Skip to main content
Erschienen in: The International Journal of Life Cycle Assessment 8/2019

06.01.2019 | PACKAGING SYSTEMS INCLUDING RECYCLING

Refurbishment of office buildings in New Zealand: identifying priorities for reducing environmental impacts

verfasst von: Agneta Ghose, Massimo Pizzol, Sarah J. McLaren, Mathieu Vignes, David Dowdell

Erschienen in: The International Journal of Life Cycle Assessment | Ausgabe 8/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Purpose

In recent years, the building sector has highlighted the importance of operational energy and efficient resource management in order to reduce the environmental impacts of buildings. However, differences in building-specific properties (building location, size, construction material, etc.) pose a major challenge in development of generic policy on buildings. The aim of this study was to investigate the relationship between energy and resource management policies, and building-specific characteristics on environmental impacts of refurbished office buildings in New Zealand.

Methods

Life Cycle Assessment (LCA) was performed for 17 office buildings operating under seven representative climatic conditions found in New Zealand. Each building was assessed under four policy scenarios: (i) business-as-usual, (ii) use of on-site photovoltaic (PV) panels, (iii) electricity supply from a renewable energy grid, and (iv) best practice construction activities adopted at site. The influence of 15 building-specific characteristics in combination with each scenario was evaluated. The study adopted regression analysis, more specifically Kruskal-Wallis and General Additive Modeling (GAM), to support interpretation of the LCA results.

Results and discussion

All the chosen policies can significantly contribute to climate change mitigation as compared to business-as-usual. However, the Kruskal-Wallis results highlight policies on increasing renewable energy sources supplying national grid electricity can substantially reduce the impacts across most environmental impact categories. Better construction practices should be prioritized over PV installation as use of on-site PV significantly increases the environmental impacts related to use of resources. The GAM results show on-site PV could be installed in low-rise buildings in regions with long sunshine hours. The results also show the strong influence of façade elements and technical equipment in determining the environmental performance of small and large buildings, respectively. In large multi-storied buildings, efficient HVAC and smaller window area are beneficial features, while in small buildings the choice of façade materials with low embodied impacts should be prioritized.

Conclusions

In general, the study highlighted the importance of policies on increasing renewable energy supply from national grid electricity to substantially reduce most of the impacts related to buildings. In addition, the study also highlighted the importance of better construction practices and building-specific characteristics to reduce the impacts related to resource use. These findings can support policy makers to prioritize strategies to improve the environmental performance of existing buildings in New Zealand and in regions with similar building construction and climate.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Fußnoten
1
Determined based on Spearman’s rank correlation or “rho” which is a nonparametric measure of correlation and does not consider the underlying distribution of the data.
 
