Skip to main content
Erschienen in: Cellulose 3/2013

01.06.2013 | Original Paper

Regenerated cellulose film with enhanced tensile strength prepared with ionic liquid 1-ethyl-3-methylimidazolium acetate (EMIMAc)

verfasst von: Xin Liu, Jinhui Pang, Xueming Zhang, Yuying Wu, Runcang Sun

Erschienen in: Cellulose | Ausgabe 3/2013

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this study, environmentally friendly regenerated cellulose films with enhanced tensile strength were successfully prepared by incorporation of plasticizer agents using 1-ethyl-3-methylimidazolium acetate as solvent. The results of morphology from scanning electron microscopy and atomic force microscopy showed that cellulose films possessed homogeneously, and exhibited smooth structure. 13C CP/MAS NMR spectra showed that the regenerated cellulose films were transferred from cellulose I to cellulose II. Moreover, the incorporation of plasticizer agents, especially in the presence of glycerol, significantly improved the tensile strength of cellulose film (143 MPa) as compared to the controlled sample. The notable properties of the regenerated cellulose films are promising for applications in transparent packaging.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Cao Y, Li HQ, Zhang Y, Zhang J, He JS (2010) Structure and properties of novel regenerated cellulose films prepared from cornhusk cellulose in room temperature ionic liquids. J Appl Polym Sci 116:547–554CrossRef Cao Y, Li HQ, Zhang Y, Zhang J, He JS (2010) Structure and properties of novel regenerated cellulose films prepared from cornhusk cellulose in room temperature ionic liquids. J Appl Polym Sci 116:547–554CrossRef
Zurück zum Zitat Cheng G, Varanasi P, Li CL, Liu HB, Melnichenko YB, Simmons BA, Kent MS, Singh S (2011) Transition of cellulose crystalline structure and surface morphology of biomass as a function of ionic liquid pretreatment and its relation to enzymatic hydrolysis. Biomacromolecules 12:933–941CrossRef Cheng G, Varanasi P, Li CL, Liu HB, Melnichenko YB, Simmons BA, Kent MS, Singh S (2011) Transition of cellulose crystalline structure and surface morphology of biomass as a function of ionic liquid pretreatment and its relation to enzymatic hydrolysis. Biomacromolecules 12:933–941CrossRef
Zurück zum Zitat EI Seoud OA, Koschella A, Fidale LC, Dorn S, Heinze T (2007) Applications of ionic liquids in carbohydrate chemistry: a window of opportunities. Biomacromolecules 8:2629–2647CrossRef EI Seoud OA, Koschella A, Fidale LC, Dorn S, Heinze T (2007) Applications of ionic liquids in carbohydrate chemistry: a window of opportunities. Biomacromolecules 8:2629–2647CrossRef
Zurück zum Zitat Fernandes SCM, Oliveira L, Freire CSR, Silvestre AJD, Neto CP, Gandini A, Desbrieres J (2009) Novel transparent nanocomposite films based on chitosan and bacterial cellulose. Green Chem 11:2023–2029CrossRef Fernandes SCM, Oliveira L, Freire CSR, Silvestre AJD, Neto CP, Gandini A, Desbrieres J (2009) Novel transparent nanocomposite films based on chitosan and bacterial cellulose. Green Chem 11:2023–2029CrossRef
Zurück zum Zitat French AD, Cintron MS (2013) Cellulose polymorphy, crystallite size, and the Segal Crystallinity Index. Cellulose 20:583–588CrossRef French AD, Cintron MS (2013) Cellulose polymorphy, crystallite size, and the Segal Crystallinity Index. Cellulose 20:583–588CrossRef
