Skip to main content
Erschienen in: Neural Processing Letters 2/2019

05.10.2018

Recursive Particle Filter-Based RBF Network on Time Series Prediction of Measurement Data

verfasst von: Wei-Lung Mao

Erschienen in: Neural Processing Letters | Ausgabe 2/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Most physical phenomena in nature are chaotic or close to chaos. An irregular time series can be generated or measured with a purely deterministic equation of motion in nonlinear and chaotic systems. This paper presents an adaptive state-space particle filtering (PF)-based trained radial basis function (RBF) network for chaotic and nonstationary observation–prediction. The recursive Bayesian filtering algorithm, which uses the particle representation of density function, is adopted to accomplish nonlinear and non-Gaussian state estimation and achieve improved convergence rate and quality of solution. Four sampling importance resampling approaches, namely, multinomial, systematic, stratified, and residual resampling methods, are considered to resolve weight degeneracy. The effectiveness of our proposed methods is investigated using two chaotic time series and three measurement datasets, including the Mackey–Glass time series, Rossler time series, monthly Lake Erie levels, monthly water usage series, and SML2010 data set. The performances are evaluated through an extensive simulation by computing the average mean square error, mean absolute percentage error, and average relative variance metrics. Simulation results show that the proposed PF-based RBF structure can provide more effective and accurate prediction performances compared with the conventional gradient descent, extended Kalman filter (EKF), and decoupled EKF algorithms (DEKF).