Literatur
Zurück zum Zitat Akaike H (1974) A new look at the statistical model identification. IEEE Trans Autom Control 19:716–723CrossRef Akaike H (1974) A new look at the statistical model identification. IEEE Trans Autom Control 19:716–723CrossRef
Zurück zum Zitat Aktas CB, Bilec MM (2012) Service life prediction of residential interior finishes for life cycle assessment. Int J Life Cycle Assess 17:362–371CrossRef Aktas CB, Bilec MM (2012) Service life prediction of residential interior finishes for life cycle assessment. Int J Life Cycle Assess 17:362–371CrossRef
Zurück zum Zitat Al-Ghamdi SG, Bilec MM (2015) Life-cycle thinking and the LEED rating system: global perspective on building energy use and environmental impacts. Environ Sci Technol 49:4048–4056CrossRef Al-Ghamdi SG, Bilec MM (2015) Life-cycle thinking and the LEED rating system: global perspective on building energy use and environmental impacts. Environ Sci Technol 49:4048–4056CrossRef
Zurück zum Zitat Asadi E, Da Silva MG, Antunes CH, Dias L (2012) Multi-objective optimization for building retrofit strategies: a model and an application. Energy Build 44:81–87CrossRef Asadi E, Da Silva MG, Antunes CH, Dias L (2012) Multi-objective optimization for building retrofit strategies: a model and an application. Energy Build 44:81–87CrossRef
Zurück zum Zitat Ascione F, Bianco N, De Masi R, De Rossi F, Vanoli GP (2014) Energy refurbishment of existing buildings through the use of phase change materials: energy savings and indoor comfort in the cooling season. Appl Energy 113:990–1007CrossRef Ascione F, Bianco N, De Masi R, De Rossi F, Vanoli GP (2014) Energy refurbishment of existing buildings through the use of phase change materials: energy savings and indoor comfort in the cooling season. Appl Energy 113:990–1007CrossRef
Zurück zum Zitat Asif M, Munner T, Kubie J (2005) Sustainability analysis of window frames. J Build Serv Eng 26:71–87CrossRef Asif M, Munner T, Kubie J (2005) Sustainability analysis of window frames. J Build Serv Eng 26:71–87CrossRef
Zurück zum Zitat Babaizadeh H, Haghighi N, Asadi S, Broun R, Riley D (2015) Life cycle assessment of exterior window shadings in residential buildings in different climate zones. Build Environ 90:168–177CrossRef Babaizadeh H, Haghighi N, Asadi S, Broun R, Riley D (2015) Life cycle assessment of exterior window shadings in residential buildings in different climate zones. Build Environ 90:168–177CrossRef
Zurück zum Zitat Balaras C A, Dascalaki E, & Kontoyiannidis S (2004) Decision support software for sustainable building refurbishment. ASHRAE Annual Winter Meeting, Anahaim 110:592–601 Balaras C A, Dascalaki E, & Kontoyiannidis S (2004) Decision support software for sustainable building refurbishment. ASHRAE Annual Winter Meeting, Anahaim 110:592–601
Zurück zum Zitat Balcombe P, Rigby D, Azapagic A (2015) Environmental impacts of microgeneration: integrating solar PV, Stirling engine CHP and battery storage. Appl Energy 139:245–259CrossRef Balcombe P, Rigby D, Azapagic A (2015) Environmental impacts of microgeneration: integrating solar PV, Stirling engine CHP and battery storage. Appl Energy 139:245–259CrossRef
Zurück zum Zitat Berger M, Finkbeiner M (2011) Correlation analysis of life cycle impact assessment indicators measuring resource use. Int J Life Cycle Assess 16:74–81CrossRef Berger M, Finkbeiner M (2011) Correlation analysis of life cycle impact assessment indicators measuring resource use. Int J Life Cycle Assess 16:74–81CrossRef
Zurück zum Zitat Bhochhibhoya S, Pizzol M, Achten WMJ, Maskey RK, Zanetti M, Cavalli R (2017) Comparative life cycle assessment and life cycle costing of lodging in the Himalaya. Int J Life Cycle Assess 22:1851–1863CrossRef Bhochhibhoya S, Pizzol M, Achten WMJ, Maskey RK, Zanetti M, Cavalli R (2017) Comparative life cycle assessment and life cycle costing of lodging in the Himalaya. Int J Life Cycle Assess 22:1851–1863CrossRef