Zurück zum Zitat Fukaya Y, Sugimoto A, Ohno H (2006) Superior solubility of polysaccharides in low viscosity, polar, and halogen-free 1,3-dialkylimidazolium formats. Biomacromolecules 7:3295–3297CrossRef Fukaya Y, Sugimoto A, Ohno H (2006) Superior solubility of polysaccharides in low viscosity, polar, and halogen-free 1,3-dialkylimidazolium formats. Biomacromolecules 7:3295–3297CrossRef
Zurück zum Zitat Halonen H, Larsson PT, Iversen T (2012) Mercerized cellulose biocomposites: a study of influence of mercerization on cellulose supramolecular structure, water retention value and tensile properties. Cellulose. doi:10.1007/s10570-012-9801-6 Halonen H, Larsson PT, Iversen T (2012) Mercerized cellulose biocomposites: a study of influence of mercerization on cellulose supramolecular structure, water retention value and tensile properties. Cellulose. doi:10.​1007/​s10570-012-9801-6
Zurück zum Zitat Hameed N, Guo QP (2010) Blend films of natural wool and cellulose prepared from an ionic liquid. Cellulose 17:803–813CrossRef Hameed N, Guo QP (2010) Blend films of natural wool and cellulose prepared from an ionic liquid. Cellulose 17:803–813CrossRef
Zurück zum Zitat Heinze T, Dicke R, Koschella A, Kull AH, Klohr E, Koch W (2000) Effective preparation of cellulose derivatives in a new simple cellulose solvent. Macromol Chem Phys 201:627–631CrossRef Heinze T, Dicke R, Koschella A, Kull AH, Klohr E, Koch W (2000) Effective preparation of cellulose derivatives in a new simple cellulose solvent. Macromol Chem Phys 201:627–631CrossRef
Zurück zum Zitat Keshk S (2006) Physical properties of bacterial cellulose sheets produced in presence of lignosulfonate. Enzyme Microb Technol 40:9–12CrossRef Keshk S (2006) Physical properties of bacterial cellulose sheets produced in presence of lignosulfonate. Enzyme Microb Technol 40:9–12CrossRef
Zurück zum Zitat Klemm D, Heublein B, Fink HP, Bohn A (2005) Cellulose: fascinating biopolymer and sustainable raw material. Angew Chem Int Ed 44:3358–3393CrossRef Klemm D, Heublein B, Fink HP, Bohn A (2005) Cellulose: fascinating biopolymer and sustainable raw material. Angew Chem Int Ed 44:3358–3393CrossRef
Zurück zum Zitat Kolpak FJ, Blackwell J (1976) Determination of the structure of cellulose II. Macromolecules 9:273–278CrossRef Kolpak FJ, Blackwell J (1976) Determination of the structure of cellulose II. Macromolecules 9:273–278CrossRef
Zurück zum Zitat Langan P, Nishiyama Y, Chanzy H (1999) A revised structure and hydrogen-bonding system in cellulose II from a neutron fiber diffraction analysis. J Am Chem Soc 121:9940–9946CrossRef Langan P, Nishiyama Y, Chanzy H (1999) A revised structure and hydrogen-bonding system in cellulose II from a neutron fiber diffraction analysis. J Am Chem Soc 121:9940–9946CrossRef
Zurück zum Zitat Langan P, Nishiyama Y, Chanzy H (2001) X-ray structure of mercerized cellulose II at 1 Å resolution. Biomacromolecules 2:410–416CrossRef Langan P, Nishiyama Y, Chanzy H (2001) X-ray structure of mercerized cellulose II at 1 Å resolution. Biomacromolecules 2:410–416CrossRef
Zurück zum Zitat Lucia LA, Rojas OJ (2007) Fiber nanotechnology: a new platform for “green” research and technological innovations. Cellulose 14:539–542CrossRef Lucia LA, Rojas OJ (2007) Fiber nanotechnology: a new platform for “green” research and technological innovations. Cellulose 14:539–542CrossRef
Zurück zum Zitat Medronho B, Romano A, Miguel MG, Stigsson L, Lindman B (2012) Rationalizing cellulose (in) solubility: reviewing basic physicochemical aspects and role of hydrophobic interactions. Cellulose 19:581–587CrossRef Medronho B, Romano A, Miguel MG, Stigsson L, Lindman B (2012) Rationalizing cellulose (in) solubility: reviewing basic physicochemical aspects and role of hydrophobic interactions. Cellulose 19:581–587CrossRef
