Skip to main content
Erschienen in: Rare Metals 1/2019

20.11.2018

Recovery and regeneration of Al2O3 with a high specific surface area from spent hydrodesulfurization catalyst CoMo/Al2O3

verfasst von: Qi Liu, Wen-Qiang Wang, Yue Yang, Xue-Gang Liu, Sheng-Ming Xu

Erschienen in: Rare Metals | Ausgabe 1/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Aluminum recovery is a key issue for the overall recycling of valuable metals from spent catalysts. This paper focuses on the recovery and regeneration of alumina with high additional value from the spent hydrodesulfurization catalyst CoMo/Al2O3. The results indicate that 98.13% alumina is successfully leached from the treated spent catalysts by an alkaline leaching process under the conditions of 5 mol·L−1 sodium hydroxide, a liquid/solid ratio of 20 ml·g−1, a temperature of 160 °C and a reaction time of 4 h. In the leaching residue, no difficult leaching compound is found and cobalt and nickel are enriched, both of which are conducive to the subsequent metal recovery step. The reaction order of aluminum leaching is 0.99. This reaction fits well with the interfacial chemical reaction model, and its apparent activation energy is calculated as 45.50 kJ·mol−1. Subsequently, γ-Al2O3 with a high specific surface area of 278.3 m2·g−1, a mean size of 2.2 μm and an average pore size of 3.10 nm is then regenerated from the lixivium, indicating its suitability for use as a catalyst carrier. The recovery and regeneration of alumina from spent catalysts can not only significantly contribute to the total recycling of such hazardous spent catalysts but also provide a new approach for the preparation of γ-Al2O3 with a high specific surface area using spent catalysts as the aluminum sources.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
[1]
Zurück zum Zitat Ramírez S, Schacht P, Quintana-Solórzano R, Aguilar J. Leaching of heavy metals under ambient resembling conditions from hydrotreating spent catalysts. Fuel. 2013;110(10):286.CrossRef Ramírez S, Schacht P, Quintana-Solórzano R, Aguilar J. Leaching of heavy metals under ambient resembling conditions from hydrotreating spent catalysts. Fuel. 2013;110(10):286.CrossRef
[2]
Zurück zum Zitat Song CS. An overview of new approaches to deep desulfurization for ultra-clean gasoline, diesel fuel and jet fuel. Catal Today. 2003;86(1–4):211.CrossRef Song CS. An overview of new approaches to deep desulfurization for ultra-clean gasoline, diesel fuel and jet fuel. Catal Today. 2003;86(1–4):211.CrossRef
[3]
Zurück zum Zitat Villarreal A, Ramírez J, Caero LC, Villalón PC, Gutiérrez-Alejandre A. Importance of the sulfidation step in the preparation of highly active NiMo/SiO2/Al2O3 hydrodesulfurization catalysts. Catal Today. 2015;250:60.CrossRef Villarreal A, Ramírez J, Caero LC, Villalón PC, Gutiérrez-Alejandre A. Importance of the sulfidation step in the preparation of highly active NiMo/SiO2/Al2O3 hydrodesulfurization catalysts. Catal Today. 2015;250:60.CrossRef
[4]
Zurück zum Zitat Dai XP, Du KL, Li ZZ, Liu MZ, Ma YD, Sun H, Zhang X, Yang Y. Co-doped MoS2 nanosheets with the dominant CoMoS phase coated on carbon as an excellent electrocatalyst for hydrogen evolution. ACS Appl Mater Interfaces. 2015;7(49):27242.CrossRef Dai XP, Du KL, Li ZZ, Liu MZ, Ma YD, Sun H, Zhang X, Yang Y. Co-doped MoS2 nanosheets with the dominant CoMoS phase coated on carbon as an excellent electrocatalyst for hydrogen evolution. ACS Appl Mater Interfaces. 2015;7(49):27242.CrossRef
[5]