Zurück zum Zitat Blengini GA, Di Carlo T (2010) The changing role of life cycle phases, subsystems and materials in the LCA of low energy buildings. Energy Build 42:869–880CrossRef Blengini GA, Di Carlo T (2010) The changing role of life cycle phases, subsystems and materials in the LCA of low energy buildings. Energy Build 42:869–880CrossRef
Zurück zum Zitat Britten R (2000) Lake Coleridge: the power, the people, the land. Christchurch. Hazard Press pp 56–68 Britten R (2000) Lake Coleridge: the power, the people, the land. Christchurch. Hazard Press pp 56–68
Zurück zum Zitat Bush R, Jacques DA, Scott K, Barrett J (2014) The carbon payback of micro-generation: an integrated hybrid input–output approach. Appl Energy 119:85–98CrossRef Bush R, Jacques DA, Scott K, Barrett J (2014) The carbon payback of micro-generation: an integrated hybrid input–output approach. Appl Energy 119:85–98CrossRef
Zurück zum Zitat Buyle M, Braet J, Audenaert A (2014) Life cycle assessment of an apartment building: comparison of an attributional and consequential approach. Energy Procedia 62:132–140CrossRef Buyle M, Braet J, Audenaert A (2014) Life cycle assessment of an apartment building: comparison of an attributional and consequential approach. Energy Procedia 62:132–140CrossRef
Zurück zum Zitat Byrd H, Leardini P (2011) Green buildings: issues for New Zealand. Procedia Eng 21:481–488CrossRef Byrd H, Leardini P (2011) Green buildings: issues for New Zealand. Procedia Eng 21:481–488CrossRef
Zurück zum Zitat Cabeza LF, Rincón L, Vilarino MV, Perez G, Castell A (2014) Life cycle assessment (LCA) and life cycle energy analysis (LCEA) of buildings and the building sector: a review. Renew Sust Energy Rev 29:394–416CrossRef Cabeza LF, Rincón L, Vilarino MV, Perez G, Castell A (2014) Life cycle assessment (LCA) and life cycle energy analysis (LCEA) of buildings and the building sector: a review. Renew Sust Energy Rev 29:394–416CrossRef
Zurück zum Zitat Carletti C, Sciurpi F, Pierangioli L (2014) The energy upgrading of existing buildings: window and shading device typologies for energy efficiency refurbishment. Sustainability 6:5354–5377CrossRef Carletti C, Sciurpi F, Pierangioli L (2014) The energy upgrading of existing buildings: window and shading device typologies for energy efficiency refurbishment. Sustainability 6:5354–5377CrossRef
Zurück zum Zitat Castleton HF, Stovin V, Beck SBM, Davison JB (2010) Green roofs; building energy savings and the potential for retrofit. Energy Build 42:1582–1591CrossRef Castleton HF, Stovin V, Beck SBM, Davison JB (2010) Green roofs; building energy savings and the potential for retrofit. Energy Build 42:1582–1591CrossRef
Zurück zum Zitat Citherlet S, Guglielmo FD, Gay J-B (2000) Window and advanced glazing systems life cycle assessment. Energy Build 32:225–234CrossRef Citherlet S, Guglielmo FD, Gay J-B (2000) Window and advanced glazing systems life cycle assessment. Energy Build 32:225–234CrossRef
Zurück zum Zitat Cory S (2016) An exploration of the feasibility of converting the New Zealand commercial building stock to be net zero energy. Monograph (archived), Victoria University, Wellington, New Zealand Cory S (2016) An exploration of the feasibility of converting the New Zealand commercial building stock to be net zero energy. Monograph (archived), Victoria University, Wellington, New Zealand
Zurück zum Zitat Dahlstrøm O, Sørnes K, Eriksen ST, Hertwich EG (2012) Life cycle assessment of a single-family residence built to either conventional- or passive house standard. Energy Build 54:470–479CrossRef Dahlstrøm O, Sørnes K, Eriksen ST, Hertwich EG (2012) Life cycle assessment of a single-family residence built to either conventional- or passive house standard. Energy Build 54:470–479CrossRef
Zurück zum Zitat Derksen S, Keselman HJ (1992) Backward, forward and stepwise automated subset selection algorithms: frequency of obtaining authentic and noise variables. BJMSP 45:265–282 Derksen S, Keselman HJ (1992) Backward, forward and stepwise automated subset selection algorithms: frequency of obtaining authentic and noise variables. BJMSP 45:265–282
