Skip to main content
Erschienen in: Autonomous Robots 1/2021

30.09.2020

Reinforcement based mobile robot path planning with improved dynamic window approach in unknown environment

verfasst von: Lu Chang, Liang Shan, Chao Jiang, Yuewei Dai

Erschienen in: Autonomous Robots | Ausgabe 1/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Mobile robot path planning in an unknown environment is a fundamental and challenging problem in the field of robotics. Dynamic window approach (DWA) is an effective method of local path planning, however some of its evaluation functions are inadequate and the algorithm for choosing the weights of these functions is lacking, which makes it highly dependent on the global reference and prone to fail in an unknown environment. In this paper, an improved DWA based on Q-learning is proposed. First, the original evaluation functions are modified and extended by adding two new evaluation functions to enhance the performance of global navigation. Then, considering the balance of effectiveness and speed, we define the state space, action space and reward function of the adopted Q-learning algorithm for the robot motion planning. After that, the parameters of the proposed DWA are adaptively learned by Q-learning and a trained agent is obtained to adapt to the unknown environment. At last, by a series of comparative simulations, the proposed method shows higher navigation efficiency and successful rate in the complex unknown environment. The proposed method is also validated in experiments based on XQ-4 Pro robot to verify its navigation capability in both static and dynamic environment.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
Zurück zum Zitat Agha-Mohammadi, A. A., Chakravorty, S., & Amato, N. M. (2014). Firm: Sampling-based feedback motion-planning under motion uncertainty and imperfect measurements. The International Journal of Robotics Research, 33(2), 268–304.CrossRef Agha-Mohammadi, A. A., Chakravorty, S., & Amato, N. M. (2014). Firm: Sampling-based feedback motion-planning under motion uncertainty and imperfect measurements. The International Journal of Robotics Research, 33(2), 268–304.CrossRef
Zurück zum Zitat Ballesteros, J., Urdiales, C., Velasco, A. B. M., & Ramos-Jimenez, G. (2017). A biomimetical dynamic window approach to navigation for collaborative control. IEEE Transactions on Human–Machine Systems, 47(6), 1123–1133.CrossRef Ballesteros, J., Urdiales, C., Velasco, A. B. M., & Ramos-Jimenez, G. (2017). A biomimetical dynamic window approach to navigation for collaborative control. IEEE Transactions on Human–Machine Systems, 47(6), 1123–1133.CrossRef
Zurück zum Zitat Bayili, S., & Polat, F. (2011). Limited-damage A*: A path search algorithm that considers damage as a feasibility criterion. Knowledge-Based Systems, 24(4), 501–512.CrossRef Bayili, S., & Polat, F. (2011). Limited-damage A*: A path search algorithm that considers damage as a feasibility criterion. Knowledge-Based Systems, 24(4), 501–512.CrossRef
Zurück zum Zitat Best, G., Faigl, J., & Fitch, R. (2017). Online planning for multi-robot active perception with self-organising maps. Autonomous Robots, 42(4), 715–738.CrossRef Best, G., Faigl, J., & Fitch, R. (2017). Online planning for multi-robot active perception with self-organising maps. Autonomous Robots, 42(4), 715–738.CrossRef
Zurück zum Zitat Brock, O., & Oussama, K. (1999). High-speed navigation using the global dynamic window approach. In 1999 IEEE international conference (pp. 341–346). Brock, O., & Oussama, K. (1999). High-speed navigation using the global dynamic window approach. In 1999 IEEE international conference (pp. 341–346).
Zurück zum Zitat Chang, L., Shan, L., Li, J., & Dai, Y. W. (2019). The path planning of mobile robots based on an improved A* algorithm. In 2019 IEEE 16th international conference on networking, sensing and control (ICNSC) (pp. 257–262). Chang, L., Shan, L., Li, J., & Dai, Y. W. (2019). The path planning of mobile robots based on an improved A* algorithm. In 2019 IEEE 16th international conference on networking, sensing and control (ICNSC) (pp. 257–262).