Zurück zum Zitat Meng LY, Zhang XM, Xu F, Sun RC (2012) Pretreatment of hybrid poplar for an accelerated enzymatic hydrolysis: characterization of cellulose rich fraction. Bioresour Technol 110:308–313CrossRef Meng LY, Zhang XM, Xu F, Sun RC (2012) Pretreatment of hybrid poplar for an accelerated enzymatic hydrolysis: characterization of cellulose rich fraction. Bioresour Technol 110:308–313CrossRef
Zurück zum Zitat Moon RJ, Martini A, Nairn J, Simonsen J, Youngblood J (2011) Cellulose nanomaterials review: structure, properties and nanocomposites. Chem Soc Rev 40:3941–3994CrossRef Moon RJ, Martini A, Nairn J, Simonsen J, Youngblood J (2011) Cellulose nanomaterials review: structure, properties and nanocomposites. Chem Soc Rev 40:3941–3994CrossRef
Zurück zum Zitat Muller-Dethlefs K, Hobza P (2000) Noncovalent interactions: a challenge for experiment and theory. Chem Rev 100:143–167CrossRef Muller-Dethlefs K, Hobza P (2000) Noncovalent interactions: a challenge for experiment and theory. Chem Rev 100:143–167CrossRef
Zurück zum Zitat Nishiyama Y, Langan P, Chanzy H (2002) Crystal structure and hydrogen-bonding system in cellulose Iβ from synchrotron X-ray and neutronriber diffraction. J Am Chem Soc 124:9074–9082CrossRef Nishiyama Y, Langan P, Chanzy H (2002) Crystal structure and hydrogen-bonding system in cellulose Iβ from synchrotron X-ray and neutronriber diffraction. J Am Chem Soc 124:9074–9082CrossRef
Zurück zum Zitat Orelma H, Filpponen I, Johansson LS, Laine J, Rojas OJ (2011) Modification of cellulose films by adsorption of CMC and chitosan for controlled attachment of biomolecules. Biomacromolecules 12:4311–4318CrossRef Orelma H, Filpponen I, Johansson LS, Laine J, Rojas OJ (2011) Modification of cellulose films by adsorption of CMC and chitosan for controlled attachment of biomolecules. Biomacromolecules 12:4311–4318CrossRef
Zurück zum Zitat Peng XW, Ren JL, Zhong LX, Sun RC (2011) Nanocomposite films based on xylan-rich hemicelluloses and cellulose nanofibers with enhanced mechanical properties. Biomacromolecules 12:3321–3329CrossRef Peng XW, Ren JL, Zhong LX, Sun RC (2011) Nanocomposite films based on xylan-rich hemicelluloses and cellulose nanofibers with enhanced mechanical properties. Biomacromolecules 12:3321–3329CrossRef
Zurück zum Zitat Qi HS, Chang CY, Zhang LN (2009) Properties and applications of biodegradable transparent and photoluminescent cellulose films prepared via a green process. Green Chem 11:177–184CrossRef Qi HS, Chang CY, Zhang LN (2009) Properties and applications of biodegradable transparent and photoluminescent cellulose films prepared via a green process. Green Chem 11:177–184CrossRef
Zurück zum Zitat Siro I, Plackett D (2010) Microfibrillated cellulose and new nanocomposite materials: a review. Cellulose 17:459–494CrossRef Siro I, Plackett D (2010) Microfibrillated cellulose and new nanocomposite materials: a review. Cellulose 17:459–494CrossRef
Zurück zum Zitat Stipanovic AJ, Sarko A (1976) Packing analysis of carbohydrates and polysaccharides. 6. Molecular and crystal structure of regenerated cellulose II. Macromolecules 9:851–857CrossRef Stipanovic AJ, Sarko A (1976) Packing analysis of carbohydrates and polysaccharides. 6. Molecular and crystal structure of regenerated cellulose II. Macromolecules 9:851–857CrossRef