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Kantz H, Schreiber T (2000) Nonlinear time series analysis. Cambridge University Press, CambridgeMATH Kantz H, Schreiber T (2000) Nonlinear time series analysis. Cambridge University Press, CambridgeMATH
2.
Zurück zum Zitat Leung H, Lo T, Wang S (2001) Prediction of noisy chaotic time series using an optimal radial basis function neural network. IEEE Trans Neural Netw 12(5):1163–1172CrossRef Leung H, Lo T, Wang S (2001) Prediction of noisy chaotic time series using an optimal radial basis function neural network. IEEE Trans Neural Netw 12(5):1163–1172CrossRef
3.
Zurück zum Zitat Li D, Han M, Wang J (2012) Chaotic time series prediction based on a novel robust echo state network. IEEE Trans Neural Netw Learn Syst 23(5):787–799CrossRef Li D, Han M, Wang J (2012) Chaotic time series prediction based on a novel robust echo state network. IEEE Trans Neural Netw Learn Syst 23(5):787–799CrossRef
4.
Zurück zum Zitat Gan M, Chen CLP, Li HX, Chen L (2015) Gradient radial basis function based varying-coefficient autoregressive model for nonlinear and nonstationary time series. IEEE Signal Process Lett 22(7):809–812CrossRef Gan M, Chen CLP, Li HX, Chen L (2015) Gradient radial basis function based varying-coefficient autoregressive model for nonlinear and nonstationary time series. IEEE Signal Process Lett 22(7):809–812CrossRef
5.
Zurück zum Zitat Wu XD, Wang Y (2012) Extended and unscented Kalman filtering based feedforward neural networks for time series prediction. Appl Math Model 36(3):1123–1131MathSciNetCrossRef Wu XD, Wang Y (2012) Extended and unscented Kalman filtering based feedforward neural networks for time series prediction. Appl Math Model 36(3):1123–1131MathSciNetCrossRef
7.
Zurück zum Zitat Han M, Xi J, Xu S, Yin FL (2004) Prediction of chaotic time series based on the recurrent predictor neural network. IEEE Trans Signal Process 52(12):3409–3416MathSciNetCrossRef Han M, Xi J, Xu S, Yin FL (2004) Prediction of chaotic time series based on the recurrent predictor neural network. IEEE Trans Signal Process 52(12):3409–3416MathSciNetCrossRef
8.
Zurück zum Zitat Meadziuk J, Mikolajczak R (2002) Chaotic time series prediction with feedforward and recurrent neural nets. Control Cybern 31(2):1–24 Meadziuk J, Mikolajczak R (2002) Chaotic time series prediction with feedforward and recurrent neural nets. Control Cybern 31(2):1–24
9.
Zurück zum Zitat Shi Z, Han M (2007) Support vector echo state machine for chaotic time series prediction. IEEE Trans Neural Netw 18(2):359–372CrossRef Shi Z, Han M (2007) Support vector echo state machine for chaotic time series prediction. IEEE Trans Neural Netw 18(2):359–372CrossRef
10.
Zurück zum Zitat Mukherjee S, Osuna E, Girosi F (1997) Nonlinear prediction of chaotic time series using support vector machines. In: IEEE Proceeding of Neural Networks for signal processing, pp 511–520 Mukherjee S, Osuna E, Girosi F (1997) Nonlinear prediction of chaotic time series using support vector machines. In: IEEE Proceeding of Neural Networks for signal processing, pp 511–520
11.
Zurück zum Zitat Qin Y, Song D, Chen H, Cheng W, Jiang G, Cottrell GW (2017) A dual-stage attention-based recurrent neural network for time series prediction. In: Proceeding of the twenty-sixth international joint conference on artificial intelligence (IJCAI-17), pp 2626–2633 Qin Y, Song D, Chen H, Cheng W, Jiang G, Cottrell GW (2017) A dual-stage attention-based recurrent neural network for time series prediction. In: Proceeding of the twenty-sixth international joint conference on artificial intelligence (IJCAI-17), pp 2626–2633
12.
Zurück zum Zitat Simon D (2002) Training radial basis neural networks with the extended Kalman filter. Neurocomputing 48(1):455–475CrossRef Simon D (2002) Training radial basis neural networks with the extended Kalman filter. Neurocomputing 48(1):455–475CrossRef
13.
Zurück zum Zitat Haykin S (2008) Neural networks and learning machine, 3rd edn. Prentice Hall, Upper Saddle River Haykin S (2008) Neural networks and learning machine, 3rd edn. Prentice Hall, Upper Saddle River
14.
Zurück zum Zitat Ristic B, Arulampalam S, Gordon N (2004) Beyond the Kalman filter, particle filters for tracking applications. Artech House, NorwoodMATH Ristic B, Arulampalam S, Gordon N (2004) Beyond the Kalman filter, particle filters for tracking applications. Artech House, NorwoodMATH
15.
Zurück zum Zitat Candy JV (2009) Bayesian signal processing: classical, modern, and particle filtering methods. Wiley, HobokenCrossRef Candy JV (2009) Bayesian signal processing: classical, modern, and particle filtering methods. Wiley, HobokenCrossRef
16.