Zurück zum Zitat Contreras-Cruz, M. A., Ayala-Ramirez, V., & Hernandez-Belmonte, U. H. (2015). Mobile robot path planning using artificial bee colony and evolutionary programming. Applied Soft Computing, 30(2015), 319–328.CrossRef Contreras-Cruz, M. A., Ayala-Ramirez, V., & Hernandez-Belmonte, U. H. (2015). Mobile robot path planning using artificial bee colony and evolutionary programming. Applied Soft Computing, 30(2015), 319–328.CrossRef
Zurück zum Zitat Das, P. K., Behera, H. S., & Panigrahi, B. K. (2015). Intelligent-based multi-robot path planning inspired by improved classical Q-learning and improved particle swarm optimization with perturbed velocity. Engineering Science and Technology, an International Journal,. https://doi.org/10.1016/j.jestch.2015.09.009. Das, P. K., Behera, H. S., & Panigrahi, B. K. (2015). Intelligent-based multi-robot path planning inspired by improved classical Q-learning and improved particle swarm optimization with perturbed velocity. Engineering Science and Technology, an International Journal,. https://​doi.​org/​10.​1016/​j.​jestch.​2015.​09.​009.
Zurück zum Zitat Das, P. K., Behera, H. S., & Panigrahi, B. K. (2016). Intelligent-based multi-robot path planning inspired by improved classical q-learning and improved particle swarm optimization with perturbed velocity. Engineering Science and Technology, an International Journal, 19(1), 651–669.CrossRef Das, P. K., Behera, H. S., & Panigrahi, B. K. (2016). Intelligent-based multi-robot path planning inspired by improved classical q-learning and improved particle swarm optimization with perturbed velocity. Engineering Science and Technology, an International Journal, 19(1), 651–669.CrossRef
Zurück zum Zitat Duguleana, M., & Mogan, G. (2016). Neural networks based reinforcement learning for mobile robots obstacle avoidance. Expert Systems with Applications, 62(2016), 104–115.CrossRef Duguleana, M., & Mogan, G. (2016). Neural networks based reinforcement learning for mobile robots obstacle avoidance. Expert Systems with Applications, 62(2016), 104–115.CrossRef
Zurück zum Zitat Durrant, W. H. (1994). Where am I? A tutorial on mobile vehicle localization. Industrial Robot, 21(2), 11–16.CrossRef Durrant, W. H. (1994). Where am I? A tutorial on mobile vehicle localization. Industrial Robot, 21(2), 11–16.CrossRef
Zurück zum Zitat Elbanhawi, M., & Simic, M. (2014). Sampling-based robot motion planning: A review. IEEE Access, 2(2014), 56–77.CrossRef Elbanhawi, M., & Simic, M. (2014). Sampling-based robot motion planning: A review. IEEE Access, 2(2014), 56–77.CrossRef
Zurück zum Zitat Fox, D., Burgard, W., & Thrun, S. (2002). The dynamic window approach to collision avoidance. IEEE Robotics & Automation Magazine, 4(1), 23–33.CrossRef Fox, D., Burgard, W., & Thrun, S. (2002). The dynamic window approach to collision avoidance. IEEE Robotics & Automation Magazine, 4(1), 23–33.CrossRef
Zurück zum Zitat Fu, Y., Ding, M., Zhou, C., & Han, H. (2013). Route planning for unmanned aerial vehicle (UAV) on the sea using hybrid differential evolution and quantum-behaved particle swarm optimization. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 43(6), 1451–1465.CrossRef Fu, Y., Ding, M., Zhou, C., & Han, H. (2013). Route planning for unmanned aerial vehicle (UAV) on the sea using hybrid differential evolution and quantum-behaved particle swarm optimization. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 43(6), 1451–1465.CrossRef
Zurück zum Zitat González, R., Jayakumar, P., & Iagnemma, K. (2017). Stochastic mobility prediction of ground vehicles over large spatial regions: A geostatistical approach. Autonomous Robots, 41(2), 311–331.CrossRef González, R., Jayakumar, P., & Iagnemma, K. (2017). Stochastic mobility prediction of ground vehicles over large spatial regions: A geostatistical approach. Autonomous Robots, 41(2), 311–331.CrossRef
Zurück zum Zitat Hart, P. E., Nilsson, N. J., & Raphael, B. (1968). A Formal Basis for the Heuristic Determination of Minimum Cost Paths. IEEE Transactions on Systems Science and Cybernetics, 4(2), 100–107.CrossRef Hart, P. E., Nilsson, N. J., & Raphael, B. (1968). A Formal Basis for the Heuristic Determination of Minimum Cost Paths. IEEE Transactions on Systems Science and Cybernetics, 4(2), 100–107.CrossRef
