MobileNetV3 model has an accuracy of 97.26% for the recognition of five types of defects: inclusion, crack, porosity, incomplete penetration, and a lack of fusion. The time required for testing a single image was 2 ms. Experimental analysis showed that the proposed method can improve the accuracy of defect recognition while using few parameters and computational cost, and is generalizable.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Ajmi, C., Zapata, J., Martinez-Alvarez, J. J., Domenech, G., & Ruiz, R. (2020). Using deep learning for defect classification on a small weld X-ray image dataset. Journal of Nondestructive Evaluation, 39(3), 1–13.CrossRef Ajmi, C., Zapata, J., Martinez-Alvarez, J. J., Domenech, G., & Ruiz, R. (2020). Using deep learning for defect classification on a small weld X-ray image dataset. Journal of Nondestructive Evaluation, 39(3), 1–13.CrossRef
Zurück zum Zitat Barcelo, F., Hierro, P., Llario, F., & Herraiz, J. (2018). Development of an ultrasonic weld inspection system based on image processing and neural networks. Nondestructive Testing and Evaluation, 33(2), 229–236.CrossRef Barcelo, F., Hierro, P., Llario, F., & Herraiz, J. (2018). Development of an ultrasonic weld inspection system based on image processing and neural networks. Nondestructive Testing and Evaluation, 33(2), 229–236.CrossRef
Zurück zum Zitat Gao, H., Tian, Y., Xu, F., & Zhong, S. (2021). Survey of deep learning model compression and acceleration. Journal of Software, 32(01), 68–92. Gao, H., Tian, Y., Xu, F., & Zhong, S. (2021). Survey of deep learning model compression and acceleration. Journal of Software, 32(01), 68–92.
Zurück zum Zitat Heidari, A., Mirjalili, S., Faris, H., Aljarah, L., Mafarja, M., & Chen, H. (2019). Harris hawks optimization: Algorithm and applications. Future Generation Computer Systems, 97, 849–872.CrossRef Heidari, A., Mirjalili, S., Faris, H., Aljarah, L., Mafarja, M., & Chen, H. (2019). Harris hawks optimization: Algorithm and applications. Future Generation Computer Systems, 97, 849–872.CrossRef
Zurück zum Zitat Hinton, G., Vinyals, O., & Dean, J. (2015). Distilling the knowledge in a neural network. Computer Science, 14(7), 38–39. Hinton, G., Vinyals, O., & Dean, J. (2015). Distilling the knowledge in a neural network. Computer Science, 14(7), 38–39.
Zurück zum Zitat Howard, A., Zhu, M., Chen, B., Kalenichenko, D., Wang, W., Weyand, T., Andreetto, M., & Adam, H. (2017). MobileNets: Efficient convolutional neural networks for mobile vision applications. arXiv preprint http://arxiv.org/abs/1704.04861 Howard, A., Zhu, M., Chen, B., Kalenichenko, D., Wang, W., Weyand, T., Andreetto, M., & Adam, H. (2017). MobileNets: Efficient convolutional neural networks for mobile vision applications. arXiv preprint http://​arxiv.​org/​abs/​1704.​04861
Zurück zum Zitat Hu, H., Zhang, J., Peng, G., Yi, K., & Wang, L. (2019). Defect classification for ultrasonic inspection in weld seam based on LBP-KPCA feature extraction. Transactions of the China Welding Institution, 40(06), 34-39+162. Hu, H., Zhang, J., Peng, G., Yi, K., & Wang, L. (2019). Defect classification for ultrasonic inspection in weld seam based on LBP-KPCA feature extraction. Transactions of the China Welding Institution, 40(06), 34-39+162.
Zurück zum Zitat Hu, D., Gao, X., Zhang, N., Zhang, Y., You, D., Xiao, X., & Sun, Y. (2020). Review of status and prospect of weld defect detection. Journal of Mechanical & Electrical Engineering, 37(07), 736–742. Hu, D., Gao, X., Zhang, N., Zhang, Y., You, D., Xiao, X., & Sun, Y. (2020). Review of status and prospect of weld defect detection. Journal of Mechanical & Electrical Engineering, 37(07), 736–742.