Zurück zum Zitat Doran D, Douglas J, Pratley R (2009) Repair and refurbishment in construction. Whittles Publishing, Dunbeath pp 119–205 Doran D, Douglas J, Pratley R (2009) Repair and refurbishment in construction. Whittles Publishing, Dunbeath pp 119–205
Zurück zum Zitat Dowdell D, Berg B, Marston N, Shaw P, Burgess J, Roberti J, White B (2016) New Zealand whole building whole of life framework—development of datasheets to support building life cycle assessment (SR 351). BRANZ, Judgeford, New Zealand, https://www.branz.co.nz/study_reports. Accessed 7 December 2015 Dowdell D, Berg B, Marston N, Shaw P, Burgess J, Roberti J, White B (2016) New Zealand whole building whole of life framework—development of datasheets to support building life cycle assessment (SR 351). BRANZ, Judgeford, New Zealand, https://​www.​branz.​co.​nz/​study_​reports. Accessed 7 December 2015
Zurück zum Zitat EN 15978 (2011) Sustainability of construction works. Assessment of environmental performance of buildings. British Standards Institution, UK EN 15978 (2011) Sustainability of construction works. Assessment of environmental performance of buildings. British Standards Institution, UK
Zurück zum Zitat Fu Y, Liu X, Yuan Z (2015) Life-cycle assessment of multi-crystalline photovoltaic (PV) systems in China. J Clean Prod 86:180–190CrossRef Fu Y, Liu X, Yuan Z (2015) Life-cycle assessment of multi-crystalline photovoltaic (PV) systems in China. J Clean Prod 86:180–190CrossRef
Zurück zum Zitat Ghose A, Mclaren S, Dave D, Phipps R (2017a) Environmental assessment of deep energy refurbishment for energy efficiency—a case study of an office building in New Zealand. Build Environ 117:274–287CrossRef Ghose A, Mclaren S, Dave D, Phipps R (2017a) Environmental assessment of deep energy refurbishment for energy efficiency—a case study of an office building in New Zealand. Build Environ 117:274–287CrossRef
Zurück zum Zitat Ghose A, Pizzol M, McLaren SJ (2017b) Consequential LCA modelling of building refurbishment in New Zealand—an evaluation of resource and waste management scenarios. J Clean Prod 165:119–133CrossRef Ghose A, Pizzol M, McLaren SJ (2017b) Consequential LCA modelling of building refurbishment in New Zealand—an evaluation of resource and waste management scenarios. J Clean Prod 165:119–133CrossRef
Zurück zum Zitat Grant A, Ries R (2013) Impact of building service life models on life cycle assessment. Build Res Inf 41:168–186CrossRef Grant A, Ries R (2013) Impact of building service life models on life cycle assessment. Build Res Inf 41:168–186CrossRef
Zurück zum Zitat Grant A, Reis R, Kibert C (2014) Life cycle assessment and service life prediction: a case study of building envelope materials. J Ind Ecol 18:187–200CrossRef Grant A, Reis R, Kibert C (2014) Life cycle assessment and service life prediction: a case study of building envelope materials. J Ind Ecol 18:187–200CrossRef
Zurück zum Zitat Grant A, Ries R, Thompson C (2016) Quantitative approaches in life cycle assessment—part 2—multivariate correlation and regression analysis. Int J Life Cycle Assess 21:912–919CrossRef Grant A, Ries R, Thompson C (2016) Quantitative approaches in life cycle assessment—part 2—multivariate correlation and regression analysis. Int J Life Cycle Assess 21:912–919CrossRef
Zurück zum Zitat Greening B, Azapagic A (2012) Domestic heat pumps: life cycle environmental impacts and potential implications for the UK. Energy 39:205–217CrossRef Greening B, Azapagic A (2012) Domestic heat pumps: life cycle environmental impacts and potential implications for the UK. Energy 39:205–217CrossRef
Zurück zum Zitat Guisan A, Edwards TC, Hastie T (2002) Generalized linear and generalized additive models in studies of species distributions: setting the scene. Ecol Model 157:89–100CrossRef Guisan A, Edwards TC, Hastie T (2002) Generalized linear and generalized additive models in studies of species distributions: setting the scene. Ecol Model 157:89–100CrossRef
