Skip to main content
Erschienen in: Mechanics of Composite Materials 4/2022

17.09.2022

Recycling of Fiberglass Fillers Obtained from Polymer Composites Based on an Epoxy Vinyl Ester Binder

verfasst von: A. E. Protsenko, V. V. Petrov

Erschienen in: Mechanics of Composite Materials | Ausgabe 4/2022

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Data found from an experimental study on the possibility of recycling polymer composites on the example of a fiberglass made from a linen fiberglass and an epoxy vinyl ester binder are presented with the aim to remove the polymer matrix and obtain a recovered fiberglass not inferior in its properties to the virgin material. The solvolysis method of the composite in a methyldiethanolamine medium is considered. The solvolysis time and the concentration of alkali metal hydroxide in the reaction medium in relation to the strength of recovered glass fibers is established. The solvolysis at a temperature of 180°С and a catalyst concentration of 5% for 6 h was accepted as the optimal regime. As a result, a regime that allowed us to recover fibers with a tensile strength equal to 92% of that of virgin fibers was determined. The recovered fabrics were studied by a thermal analysis and the scanning electron microscopy. GFRP samples were obtained from the recovered fabrics by the VaRTM method. The flexural strength of composites made from the secondary filler was 8.5% lower than that of the same material based on a virgin fabric.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
2.
Zurück zum Zitat J. Z. Chen, Z. Li, S. R. Zhu, Z. Q. Li, and Y. L. Kong, “Prediction of long-term properties of fiberglass pipe based on the shift factors method,” Adv. Mater. Res., 748, 411-415 (2013).CrossRef J. Z. Chen, Z. Li, S. R. Zhu, Z. Q. Li, and Y. L. Kong, “Prediction of long-term properties of fiberglass pipe based on the shift factors method,” Adv. Mater. Res., 748, 411-415 (2013).CrossRef
3.
Zurück zum Zitat B. Bogner, “Survey of long term durability of fiberglass reinforced plastics tanks and pipes,” Reinforced Plastics Durability, 267-281 (1999). B. Bogner, “Survey of long term durability of fiberglass reinforced plastics tanks and pipes,” Reinforced Plastics Durability, 267-281 (1999).
4.
Zurück zum Zitat E. N. Kablov, O. V. Startsev, A. S. Krotov, and V. N. Kirillov, “Climatic aging of aviation composite materials. I. Mechanisms of aging,” Deformation and Destruction of Materials, No. 11, 7-19 (2010). E. N. Kablov, O. V. Startsev, A. S. Krotov, and V. N. Kirillov, “Climatic aging of aviation composite materials. I. Mechanisms of aging,” Deformation and Destruction of Materials, No. 11, 7-19 (2010).
5.
Zurück zum Zitat M. S. Doriomedov, “Russian and world market of polymer composites (review),”Tr. VIAM, No. 6-7 (89). - S. 29-37 (2020). M. S. Doriomedov, “Russian and world market of polymer composites (review),”Tr. VIAM, No. 6-7 (89). - S. 29-37 (2020).
6.
Zurück zum Zitat L. O. Meyer, K. Schulte, and E. Grove-Nielsen, “CFRP-recycling following a pyrolysis route: process optimization and potentials,” J. Compos. Mater., 43, No. 9, 1121-1132 (2009).CrossRef L. O. Meyer, K. Schulte, and E. Grove-Nielsen, “CFRP-recycling following a pyrolysis route: process optimization and potentials,” J. Compos. Mater., 43, No. 9, 1121-1132 (2009).CrossRef
7.