Zurück zum Zitat Layan Savithra GH, Bowker RH, Carrillo BA, Bussell ME, Brock SL. Mesoporous matrix encapsulation for the synthesis of monodisperse Pd5P2 nanoparticle hydrodesulfurization catalysts. ACS Appl Mater Interfaces. 2013;5(12):5403.CrossRef Layan Savithra GH, Bowker RH, Carrillo BA, Bussell ME, Brock SL. Mesoporous matrix encapsulation for the synthesis of monodisperse Pd5P2 nanoparticle hydrodesulfurization catalysts. ACS Appl Mater Interfaces. 2013;5(12):5403.CrossRef
[6]
Zurück zum Zitat van Haandel L, Bremmer M, Kooyman PJ, van Veen JAR, Weber T, Hensen EJM. Structure-activity correlations in hydrodesulfurization reactions over Ni-promoted MoxW(1– x)S2/Al2O3 catalysts. ACS Catal. 2015;5(12):7276.CrossRef van Haandel L, Bremmer M, Kooyman PJ, van Veen JAR, Weber T, Hensen EJM. Structure-activity correlations in hydrodesulfurization reactions over Ni-promoted MoxW(1– x)S2/Al2O3 catalysts. ACS Catal. 2015;5(12):7276.CrossRef
[7]
Zurück zum Zitat Furimsky E, Massoth FE. Deactivation of hydroprocessing catalysts. Catal Today. 1999;52(4):381.CrossRef Furimsky E, Massoth FE. Deactivation of hydroprocessing catalysts. Catal Today. 1999;52(4):381.CrossRef
[8]
Zurück zum Zitat Ruiz V, Meux E, Schneider M, Georgeaud V. Hydrometallurgical treatment for valuable metals recovery from spent CoMo/Al2O3 catalyst. 2. Oxidative leaching of an unroasted catalyst using H2O2. Ind Eng Chem Res. 2011;50(9):5307.CrossRef Ruiz V, Meux E, Schneider M, Georgeaud V. Hydrometallurgical treatment for valuable metals recovery from spent CoMo/Al2O3 catalyst. 2. Oxidative leaching of an unroasted catalyst using H2O2. Ind Eng Chem Res. 2011;50(9):5307.CrossRef
[9]
Zurück zum Zitat Akcil A, Vegliò F, Ferella F, Okudan MD, Tuncuk A. A review of metal recovery from spent petroleum catalysts and ash. Waste Manag. 2015;45:420.CrossRef Akcil A, Vegliò F, Ferella F, Okudan MD, Tuncuk A. A review of metal recovery from spent petroleum catalysts and ash. Waste Manag. 2015;45:420.CrossRef
[10]
Zurück zum Zitat Asghari I, Mousavi S, Amiri F, Tavassoli S. Bioleaching of spent refinery catalysts: a review. J Ind Eng Chem. 2013;19(4):1069.CrossRef Asghari I, Mousavi S, Amiri F, Tavassoli S. Bioleaching of spent refinery catalysts: a review. J Ind Eng Chem. 2013;19(4):1069.CrossRef
[11]
Zurück zum Zitat Barik S, Park K-H, Parhi P, Park J. Direct leaching of molybdenum and cobalt from spent hydrodesulphurization catalyst with sulphuric acid. Hydrometallurgy. 2012;111(1):46.CrossRef Barik S, Park K-H, Parhi P, Park J. Direct leaching of molybdenum and cobalt from spent hydrodesulphurization catalyst with sulphuric acid. Hydrometallurgy. 2012;111(1):46.CrossRef
[12]
Zurück zum Zitat Zeng L, Cheng CY. A literature review of the recovery of molybdenum and vanadium from spent hydrodesulphurisation catalysts: Part I: metallurgical processes. Hydrometallurgy. 2009;98(1):1.CrossRef Zeng L, Cheng CY. A literature review of the recovery of molybdenum and vanadium from spent hydrodesulphurisation catalysts: Part I: metallurgical processes. Hydrometallurgy. 2009;98(1):1.CrossRef
[13]
Zurück zum Zitat Huang XW, Long ZQ, Wang LS, Feng ZY. Technology development for rare earth cleaner hydrometallurgy in China. Rare Met. 2015;34(4):215.CrossRef Huang XW, Long ZQ, Wang LS, Feng ZY. Technology development for rare earth cleaner hydrometallurgy in China. Rare Met. 2015;34(4):215.CrossRef
[14]
Zurück zum Zitat Tian L, Liu Y, Zhang TA, Lv GZ, Zhou S, Zhang GQ. Kinetics of indium dissolution from marmatite with high indium content in pressure acid leaching. Rare Met. 2017;36(1):69.CrossRef Tian L, Liu Y, Zhang TA, Lv GZ, Zhou S, Zhang GQ. Kinetics of indium dissolution from marmatite with high indium content in pressure acid leaching. Rare Met. 2017;36(1):69.CrossRef
[15]