Zurück zum Zitat Arulampalam MS, Maskell S, Gordon N, Clapp T (2002) A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking. IEEE Trans Signal Process 50(2):174–188CrossRef Arulampalam MS, Maskell S, Gordon N, Clapp T (2002) A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking. IEEE Trans Signal Process 50(2):174–188CrossRef
17.
Zurück zum Zitat Li T, Bolic M, Djuric PM (2015) Resampling methods for particle filtering. IEEE Signal Process Mag 32(3):70–86CrossRef Li T, Bolic M, Djuric PM (2015) Resampling methods for particle filtering. IEEE Signal Process Mag 32(3):70–86CrossRef
18.
Zurück zum Zitat Hol JD, Schon TB, Gustafsson F (2006) On resampling algorithm for particle filters. In: IEEE nonlinear statistical signal processing workshop, pp 79–82 Hol JD, Schon TB, Gustafsson F (2006) On resampling algorithm for particle filters. In: IEEE nonlinear statistical signal processing workshop, pp 79–82
19.
Zurück zum Zitat Wang X, Wang S, Ma J (2005) An improved particle filter for target tracking in sensor system. Sensors 7:144–156CrossRef Wang X, Wang S, Ma J (2005) An improved particle filter for target tracking in sensor system. Sensors 7:144–156CrossRef
20.
Zurück zum Zitat De Freitas JFG, Niranjan M, Gee AH, Doucet A (2000) Sequential Monte Carlo methods to train neural network models. Neural Computat 12(4):955–993CrossRef De Freitas JFG, Niranjan M, Gee AH, Doucet A (2000) Sequential Monte Carlo methods to train neural network models. Neural Computat 12(4):955–993CrossRef
21.
Zurück zum Zitat Sbarufatti C, Corbetta M, Giglio M, Cadini F (2017) Adaptive prognosis of lithium-ion batteries based on the combination of particle filters and radial basis function neural networks. J Power Sources 344:128–140CrossRef Sbarufatti C, Corbetta M, Giglio M, Cadini F (2017) Adaptive prognosis of lithium-ion batteries based on the combination of particle filters and radial basis function neural networks. J Power Sources 344:128–140CrossRef
22.
Zurück zum Zitat Lai C, Lerner D (1998) Effective scaling regime for computing the correlation dimension from chaotic time series. Physica D 115:1–18CrossRef Lai C, Lerner D (1998) Effective scaling regime for computing the correlation dimension from chaotic time series. Physica D 115:1–18CrossRef
23.
Zurück zum Zitat Park J, Sandberg IW (1991) Universal approximation using radial-basis-function networks. Neural Comput 3(2):246–257CrossRef Park J, Sandberg IW (1991) Universal approximation using radial-basis-function networks. Neural Comput 3(2):246–257CrossRef
24.
Zurück zum Zitat Douc R, Cappe O, Moulines E (2005) Comparison of resampling schemes for particle filtering. In: Proceeding of the 4th international symposium on image and signal processing and analysis, pp 64–69 Douc R, Cappe O, Moulines E (2005) Comparison of resampling schemes for particle filtering. In: Proceeding of the 4th international symposium on image and signal processing and analysis, pp 64–69
25.
26.
Zurück zum Zitat Xia N, Wei W, Li J, Zhang X (2016) Kalman particle filtering algorithm for symmetric alpha-stable distribution signals with application to high frequency time difference of arrival geolocation. IET Signal Process 10(6):619–625CrossRef Xia N, Wei W, Li J, Zhang X (2016) Kalman particle filtering algorithm for symmetric alpha-stable distribution signals with application to high frequency time difference of arrival geolocation. IET Signal Process 10(6):619–625CrossRef
27.
Zurück zum Zitat Lee S, Lohan ES, Kim S (2016) Array-based GNSS signal tracking with a reduced state signal model. IEEE Trans Aerosp Electron Syst 52(3):1267–1283CrossRef Lee S, Lohan ES, Kim S (2016) Array-based GNSS signal tracking with a reduced state signal model. IEEE Trans Aerosp Electron Syst 52(3):1267–1283CrossRef
28.
Zurück zum Zitat Karlsson R, Schön T, Gustafsson F (2005) Complexity analysis of the marginalized particle filter. IEEE Trans Signal Process 53(11):4408–4411MathSciNetCrossRef Karlsson R, Schön T, Gustafsson F (2005) Complexity analysis of the marginalized particle filter. IEEE Trans Signal Process 53(11):4408–4411MathSciNetCrossRef
30.
Zurück zum Zitat Stenflo L (1996) Generalized Lorenz equations for acoustic-gravity waves in the atmosphere. Phys Scr 53:83–84CrossRef Stenflo L (1996) Generalized Lorenz equations for acoustic-gravity waves in the atmosphere. Phys Scr 53:83–84CrossRef
Metadaten
Titel
Recursive Particle Filter-Based RBF Network on Time Series Prediction of Measurement Data
verfasst von
Wei-Lung Mao
Publikationsdatum
05.10.2018
Verlag
Springer US
Erschienen in
Neural Processing Letters / Ausgabe 2/2019
Print ISSN: 1370-4621
Elektronische ISSN: 1573-773X
DOI
https://doi.org/10.1007/s11063-018-9933-2

Weitere Artikel der Ausgabe 2/2019

Neural Processing Letters 2/2019 Zur Ausgabe

Neuer Inhalt