Zurück zum Zitat Heeren N, Mutel CL, Steubing B, Ostermeyer Y, Wallbaum H, Hellweg S (2015) Environmental impact of buildings—what matters? Environ Sci Technol 49:9832–9841CrossRef Heeren N, Mutel CL, Steubing B, Ostermeyer Y, Wallbaum H, Hellweg S (2015) Environmental impact of buildings—what matters? Environ Sci Technol 49:9832–9841CrossRef
Zurück zum Zitat Huijbregts MAJ, Norris G, Bretz R, Ciroth A, Maurice B, von Bahr B, Weidema B, de Beaufort ASH (2001) Framework for modelling data uncertainty in life cycle inventories. Int J Life Cycle Assess 6:127–132CrossRef Huijbregts MAJ, Norris G, Bretz R, Ciroth A, Maurice B, von Bahr B, Weidema B, de Beaufort ASH (2001) Framework for modelling data uncertainty in life cycle inventories. Int J Life Cycle Assess 6:127–132CrossRef
Zurück zum Zitat Juan YK, Gao P, Wang J (2010) A hybrid decision support system for sustainable office building renovation and energy performance improvement. Energy Build 42:290–297CrossRef Juan YK, Gao P, Wang J (2010) A hybrid decision support system for sustainable office building renovation and energy performance improvement. Energy Build 42:290–297CrossRef
Zurück zum Zitat Khasreen M, Banfill P, Menzies G (2009) Life-cycle assessment and the environmental impact of buildings: a review. Sustainability 1:674–701CrossRef Khasreen M, Banfill P, Menzies G (2009) Life-cycle assessment and the environmental impact of buildings: a review. Sustainability 1:674–701CrossRef
Zurück zum Zitat Kosareo L, Ries R (2007) Comparative environmental life cycle assessment of green roofs. Build Environ 42:2606–2613CrossRef Kosareo L, Ries R (2007) Comparative environmental life cycle assessment of green roofs. Build Environ 42:2606–2613CrossRef
Zurück zum Zitat Kua HW, Kamath S (2014) An attributional and consequential life cycle assessment of substituting concrete with bricks. J Clean Prod 81:190–200CrossRef Kua HW, Kamath S (2014) An attributional and consequential life cycle assessment of substituting concrete with bricks. J Clean Prod 81:190–200CrossRef
Zurück zum Zitat Lasvaux S, Achim F, Garat P, Peuportier B, Chevalier J, Habert G (2016) Correlations in life cycle impact assessment methods (LCIA) and indicators for construction materials: what matters? Ecol Indic 67:174–182CrossRef Lasvaux S, Achim F, Garat P, Peuportier B, Chevalier J, Habert G (2016) Correlations in life cycle impact assessment methods (LCIA) and indicators for construction materials: what matters? Ecol Indic 67:174–182CrossRef
Zurück zum Zitat Lloyd SM, Ries R (2007) Characterizing, propagating, and analyzing uncertainty in life-cycle assessment: a survey of quantitative approaches. J Ind Ecol 11:161–179CrossRef Lloyd SM, Ries R (2007) Characterizing, propagating, and analyzing uncertainty in life-cycle assessment: a survey of quantitative approaches. J Ind Ecol 11:161–179CrossRef
Zurück zum Zitat Mattinen MK, Nissinen A, Hyysalo S, Juntunen JK (2015) Energy use and greenhouse gas emissions of air source heat pump and innovative ground source air heat pump in a cold climate. J Ind Ecol 19:61–70CrossRef Mattinen MK, Nissinen A, Hyysalo S, Juntunen JK (2015) Energy use and greenhouse gas emissions of air source heat pump and innovative ground source air heat pump in a cold climate. J Ind Ecol 19:61–70CrossRef
Zurück zum Zitat Moschetti R, Brattebø H (2016) Sustainable business models for deep energy retrofitting of buildings: state-of-the-art and methodological approach. Energy Procedia 96:435–445CrossRef Moschetti R, Brattebø H (2016) Sustainable business models for deep energy retrofitting of buildings: state-of-the-art and methodological approach. Energy Procedia 96:435–445CrossRef
Zurück zum Zitat Oregi X, Hernandez P, Hernandez R (2017) Analysis of life-cycle boundaries for environmental and economic assessment of building energy refurbishment projects. Energy Build 136:12–25CrossRef Oregi X, Hernandez P, Hernandez R (2017) Analysis of life-cycle boundaries for environmental and economic assessment of building energy refurbishment projects. Energy Build 136:12–25CrossRef