Zurück zum Zitat Chauhan G, Pant KK, Nigam KD. Metal recovery from hydroprocessing spent catalyst: a green chemical engineering approach. Ind Eng Chem Res. 2013;52(47):16724.CrossRef Chauhan G, Pant KK, Nigam KD. Metal recovery from hydroprocessing spent catalyst: a green chemical engineering approach. Ind Eng Chem Res. 2013;52(47):16724.CrossRef
[16]
Zurück zum Zitat Zeng L, Cheng CY. A literature review of the recovery of molybdenum and vanadium from spent hydrodesulphurisation catalysts: Part II: separation and purification. Hydrometallurgy. 2009;98(1):10.CrossRef Zeng L, Cheng CY. A literature review of the recovery of molybdenum and vanadium from spent hydrodesulphurisation catalysts: Part II: separation and purification. Hydrometallurgy. 2009;98(1):10.CrossRef
[17]
Zurück zum Zitat Cortés-Torres R, Nolasco-Terrón EY, Olea-Mejia O, Varela-Guerrero V, Barrera-Díaz CE, Cuevas-Yañez E. Solvent mediated impurity removal process for a spent hydroprocessing catalyst and its use in alcohol oxidations. Catal Today. 2018;305:126.CrossRef Cortés-Torres R, Nolasco-Terrón EY, Olea-Mejia O, Varela-Guerrero V, Barrera-Díaz CE, Cuevas-Yañez E. Solvent mediated impurity removal process for a spent hydroprocessing catalyst and its use in alcohol oxidations. Catal Today. 2018;305:126.CrossRef
[18]
Zurück zum Zitat Khalid M, Athraa B. Experimental study on factors affecting the recovery of nickel from spent catalyst. J Powder Metall Min. 2017;6(1):1. Khalid M, Athraa B. Experimental study on factors affecting the recovery of nickel from spent catalyst. J Powder Metall Min. 2017;6(1):1.
[19]
Zurück zum Zitat Zhang Y, Lin H, Dong YB, Xu XF, Wang X, Gao YJ. Comprehensive recovery of iron, niobium rare earth and fluorite in Bayan Obo tailings. Chin J Rare Met. 2017;41(7):799. Zhang Y, Lin H, Dong YB, Xu XF, Wang X, Gao YJ. Comprehensive recovery of iron, niobium rare earth and fluorite in Bayan Obo tailings. Chin J Rare Met. 2017;41(7):799.
[20]
Zurück zum Zitat Sahu K, Agrawal A, Mishra D. Hazardous waste to materials: Recovery of molybdenum and vanadium from acidic leach liquor of spent hydroprocessing catalyst using alamine 308. J Environ Manage. 2013;125(1):68.CrossRef Sahu K, Agrawal A, Mishra D. Hazardous waste to materials: Recovery of molybdenum and vanadium from acidic leach liquor of spent hydroprocessing catalyst using alamine 308. J Environ Manage. 2013;125(1):68.CrossRef
[21]
Zurück zum Zitat Pinto IS, Soares HM. Recovery of molybdates from an alkaline leachate of spent hydrodesulphurisation catalyst–proposal of a nearly-closed process. J Clean Prod. 2013;52:481.CrossRef Pinto IS, Soares HM. Recovery of molybdates from an alkaline leachate of spent hydrodesulphurisation catalyst–proposal of a nearly-closed process. J Clean Prod. 2013;52:481.CrossRef
[22]
Zurück zum Zitat Erust C, Akcil A, Bedelova Z, Anarbekov K, Baikonurova A, Tuncuk A. Recovery of vanadium from spent catalysts of sulfuric acid plant by using inorganic and organic acids: laboratory and semi-pilot tests. Waste Manag. 2016;49:455.CrossRef Erust C, Akcil A, Bedelova Z, Anarbekov K, Baikonurova A, Tuncuk A. Recovery of vanadium from spent catalysts of sulfuric acid plant by using inorganic and organic acids: laboratory and semi-pilot tests. Waste Manag. 2016;49:455.CrossRef
[23]
Zurück zum Zitat Zhan C, Zhang YM, Bao SX, Huang J, Yang X. Separation and enrichment of vanadium from stone coal acidic leach solution using tertiary amine N235. Chin J Rare Met. 2017;41(4):422. Zhan C, Zhang YM, Bao SX, Huang J, Yang X. Separation and enrichment of vanadium from stone coal acidic leach solution using tertiary amine N235. Chin J Rare Met. 2017;41(4):422.