Zurück zum Zitat Huang, H., Hu, L., Li, B., Shen, C., Wang, H., & Chen, Z. (2019). Recognition of defect in TOFD image based on faster region convolutional neural networks. Nondestructive Testing, 41(07), 12–18. Huang, H., Hu, L., Li, B., Shen, C., Wang, H., & Chen, Z. (2019). Recognition of defect in TOFD image based on faster region convolutional neural networks. Nondestructive Testing, 41(07), 12–18.
Zurück zum Zitat Li, S., Yang, J., Wang, Z., Zhu, D., & Yang, G. (2020). Review of development and application of defect detection technology. Acta Automatics Sinica, 46(11), 2319–2336. Li, S., Yang, J., Wang, Z., Zhu, D., & Yang, G. (2020). Review of development and application of defect detection technology. Acta Automatics Sinica, 46(11), 2319–2336.
Zurück zum Zitat Liu, Z., Li J., Shen, Z., Huang, G., Yan, S., & Zhang, C. (2017). Learning efficient convolutional networks through network slimming. In 2017 IEEE international conference on computer vision(ICCV). Liu, Z., Li J., Shen, Z., Huang, G., Yan, S., & Zhang, C. (2017). Learning efficient convolutional networks through network slimming. In 2017 IEEE international conference on computer vision(ICCV).
Zurück zum Zitat Miao, R., Jiang, Z., Zhou, Q., Wu, Y., Gao, Y., Zhang, J., & Jiang, Z. (2021). Online inspection of narrow overlap weld quality using two-stage convolution neural network image recognition. Machine Vision and Applications, 32(1), 1–14.CrossRef Miao, R., Jiang, Z., Zhou, Q., Wu, Y., Gao, Y., Zhang, J., & Jiang, Z. (2021). Online inspection of narrow overlap weld quality using two-stage convolution neural network image recognition. Machine Vision and Applications, 32(1), 1–14.CrossRef
Zurück zum Zitat Mirjalili, S., & Lewis, A. (2016). The whale optimization algorithm. Advances in Engineering Software, 95, 51–67.CrossRef Mirjalili, S., & Lewis, A. (2016). The whale optimization algorithm. Advances in Engineering Software, 95, 51–67.CrossRef
Zurück zum Zitat Mirjalili, S., Mirjalili, S., & Lewis, A. (2014). Grey wolf optimizer. Advances in Engineering, 69, 46–61. Mirjalili, S., Mirjalili, S., & Lewis, A. (2014). Grey wolf optimizer. Advances in Engineering, 69, 46–61.
Zurück zum Zitat Munir, N., Kim, H., Park, J., Song, S., & Kang, S. (2019). Convolutional neural network for ultrasonic weldment flaw classification in noisy conditions. Ultrasonics, 94, 74–81.CrossRef Munir, N., Kim, H., Park, J., Song, S., & Kang, S. (2019). Convolutional neural network for ultrasonic weldment flaw classification in noisy conditions. Ultrasonics, 94, 74–81.CrossRef
Zurück zum Zitat Murta, R., Vieira, F., Santos, V., & de Moura, E. (2018). Welding defect classification from simulated ultrasonic signals. Journal of Nondestructive Evaluation, 37(3), 1–10.CrossRef Murta, R., Vieira, F., Santos, V., & de Moura, E. (2018). Welding defect classification from simulated ultrasonic signals. Journal of Nondestructive Evaluation, 37(3), 1–10.CrossRef
Zurück zum Zitat Pan, H., Pang, Z., Wang, Y., Wang, Y., & Chen, L. (2020). A new image recognition and classification method combining transfer learning algorithm and MobileNet model for welding defects. IEEE Access, 8, 119951–119960.CrossRef Pan, H., Pang, Z., Wang, Y., Wang, Y., & Chen, L. (2020). A new image recognition and classification method combining transfer learning algorithm and MobileNet model for welding defects. IEEE Access, 8, 119951–119960.CrossRef
Zurück zum Zitat Pei, W., Xu, Y., Zhu, Y., Wang, P., Lu, M., & Li, F. (2019). The target detection method of aerial photography images with improved SSD. Journal of Software, 30(3), 738–758. Pei, W., Xu, Y., Zhu, Y., Wang, P., Lu, M., & Li, F. (2019). The target detection method of aerial photography images with improved SSD. Journal of Software, 30(3), 738–758.