Zurück zum Zitat Pikas E, Thalfeldt M, Kurnitski J (2014) Cost optimal and nearly zero energy building solutions for office buildings. Energy Build 74:30–42CrossRef Pikas E, Thalfeldt M, Kurnitski J (2014) Cost optimal and nearly zero energy building solutions for office buildings. Energy Build 74:30–42CrossRef
Zurück zum Zitat Pomponi F, Piroozfar PA, Southall R, Ashton P, Piroozfar P, Farr ER (2015) Life cycle energy and carbon assessment of double skin facades for office refurbishments. Energy Build. 109:143–156CrossRef Pomponi F, Piroozfar PA, Southall R, Ashton P, Piroozfar P, Farr ER (2015) Life cycle energy and carbon assessment of double skin facades for office refurbishments. Energy Build. 109:143–156CrossRef
Zurück zum Zitat Principi P, Fioretti R (2014) A comparative life cycle assessment of luminaires for general lighting for the office—compact fluorescent (CFL) vs light emitting diode (LED)—a case study. J Clean Prod 83:96–107CrossRef Principi P, Fioretti R (2014) A comparative life cycle assessment of luminaires for general lighting for the office—compact fluorescent (CFL) vs light emitting diode (LED)—a case study. J Clean Prod 83:96–107CrossRef
Zurück zum Zitat Reap J, Roman F, Duncan S, Bras B (2008) A survey of unresolved problems in life cycle assessment. Int J Life Cycle Asses 13:374–388CrossRef Reap J, Roman F, Duncan S, Bras B (2008) A survey of unresolved problems in life cycle assessment. Int J Life Cycle Asses 13:374–388CrossRef
Zurück zum Zitat Rinne S, Syri S (2013) Heat pumps versus combined heat and power production as CO2 reduction measures in Finland. Energy 57:308–318CrossRef Rinne S, Syri S (2013) Heat pumps versus combined heat and power production as CO2 reduction measures in Finland. Energy 57:308–318CrossRef
Zurück zum Zitat Sacayon Madrigal EE (2016) Assessment of the life cycle-based environmental impacts of New Zealand electricity. Massey University, Palmerston North Sacayon Madrigal EE (2016) Assessment of the life cycle-based environmental impacts of New Zealand electricity. Massey University, Palmerston North
Zurück zum Zitat Schmidt JH, Merciai S, Thrane M, Dalgaard R (2011) Inventory of country specific electricity in LCA—consequential and attributional scenarios. Methodology report v2. 2.0 LCA Consultants, Aalborg, Denmark, http://lca-net.com/publications. Accessed 10 October 2015 Schmidt JH, Merciai S, Thrane M, Dalgaard R (2011) Inventory of country specific electricity in LCA—consequential and attributional scenarios. Methodology report v2. 2.0 LCA Consultants, Aalborg, Denmark, http://​lca-net.​com/​publications. Accessed 10 October 2015
Zurück zum Zitat Shah V, Debella DC, Ries RJ (2008) Life cycle assessment of residential heating and cooling systems in four regions in the United States. Energ Build 40:503–513CrossRef Shah V, Debella DC, Ries RJ (2008) Life cycle assessment of residential heating and cooling systems in four regions in the United States. Energ Build 40:503–513CrossRef
Zurück zum Zitat Srinivasan RS, Braham WW, Campbell DE, Curcija CD (2012) Re (de) fining net zero energy: renewable energy balance in environmental building design. Build Environ 47:300–315CrossRef Srinivasan RS, Braham WW, Campbell DE, Curcija CD (2012) Re (de) fining net zero energy: renewable energy balance in environmental building design. Build Environ 47:300–315CrossRef
Zurück zum Zitat Su X, Zhang X (2010) Environmental performance optimization of window–wall ratio for different window type in hot summer and cold winter zone in China based on life cycle assessment. Energy Build 42:198–202CrossRef Su X, Zhang X (2010) Environmental performance optimization of window–wall ratio for different window type in hot summer and cold winter zone in China based on life cycle assessment. Energy Build 42:198–202CrossRef