[24]
Zurück zum Zitat Li Z, Chen M, Zhang QW, Liu XZ, Saito F. Mechanochemical processing of molybdenum and vanadium sulfides for metal recovery from spent catalysts wastes. Waste Manag. 2017;60:734.CrossRef Li Z, Chen M, Zhang QW, Liu XZ, Saito F. Mechanochemical processing of molybdenum and vanadium sulfides for metal recovery from spent catalysts wastes. Waste Manag. 2017;60:734.CrossRef
[25]
Zurück zum Zitat Nguyen TH, Lee MS. Development of a hydrometallurgical process for the recovery of calcium molybdate and cobalt oxalate powders from spent hydrodesulphurization (HDS) catalyst. J Clean Prod. 2015;90(10):388.CrossRef Nguyen TH, Lee MS. Development of a hydrometallurgical process for the recovery of calcium molybdate and cobalt oxalate powders from spent hydrodesulphurization (HDS) catalyst. J Clean Prod. 2015;90(10):388.CrossRef
[26]
Zurück zum Zitat Cibati A, Cheng KY, Morris C, Ginige MP, Sahinkaya E, Pagnanelli F, Kaksonen AH. Selective precipitation of metals from synthetic spent refinery catalyst leach liquor with biogenic H2S produced in a lactate-fed anaerobic baffled reactor. Hydrometallurgy. 2013;139(3):154.CrossRef Cibati A, Cheng KY, Morris C, Ginige MP, Sahinkaya E, Pagnanelli F, Kaksonen AH. Selective precipitation of metals from synthetic spent refinery catalyst leach liquor with biogenic H2S produced in a lactate-fed anaerobic baffled reactor. Hydrometallurgy. 2013;139(3):154.CrossRef
[27]
Zurück zum Zitat Feng ZY, Huang XW, Wang M, Zhang GC. Progress and trend of green chemistry in extraction and separation of typical rare earth resources. Chin J Rare Met. 2017;41(5):604. Feng ZY, Huang XW, Wang M, Zhang GC. Progress and trend of green chemistry in extraction and separation of typical rare earth resources. Chin J Rare Met. 2017;41(5):604.
[28]
Zurück zum Zitat Wang B, Meng Y, Duan CS. New process for complete recycling of metals from spent Co, Mo, and-Al2O3 catalyst. Mod Chem Ind. 2005;25(S1):204. Wang B, Meng Y, Duan CS. New process for complete recycling of metals from spent Co, Mo, and-Al2O3 catalyst. Mod Chem Ind. 2005;25(S1):204.