Zurück zum Zitat Sun SM, Mitchell JR, Macnaughtan W, Foster TJ, Harabagiu V, Song YH, Zheng Q (2010) Comparison of the mechanical properties of cellulose and starch films. Biomacromolecules 11:126–132CrossRef Sun SM, Mitchell JR, Macnaughtan W, Foster TJ, Harabagiu V, Song YH, Zheng Q (2010) Comparison of the mechanical properties of cellulose and starch films. Biomacromolecules 11:126–132CrossRef
Zurück zum Zitat Turner MB, Spear SK, Holbrey JD, Rogers RD (2004) Production of bioactive cellulose films reconstituted from ionic liquids. Biomacromolecules 5:1379–1384CrossRef Turner MB, Spear SK, Holbrey JD, Rogers RD (2004) Production of bioactive cellulose films reconstituted from ionic liquids. Biomacromolecules 5:1379–1384CrossRef
Zurück zum Zitat Wasserscheid P, Keim W (2000) Ionic liquids-new “solutions” for transition metal catalysis. Angew Chem Int Ed 39:3772–3789CrossRef Wasserscheid P, Keim W (2000) Ionic liquids-new “solutions” for transition metal catalysis. Angew Chem Int Ed 39:3772–3789CrossRef
Zurück zum Zitat Woehl MA, Canestraro CD, Mikowski A, Sierakowski MR, Ramos LP, Wypych F (2010) Bionanocomposites of thermoplastic starch reinforced with bacterial cellulose nanofibres: effect of enzymatic treatment on mechanical properties. Carbohydr Polym 80:866–873CrossRef Woehl MA, Canestraro CD, Mikowski A, Sierakowski MR, Ramos LP, Wypych F (2010) Bionanocomposites of thermoplastic starch reinforced with bacterial cellulose nanofibres: effect of enzymatic treatment on mechanical properties. Carbohydr Polym 80:866–873CrossRef
Zurück zum Zitat Wu J, Zhang J, Zhang H, He JS, Ren Q, Guo ML (2004) Homogeneous acetylation of cellulose in a new ionic liquid. Biomacromolecules 5:266–268CrossRef Wu J, Zhang J, Zhang H, He JS, Ren Q, Guo ML (2004) Homogeneous acetylation of cellulose in a new ionic liquid. Biomacromolecules 5:266–268CrossRef
Zurück zum Zitat Zhang YP, Shao HL, Wu CX, Hu XC (2001) Formation and characterization of cellulose membranes from N-methylmorpholine-N-oxide solution. Macromol Biosci 1:141–148CrossRef Zhang YP, Shao HL, Wu CX, Hu XC (2001) Formation and characterization of cellulose membranes from N-methylmorpholine-N-oxide solution. Macromol Biosci 1:141–148CrossRef
Zurück zum Zitat Zhang H, Wu J, Zhang J, He JS (2005) 1-allyl-3-methylimidazolium chloride room temperature ionic liquid: a new and powerful nonderivatizing solvent for cellulose. Macromolecules 38:8272–8277CrossRef Zhang H, Wu J, Zhang J, He JS (2005) 1-allyl-3-methylimidazolium chloride room temperature ionic liquid: a new and powerful nonderivatizing solvent for cellulose. Macromolecules 38:8272–8277CrossRef
Zurück zum Zitat Zhao H, Baker GA, Song ZY, Olubajo O, Crittle T, Peters DD (2008) Designing enzyme-compatible ionic liquids that can dissolve carbohydrates. Green Chem 10:696–705CrossRef Zhao H, Baker GA, Song ZY, Olubajo O, Crittle T, Peters DD (2008) Designing enzyme-compatible ionic liquids that can dissolve carbohydrates. Green Chem 10:696–705CrossRef
Metadaten
Titel
Regenerated cellulose film with enhanced tensile strength prepared with ionic liquid 1-ethyl-3-methylimidazolium acetate (EMIMAc)
verfasst von
Xin Liu
Jinhui Pang
Xueming Zhang
Yuying Wu
Runcang Sun
Publikationsdatum
01.06.2013
Verlag
Springer Netherlands
Erschienen in
Cellulose / Ausgabe 3/2013
Print ISSN: 0969-0239
Elektronische ISSN: 1572-882X
DOI
https://doi.org/10.1007/s10570-013-9925-3

Weitere Artikel der Ausgabe 3/2013

Cellulose 3/2013 Zur Ausgabe