Zurück zum Zitat S. Schwarz, T. Höftberger, C. Burgstaller, A. Hackl, and C. Schwarzinger, “Pyrolytic recycling of carbon fibers from prepregs and their use in polyamide composites,” Open J. Compos. Mater., 10, 92-105 (2020).CrossRef S. Schwarz, T. Höftberger, C. Burgstaller, A. Hackl, and C. Schwarzinger, “Pyrolytic recycling of carbon fibers from prepregs and their use in polyamide composites,” Open J. Compos. Mater., 10, 92-105 (2020).CrossRef
8.
Zurück zum Zitat J. Howarth, S. S. R. Mareddy, and P. T. Mativenga, “Energy intensity and environmental analysis of mechanical recycling of carbon fiber composite,” J. Clean. Prod., 81, 46-50 (2014).CrossRef J. Howarth, S. S. R. Mareddy, and P. T. Mativenga, “Energy intensity and environmental analysis of mechanical recycling of carbon fiber composite,” J. Clean. Prod., 81, 46-50 (2014).CrossRef
9.
Zurück zum Zitat M. L. Longana, V. Ondra, H. Yu, K. D. Potter, and I. Hamerton, “Reclaimed carbon and flax fiber composites: manufacturing and mechanical properties,” Recycl., 3, No. 4, 52 (2018). M. L. Longana, V. Ondra, H. Yu, K. D. Potter, and I. Hamerton, “Reclaimed carbon and flax fiber composites: manufacturing and mechanical properties,” Recycl., 3, No. 4, 52 (2018).
10.
Zurück zum Zitat J. Palmer, O. R. Ghita, L. Savage, and K. E. Evans, “Successful closed-loop recycling of thermoset composites,” Composites: Part A., 40, No. 4, 490-498 (2009).CrossRef J. Palmer, O. R. Ghita, L. Savage, and K. E. Evans, “Successful closed-loop recycling of thermoset composites,” Composites: Part A., 40, No. 4, 490-498 (2009).CrossRef
11.
Zurück zum Zitat K. Ogi, T. Nishikawa, Y. Okano, I. Taketa, “Mechanical properties of ABS resin reinforced with recycled CFRP,” Adv. Compos. Mater., 16, No. 2, 181-194 (2007).CrossRef K. Ogi, T. Nishikawa, Y. Okano, I. Taketa, “Mechanical properties of ABS resin reinforced with recycled CFRP,” Adv. Compos. Mater., 16, No. 2, 181-194 (2007).CrossRef
12.
Zurück zum Zitat A. Conroy, S. Halliwell, and T. Reynolds, “Composite recycling in the construction industry,” Composites: Part A, 37, No. 8, 1216-1222 (2006).CrossRef A. Conroy, S. Halliwell, and T. Reynolds, “Composite recycling in the construction industry,” Composites: Part A, 37, No. 8, 1216-1222 (2006).CrossRef
13.
Zurück zum Zitat P. Yang, Q. Zhou, X. X. Yuan, J. M. N. Van Kasteren, and Y. Z. Wang, “Highly efficient solvolysis of epoxy resin using poly(ethylene glycol)/NaOH systems,” Polym. Degradation Stab., 97, No. 7, 1101-1106 (2012).CrossRef P. Yang, Q. Zhou, X. X. Yuan, J. M. N. Van Kasteren, and Y. Z. Wang, “Highly efficient solvolysis of epoxy resin using poly(ethylene glycol)/NaOH systems,” Polym. Degradation Stab., 97, No. 7, 1101-1106 (2012).CrossRef
14.
Zurück zum Zitat A. E. Protsenko, E. D. Pimenova, and V. V. Petrov, “Recycling of glass fibers sheets from thermoset reinforced plastic using thermolysis method,” IOP Conf. Ser.: Mater. sci. Eng. - IOP Publ., 734, No. 1, 012185 (2020). A. E. Protsenko, E. D. Pimenova, and V. V. Petrov, “Recycling of glass fibers sheets from thermoset reinforced plastic using thermolysis method,” IOP Conf. Ser.: Mater. sci. Eng. - IOP Publ., 734, No. 1, 012185 (2020).
15.