Zurück zum Zitat Tähkämö L, Bazzana M, Ravel P, Grannec F, Martinsons C, Zissis G (2013) Life cycle assessment of light-emitting diode downlight luminaire—a case study. Int J Life Cycle Assess 18:1009–1018CrossRef Tähkämö L, Bazzana M, Ravel P, Grannec F, Martinsons C, Zissis G (2013) Life cycle assessment of light-emitting diode downlight luminaire—a case study. Int J Life Cycle Assess 18:1009–1018CrossRef
Zurück zum Zitat Theodorsson-Norheim E (1986) Kruskal-Wallis test: BASIC computer program to perform nonparametric one-way analysis of variance and multiple comparisons on ranks of several independent samples. Comput Methods Prog Biomed 23:57–62CrossRef Theodorsson-Norheim E (1986) Kruskal-Wallis test: BASIC computer program to perform nonparametric one-way analysis of variance and multiple comparisons on ranks of several independent samples. Comput Methods Prog Biomed 23:57–62CrossRef
Zurück zum Zitat Utama NA, McLellan BC, Gheewala SH, Ishihara KN (2012) Embodied impacts of traditional clay versus modern concrete houses in a tropical regime. Build Environ 57:362–369CrossRef Utama NA, McLellan BC, Gheewala SH, Ishihara KN (2012) Embodied impacts of traditional clay versus modern concrete houses in a tropical regime. Build Environ 57:362–369CrossRef
Zurück zum Zitat Vilches A, Garcia-Martinez A, Sanchez-Montañes B (2017) Life cycle assessment (LCA) of building refurbishment: a literature review. Energy Build 135:286–301CrossRef Vilches A, Garcia-Martinez A, Sanchez-Montañes B (2017) Life cycle assessment (LCA) of building refurbishment: a literature review. Energy Build 135:286–301CrossRef
Zurück zum Zitat Wadel G, Alonso P, Zamora J-L, Garrido P (2013) Simplified LCA in skin design: the FB720 case. Int J Sustain Build Technol Urban Dev 4(1):68–81CrossRef Wadel G, Alonso P, Zamora J-L, Garrido P (2013) Simplified LCA in skin design: the FB720 case. Int J Sustain Build Technol Urban Dev 4(1):68–81CrossRef
Zurück zum Zitat Wallhagen M, Glaumann M, Malmqvist T (2011) Basic building life cycle calculations to decrease contribution to climate change—case study on an office building in Sweden. Build Environ 46(10):1863–1871CrossRef Wallhagen M, Glaumann M, Malmqvist T (2011) Basic building life cycle calculations to decrease contribution to climate change—case study on an office building in Sweden. Build Environ 46(10):1863–1871CrossRef
Zurück zum Zitat Wei W, Larrey-Lassalle P, Faure T, Dumoulin N, Roux P, Mathias J-D (2015) How to conduct a proper sensitivity analysis in life cycle assessment: taking into account correlations within LCI data and interactions within the LCA calculation model. Environ Sci Technol 49:377–385CrossRef Wei W, Larrey-Lassalle P, Faure T, Dumoulin N, Roux P, Mathias J-D (2015) How to conduct a proper sensitivity analysis in life cycle assessment: taking into account correlations within LCI data and interactions within the LCA calculation model. Environ Sci Technol 49:377–385CrossRef
Zurück zum Zitat Yong S-G, Kim JH, Gim Y, Kim J, Cho J, Hong H, Baik YJ, Koo J (2017) Impacts of building envelope design factors upon energy loads and their optimization in US standard climate zones using experimental design. Energ Build 141:1–15CrossRef Yong S-G, Kim JH, Gim Y, Kim J, Cho J, Hong H, Baik YJ, Koo J (2017) Impacts of building envelope design factors upon energy loads and their optimization in US standard climate zones using experimental design. Energ Build 141:1–15CrossRef
Metadaten
Titel
Refurbishment of office buildings in New Zealand: identifying priorities for reducing environmental impacts
verfasst von
Agneta Ghose
Massimo Pizzol
Sarah J. McLaren
Mathieu Vignes
David Dowdell
Publikationsdatum
06.01.2019
Verlag
Springer Berlin Heidelberg
Erschienen in
The International Journal of Life Cycle Assessment / Ausgabe 8/2019
Print ISSN: 0948-3349
Elektronische ISSN: 1614-7502
DOI
https://doi.org/10.1007/s11367-018-1570-5

Weitere Artikel der Ausgabe 8/2019

The International Journal of Life Cycle Assessment 8/2019 Zur Ausgabe

LCA FOR ENERGY SYSTEMS AND FOOD PRODUCTS

Environmental impact of evolving coffee technologies