[29]
Zurück zum Zitat Busnardo RG, Busnardo NG, Salvato GN, Afonso JC. Processing of spent NiMo and CoMo/Al2O3 catalysts via fusion with KHSO4. J Hazard Mater. 2007;139(2):391.CrossRef Busnardo RG, Busnardo NG, Salvato GN, Afonso JC. Processing of spent NiMo and CoMo/Al2O3 catalysts via fusion with KHSO4. J Hazard Mater. 2007;139(2):391.CrossRef
[30]
Zurück zum Zitat Huang SB, Zhao ZW, Chen XY, Li F. Alkali extraction of valuable metals from spent Mo–Ni/Al2O3 catalyst. Int J Refract Metal Hard Mater. 2014;46(9):109.CrossRef Huang SB, Zhao ZW, Chen XY, Li F. Alkali extraction of valuable metals from spent Mo–Ni/Al2O3 catalyst. Int J Refract Metal Hard Mater. 2014;46(9):109.CrossRef
[31]
Zurück zum Zitat Tabesh S, Davar F, Loghman-Estarki MR. Preparation of γ-Al2O3 nanoparticles using modified sol-gel method and its use for the adsorption of lead and cadmium ions. J Alloy Compd. 2018;730:441.CrossRef Tabesh S, Davar F, Loghman-Estarki MR. Preparation of γ-Al2O3 nanoparticles using modified sol-gel method and its use for the adsorption of lead and cadmium ions. J Alloy Compd. 2018;730:441.CrossRef
[32]
Zurück zum Zitat Svetlichnyi VA, Stadnichenko AI, Lapin IN. Preparation of γ-Al(OH)3 and γ-Al2O3 nanoparticles by the method of pulsed laser ablation of metal aluminum in water. Russ Phys J. 2017;60(2):377.CrossRef Svetlichnyi VA, Stadnichenko AI, Lapin IN. Preparation of γ-Al(OH)3 and γ-Al2O3 nanoparticles by the method of pulsed laser ablation of metal aluminum in water. Russ Phys J. 2017;60(2):377.CrossRef
[33]
Zurück zum Zitat Yang Y, Xu SM, Li Z, Wang JL, Zhao ZW, Xu ZH. Oil removal of spent hydrotreating catalyst CoMo/Al2O3 via a facile method with enhanced metal recovery. J Hazard Mater. 2016;318:723.CrossRef Yang Y, Xu SM, Li Z, Wang JL, Zhao ZW, Xu ZH. Oil removal of spent hydrotreating catalyst CoMo/Al2O3 via a facile method with enhanced metal recovery. J Hazard Mater. 2016;318:723.CrossRef
[34]
Zurück zum Zitat Jin HX, Wu FZ, Mao XH, Wang ML, Xie HY. Leaching isomorphism rare earths from phosphorite ore by sulfuric acid and phosphoric acid. Rare Met. 2017;36(10):840.CrossRef Jin HX, Wu FZ, Mao XH, Wang ML, Xie HY. Leaching isomorphism rare earths from phosphorite ore by sulfuric acid and phosphoric acid. Rare Met. 2017;36(10):840.CrossRef
[35]
Zurück zum Zitat Wang JY, Xu Y, Wang LS, Zhao LS, Wang Q, Cui DL, Long ZQ, Huang XW. Recovery of rare earths and aluminum from FCC catalysts manufacturing slag by stepwise leaching and selective precipitation. J Environ Chem Eng. 2017;5(4):3711.CrossRef Wang JY, Xu Y, Wang LS, Zhao LS, Wang Q, Cui DL, Long ZQ, Huang XW. Recovery of rare earths and aluminum from FCC catalysts manufacturing slag by stepwise leaching and selective precipitation. J Environ Chem Eng. 2017;5(4):3711.CrossRef
[36]
Zurück zum Zitat Whittington BI, Fletcher BL, Talbot C. The effect of reaction conditions on the composition of desilication product (DSP) formed under simulated Bayer conditions. Hydrometallurgy. 1998;49(1–2):1.CrossRef Whittington BI, Fletcher BL, Talbot C. The effect of reaction conditions on the composition of desilication product (DSP) formed under simulated Bayer conditions. Hydrometallurgy. 1998;49(1–2):1.CrossRef
[37]
Zurück zum Zitat Liu CL, Xia JP, Zhang YB. Optimization and kinetics on extraction of alumina from coal gangue by acid leaching. Chin J Process Eng. 2015;15(04):579. Liu CL, Xia JP, Zhang YB. Optimization and kinetics on extraction of alumina from coal gangue by acid leaching. Chin J Process Eng. 2015;15(04):579.