Zurück zum Zitat R. S. Ginder and S. Ozcan, “Recycling of commercial e-glass reinforced thermoset composites via two temperature step pyrolysis to improve recovered fiber tensile strength and failure strain,” Recycl., 4, No. 2(24), 1-42 (2019). R. S. Ginder and S. Ozcan, “Recycling of commercial e-glass reinforced thermoset composites via two temperature step pyrolysis to improve recovered fiber tensile strength and failure strain,” Recycl., 4, No. 2(24), 1-42 (2019).
16.
Zurück zum Zitat C. C. Kao, O. R. Ghita, K. R. Hallam, P. J. Heard, and K. E. Evans, “Mechanical studies of single glass fibers recycled from hydrolysis process using sub-critical water,” Composites: Part A, 43, No. 3, 398-406 (2012).CrossRef C. C. Kao, O. R. Ghita, K. R. Hallam, P. J. Heard, and K. E. Evans, “Mechanical studies of single glass fibers recycled from hydrolysis process using sub-critical water,” Composites: Part A, 43, No. 3, 398-406 (2012).CrossRef
17.
Zurück zum Zitat Y. Bai, Z. Wang, and L. Feng, “Chemical recycling of carbon fibers reinforced epoxy resin composites in oxygen in supercritical water,” Mater. Des., 31, No. 2, 999-1002 (2010).CrossRef Y. Bai, Z. Wang, and L. Feng, “Chemical recycling of carbon fibers reinforced epoxy resin composites in oxygen in supercritical water,” Mater. Des., 31, No. 2, 999-1002 (2010).CrossRef
18.
Zurück zum Zitat R. Piñero-Hernanz, C. Dodds, J. Hyde, J García-Serna., M. Poliakoff, E Lester., and K. H. Wong, “Chemical recycling of carbon fiber reinforced composites in nearcritical and supercritical water,” Composites: Part A, 39, No. 3, 454-461 (2008). R. Piñero-Hernanz, C. Dodds, J. Hyde, J García-Serna., M. Poliakoff, E Lester., and K. H. Wong, “Chemical recycling of carbon fiber reinforced composites in nearcritical and supercritical water,” Composites: Part A, 39, No. 3, 454-461 (2008).
19.
Zurück zum Zitat I. Okajima and T. Sako, “Recycling fiber-reinforced plastic using supercritical acetone,” Polym. Degradation Stab., 163, 1-6 (2019).CrossRef I. Okajima and T. Sako, “Recycling fiber-reinforced plastic using supercritical acetone,” Polym. Degradation Stab., 163, 1-6 (2019).CrossRef
20.
Zurück zum Zitat R. Piñero-Hernanz, J. García-Serna, C. Dodds, J. Hyde, M. Poliakoff, M. J. Cocero, and E. Lester, “Chemical recycling of carbon fiber composites using alcohols under subcritical and supercritical conditions,” J. Supercritical Fluids, 46, No. 1, 83-92 (2008).CrossRef R. Piñero-Hernanz, J. García-Serna, C. Dodds, J. Hyde, M. Poliakoff, M. J. Cocero, and E. Lester, “Chemical recycling of carbon fiber composites using alcohols under subcritical and supercritical conditions,” J. Supercritical Fluids, 46, No. 1, 83-92 (2008).CrossRef
21.
Zurück zum Zitat M. Vallee, G. Tersac, N. Destais-Orvoen, and G. Durand, “Chemical recycling of class A surface quality sheet-molding composites,” Ind. Eng. Chem. Res., 43, No. 20, 6317-6324 (2004).CrossRef M. Vallee, G. Tersac, N. Destais-Orvoen, and G. Durand, “Chemical recycling of class A surface quality sheet-molding composites,” Ind. Eng. Chem. Res., 43, No. 20, 6317-6324 (2004).CrossRef
Metadaten
Titel
Recycling of Fiberglass Fillers Obtained from Polymer Composites Based on an Epoxy Vinyl Ester Binder
verfasst von
A. E. Protsenko
V. V. Petrov
Publikationsdatum
17.09.2022
Verlag
Springer US
Erschienen in
Mechanics of Composite Materials / Ausgabe 4/2022
Print ISSN: 0191-5665
Elektronische ISSN: 1573-8922
DOI
https://doi.org/10.1007/s11029-022-10048-9

Weitere Artikel der Ausgabe 4/2022

Mechanics of Composite Materials 4/2022 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.