Zurück zum Zitat Song, K., & Yan, Y. (2013). A noise robust method based on completed local binary patterns for hot-rolled steel strip surface defects. Applied Surface Science, 285, 858–864.CrossRef Song, K., & Yan, Y. (2013). A noise robust method based on completed local binary patterns for hot-rolled steel strip surface defects. Applied Surface Science, 285, 858–864.CrossRef
Zurück zum Zitat Sun, X., Zhang, Q., Wang, Q., Han, X., Li, Y., & David, S. (2020). Effect of adhesive sealant on resistance spot welding of 301L stainless steel. Journal of Manufacturing Processes, 51, 62–67.CrossRef Sun, X., Zhang, Q., Wang, Q., Han, X., Li, Y., & David, S. (2020). Effect of adhesive sealant on resistance spot welding of 301L stainless steel. Journal of Manufacturing Processes, 51, 62–67.CrossRef
Zurück zum Zitat Tao, X., He, B., Zhang, P., & Tian, D. (2021). Surface defect detection of aerospace sealing rings based on deep learning. Chinese Journal of Scientific Instrument, 42(01), 199–206. Tao, X., He, B., Zhang, P., & Tian, D. (2021). Surface defect detection of aerospace sealing rings based on deep learning. Chinese Journal of Scientific Instrument, 42(01), 199–206.
Zurück zum Zitat Villanueva, J., Bueno, M., Simon, J., Molinas, M., Flores, J., & Mendez, P. (2020). Application of Hilbert-Huang transform in the analysis of satellite-communication signals. Revista Iberoamericana De Automatica Informatica Industrial, 17(2), 181–189.CrossRef Villanueva, J., Bueno, M., Simon, J., Molinas, M., Flores, J., & Mendez, P. (2020). Application of Hilbert-Huang transform in the analysis of satellite-communication signals. Revista Iberoamericana De Automatica Informatica Industrial, 17(2), 181–189.CrossRef
Zurück zum Zitat Wang, Z., & Oates, T. (2015). Encoding time series as images for visual inspection and classification using tiled convolutional neural networks. In Workshops at the twenty-ninth AAAI conference on artificial intelligence Wang, Z., & Oates, T. (2015). Encoding time series as images for visual inspection and classification using tiled convolutional neural networks. In Workshops at the twenty-ninth AAAI conference on artificial intelligence
Zurück zum Zitat Wang, W., Hu, Y., Wu, T., Zhao, D., & Zhao, H. (2020). Effect of rotation speed on microstructure and mechanical properties of friction-stir-welded 2205 duplex stainless steel. Advances in Materials Science and Engineering. Wang, W., Hu, Y., Wu, T., Zhao, D., & Zhao, H. (2020). Effect of rotation speed on microstructure and mechanical properties of friction-stir-welded 2205 duplex stainless steel. Advances in Materials Science and Engineering.
Zurück zum Zitat Wang, X., Guan, S., Hua, L., Wang, B., & He, X. (2019). Classification of spot-welded joint strength using ultrasonic signal time-frequency features and PSO-SVM method. Ultrasonics, 91, 161–169.CrossRef Wang, X., Guan, S., Hua, L., Wang, B., & He, X. (2019). Classification of spot-welded joint strength using ultrasonic signal time-frequency features and PSO-SVM method. Ultrasonics, 91, 161–169.CrossRef
Zurück zum Zitat Wu, Y., Yang, F., Liu, Y., Zha, X., & Yuan, S. (2018). A comparison of 1-D and 2-D deep convolutional neural networks in ECG classification. In 2018 IEEE engineering in medicine and biology society conference(EMBC). IEEE. Wu, Y., Yang, F., Liu, Y., Zha, X., & Yuan, S. (2018). A comparison of 1-D and 2-D deep convolutional neural networks in ECG classification. In 2018 IEEE engineering in medicine and biology society conference(EMBC). IEEE.