[38]
Zurück zum Zitat Chen Y, Feng QM, Shao YH, Zhang GF, Ou LM, Lu YP. Research on the recycling of valuable metals in spent Al2O3-based catalyst. Miner Eng. 2006;19(1):94.CrossRef Chen Y, Feng QM, Shao YH, Zhang GF, Ou LM, Lu YP. Research on the recycling of valuable metals in spent Al2O3-based catalyst. Miner Eng. 2006;19(1):94.CrossRef
[39]
Zurück zum Zitat Wang B, Hao YL, Chu WQ, Rong S, Sun HL. Kinetics of leaching of 20CaO13Al2O33MgO3SiO2. Miner Process Extr Metall IMM Trans C. 2016;126(4):1. Wang B, Hao YL, Chu WQ, Rong S, Sun HL. Kinetics of leaching of 20CaO13Al2O33MgO3SiO2. Miner Process Extr Metall IMM Trans C. 2016;126(4):1.
[40]
Zurück zum Zitat Nayl AEAA, Aly HF. Extraction equilibria and kinetics of Ti(IV) from leached chloride liquors of ilmenite. Rare Met. 2017;36(8):676.CrossRef Nayl AEAA, Aly HF. Extraction equilibria and kinetics of Ti(IV) from leached chloride liquors of ilmenite. Rare Met. 2017;36(8):676.CrossRef
[41]
Zurück zum Zitat Amini M, Mirzaee M. Effect of solution chemistry on preparation of boehmite by hydrothermal assisted sol-gel processing of aluminum alkoxides. J Sol-Gel Sci Technol. 2005;36(1):19.CrossRef Amini M, Mirzaee M. Effect of solution chemistry on preparation of boehmite by hydrothermal assisted sol-gel processing of aluminum alkoxides. J Sol-Gel Sci Technol. 2005;36(1):19.CrossRef
[42]
Zurück zum Zitat Okada K, Nagashima T, Kameshima Y, Yasumori A, Tsukada T. Relationship between formation conditions, properties, and crystallite size of boehmite. J Colloid Interface Sci. 2002;253(2):308.CrossRef Okada K, Nagashima T, Kameshima Y, Yasumori A, Tsukada T. Relationship between formation conditions, properties, and crystallite size of boehmite. J Colloid Interface Sci. 2002;253(2):308.CrossRef
[43]
Zurück zum Zitat Santos PdS, Coelho ACV, Santos HdS, Kiyohara PK. Hydrothermal synthesis of well-crystallised boehmite crystals of various shapes. Mater Res. 2009;12(4):437.CrossRef Santos PdS, Coelho ACV, Santos HdS, Kiyohara PK. Hydrothermal synthesis of well-crystallised boehmite crystals of various shapes. Mater Res. 2009;12(4):437.CrossRef
[44]
Zurück zum Zitat Wang JQ, Liu JL, Liu XY, Qiao MH, Pei Y, Fan KN. Hydrothermal transformation of bayerite to boehmite. Sci Adv Mater. 2009;1(1):77.CrossRef Wang JQ, Liu JL, Liu XY, Qiao MH, Pei Y, Fan KN. Hydrothermal transformation of bayerite to boehmite. Sci Adv Mater. 2009;1(1):77.CrossRef
[45]
Zurück zum Zitat Mishra D, Anand S, Panda R, Das R. Hydrothermal preparation and characterization of boehmites. Mater Lett. 2000;42(1):38.CrossRef Mishra D, Anand S, Panda R, Das R. Hydrothermal preparation and characterization of boehmites. Mater Lett. 2000;42(1):38.CrossRef
[46]
Zurück zum Zitat Mishra D, Anand S, Panda R, Das R. Effect of anions during hydrothermal preparation of boehmites. Mater Lett. 2002;53(3):133.CrossRef Mishra D, Anand S, Panda R, Das R. Effect of anions during hydrothermal preparation of boehmites. Mater Lett. 2002;53(3):133.CrossRef
[47]
Zurück zum Zitat Wang WW, Zhou JB, Zhang Z, Yu JG, Cai WQ. Different surfactants-assisted hydrothermal synthesis of hierarchical γ-Al2O3 and its adsorption performances for parachlorophenol. Chem Eng J. 2013;233(2):168.CrossRef Wang WW, Zhou JB, Zhang Z, Yu JG, Cai WQ. Different surfactants-assisted hydrothermal synthesis of hierarchical γ-Al2O3 and its adsorption performances for parachlorophenol. Chem Eng J. 2013;233(2):168.CrossRef
[48]
Zurück zum Zitat Wang Q, Cheng XH, Zheng L, Shen LY, Li JJ, Zhang DL, Qian R, Yu YH. Interface engineering of an AlNO/AlGaN/GaN MIS diode induced by PEALD alternate insertion of AlN in Al2O3. RSC Adv. 2017;7(19):11745.CrossRef Wang Q, Cheng XH, Zheng L, Shen LY, Li JJ, Zhang DL, Qian R, Yu YH. Interface engineering of an AlNO/AlGaN/GaN MIS diode induced by PEALD alternate insertion of AlN in Al2O3. RSC Adv. 2017;7(19):11745.CrossRef
[49]
Zurück zum Zitat Cai WQ, Yu JG, Jaroniec M. Template-free synthesis of hierarchical spindle-like γ-Al2O3 materials and their adsorption affinity towards organic and inorganic pollutants in water. J Mater Chem. 2010;20(22):4587.CrossRef Cai WQ, Yu JG, Jaroniec M. Template-free synthesis of hierarchical spindle-like γ-Al2O3 materials and their adsorption affinity towards organic and inorganic pollutants in water. J Mater Chem. 2010;20(22):4587.CrossRef
[50]
Zurück zum Zitat Inoue M, Kominami H, Inui T. Synthesis of large pore-size and large pore-volume aluminas by glycothermal treatment of aluminium alkoxide and subsequent calcination. J Mater Sci. 1994;29(9):2459.CrossRef Inoue M, Kominami H, Inui T. Synthesis of large pore-size and large pore-volume aluminas by glycothermal treatment of aluminium alkoxide and subsequent calcination. J Mater Sci. 1994;29(9):2459.CrossRef
[51]
Zurück zum Zitat Cao JM, Hou HT, Ma XJ, Ji GB, Zheng MB, Lu HX. Solvothermal synthesis of nanoporous gamma aluminum oxide. Chin J Inorg Chem. 2005;9(21):1379. Cao JM, Hou HT, Ma XJ, Ji GB, Zheng MB, Lu HX. Solvothermal synthesis of nanoporous gamma aluminum oxide. Chin J Inorg Chem. 2005;9(21):1379.
[52]
Zurück zum Zitat Meng XH, Duan LH, Xie XH, Wang Q, Wang HY. Synthesis of macro-mesostructured γ-Al2O3 with large pore volume and high surface area by a facile secondary reforming method. China Pet Process Petrochem Technol. 2014;16(2):20. Meng XH, Duan LH, Xie XH, Wang Q, Wang HY. Synthesis of macro-mesostructured γ-Al2O3 with large pore volume and high surface area by a facile secondary reforming method. China Pet Process Petrochem Technol. 2014;16(2):20.
[53]
Zurück zum Zitat Potdar HS, Jun K, Bae JW, Kim S, Lee Y. Synthesis of nano-sized porous γ-alumina powder via a precipitation/digestion route. Appl Catal A-Gen. 2007;321(2):109.CrossRef Potdar HS, Jun K, Bae JW, Kim S, Lee Y. Synthesis of nano-sized porous γ-alumina powder via a precipitation/digestion route. Appl Catal A-Gen. 2007;321(2):109.CrossRef
[54]
Zurück zum Zitat Li GM, Guo FX, Fan GQ. Standard of activated inorganic chemical products in China. Inorg Chem Ind. 2009;41(1):60. Li GM, Guo FX, Fan GQ. Standard of activated inorganic chemical products in China. Inorg Chem Ind. 2009;41(1):60.
Metadaten
Titel
Recovery and regeneration of Al2O3 with a high specific surface area from spent hydrodesulfurization catalyst CoMo/Al2O3
verfasst von
Qi Liu
Wen-Qiang Wang
Yue Yang
Xue-Gang Liu
Sheng-Ming Xu
Publikationsdatum
20.11.2018
Verlag
Nonferrous Metals Society of China
Erschienen in
Rare Metals / Ausgabe 1/2019
Print ISSN: 1001-0521
Elektronische ISSN: 1867-7185
DOI
https://doi.org/10.1007/s12598-018-1164-1

Weitere Artikel der Ausgabe 1/2019

Rare Metals 1/2019 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.