Zurück zum Zitat Wu, B., Yang, J., Jiao, J., He, C., & Qi, G. (2020). Study on ultrasonic multi-mode composite total focusing imaging method for welds defect inspection in small-diameter tube of austenitic stainless steel. Journal of Mechanical Engineering, 56(14), 9–18.CrossRef Wu, B., Yang, J., Jiao, J., He, C., & Qi, G. (2020). Study on ultrasonic multi-mode composite total focusing imaging method for welds defect inspection in small-diameter tube of austenitic stainless steel. Journal of Mechanical Engineering, 56(14), 9–18.CrossRef
Zurück zum Zitat Xu, Q., Lu, S., Jia, W., & Jiang, C. (2020). Imbalanced fault diagnosis of rotating machinery via multi-domain feature extraction and cost-sensitive learning. Journal of Intelligent Manufacturing, 31(6), 1467–1841.CrossRef Xu, Q., Lu, S., Jia, W., & Jiang, C. (2020). Imbalanced fault diagnosis of rotating machinery via multi-domain feature extraction and cost-sensitive learning. Journal of Intelligent Manufacturing, 31(6), 1467–1841.CrossRef
Zurück zum Zitat Xue, J., & Shen, B. (2020). A novel swarm intelligence optimization approach: Sparrow search algorithm. Systems Science & Control Engineering, 8(1), 22–34.CrossRef Xue, J., & Shen, B. (2020). A novel swarm intelligence optimization approach: Sparrow search algorithm. Systems Science & Control Engineering, 8(1), 22–34.CrossRef
Zurück zum Zitat Yang, T., Liu, J., Zhuang, Y., Sun, K., & Chen, W. (2020). Studies on the formation mechanism of incomplete fusion defects in ultra-narrow gap laser wire filling welding. Optics and Laser Technology, 129, 106275.CrossRef Yang, T., Liu, J., Zhuang, Y., Sun, K., & Chen, W. (2020). Studies on the formation mechanism of incomplete fusion defects in ultra-narrow gap laser wire filling welding. Optics and Laser Technology, 129, 106275.CrossRef
Zurück zum Zitat Zhang, J., Wang, W., Lu, C., & Li, X. (2019). Traffic sign classification algorithm based on compressed convolutional neural network. Journal of Huazhong University of Science and Technology (natural Science Edition), 47(01), 103–108. Zhang, J., Wang, W., Lu, C., & Li, X. (2019). Traffic sign classification algorithm based on compressed convolutional neural network. Journal of Huazhong University of Science and Technology (natural Science Edition), 47(01), 103–108.
Zurück zum Zitat Zhao, L., Cheng, T., Mo, Y., Li, Q., & Liu, M. (2016). The decision tree data mining model for welding parameters selection based on C5.0 improved algorithm and its application. Chinese Journal of Management Science, 24(S1), 177–182. Zhao, L., Cheng, T., Mo, Y., Li, Q., & Liu, M. (2016). The decision tree data mining model for welding parameters selection based on C5.0 improved algorithm and its application. Chinese Journal of Management Science, 24(S1), 177–182.
Metadaten
Titel
Recognizing defects in stainless steel welds based on multi-domain feature expression and self-optimization
verfasst von
Rui Zhang
Na Zhao
Liuhu Fu
Xiaolu Bai
Jianghui Cai
Publikationsdatum
09.11.2021
Verlag
Springer US
Erschienen in
Journal of Intelligent Manufacturing / Ausgabe 3/2023
Print ISSN: 0956-5515
Elektronische ISSN: 1572-8145
DOI
https://doi.org/10.1007/s10845-021-01849-1

Weitere Artikel der Ausgabe 3/2023

Journal of Intelligent Manufacturing 3/2023 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.