Zurück zum Zitat Henkel, C., Bubeck, A., & Xu, W. (2016). Energy efficient dynamic window approach for local path planning in mobile service robotics *. IFAC PapersOnLine, 49(15), 32–37.CrossRef Henkel, C., Bubeck, A., & Xu, W. (2016). Energy efficient dynamic window approach for local path planning in mobile service robotics *. IFAC PapersOnLine, 49(15), 32–37.CrossRef
Zurück zum Zitat Hossain, M. A., & Ferdous, I. (2015). Autonomous robot path planning in dynamic environment using a new optimization technique inspired by bacterial foraging technique. Robotics and Autonomous Systems, 64(2015), 137–141.CrossRef Hossain, M. A., & Ferdous, I. (2015). Autonomous robot path planning in dynamic environment using a new optimization technique inspired by bacterial foraging technique. Robotics and Autonomous Systems, 64(2015), 137–141.CrossRef
Zurück zum Zitat Ishay, K., Elon, R., & Ehud, R. (1998). TangentBug: A range-sensor-based navigation algorithm. The International Journal of Robotics Research, 17(9), 934–953.CrossRef Ishay, K., Elon, R., & Ehud, R. (1998). TangentBug: A range-sensor-based navigation algorithm. The International Journal of Robotics Research, 17(9), 934–953.CrossRef
Zurück zum Zitat Jaradat, M. A. K., Al-Rousan, M., & Quadan, L. (2011). Reinforcement based mobile robot navigation in dynamic environment. Robotics and Computer-Integrated Manufacturing, 27(1), 135–149.CrossRef Jaradat, M. A. K., Al-Rousan, M., & Quadan, L. (2011). Reinforcement based mobile robot navigation in dynamic environment. Robotics and Computer-Integrated Manufacturing, 27(1), 135–149.CrossRef
Zurück zum Zitat Karaman, S., & Frazzoli, E. (2011). Sampling-based algorithms for optimal motion planning. The International Journal of Robotics Research, 30(7), 846–894.CrossRef Karaman, S., & Frazzoli, E. (2011). Sampling-based algorithms for optimal motion planning. The International Journal of Robotics Research, 30(7), 846–894.CrossRef
Zurück zum Zitat Khaled, B., Froduald, K., & Leo, H. (2013). Randomized path planning with preferences in highly complex dynamic environments.Robotica, 31(8), 1195–1208. Khaled, B., Froduald, K., & Leo, H. (2013). Randomized path planning with preferences in highly complex dynamic environments.Robotica, 31(8), 1195–1208.
Zurück zum Zitat Khatib, O. (1986). Real-time obstacle avoidance for manipulators and mobile robots. International Journal of Robotics Research, 5(1), 90–98.CrossRef Khatib, O. (1986). Real-time obstacle avoidance for manipulators and mobile robots. International Journal of Robotics Research, 5(1), 90–98.CrossRef
Zurück zum Zitat Kim, S., & Kim, H. (2010). Optimally overlapped ultrasonic sensor ring design for minimal positional uncertainty in obstacle detection. International Journal of Control, Automation, and Systems, 8(6), 1280–1287.CrossRef Kim, S., & Kim, H. (2010). Optimally overlapped ultrasonic sensor ring design for minimal positional uncertainty in obstacle detection. International Journal of Control, Automation, and Systems, 8(6), 1280–1287.CrossRef
Zurück zum Zitat Kiss, D. (2012). A receding horizon control approach to navigation in virtual corridors. Applied Computational Intelligence in Engineering and Information Technology, 1(2012), 175–186.CrossRef Kiss, D. (2012). A receding horizon control approach to navigation in virtual corridors. Applied Computational Intelligence in Engineering and Information Technology, 1(2012), 175–186.CrossRef
Zurück zum Zitat Kiss, D., & Tevesz, G. (2012). Advanced dynamic window based navigation approach using model predictive control. International conference on methods & models in automation & robotics (pp. 148–153). Kiss, D., & Tevesz, G. (2012). Advanced dynamic window based navigation approach using model predictive control. International conference on methods & models in automation & robotics (pp. 148–153).
Zurück zum Zitat Kovács, B., Szayer, G., Tajti, F., Burdelis, M., & Korondi, P. (2016). A novel potential field method for path planning of mobile robots by adapting animal motion attributes. Robotics and Autonomous Systems, 82(C), 24–34.CrossRef Kovács, B., Szayer, G., Tajti, F., Burdelis, M., & Korondi, P. (2016). A novel potential field method for path planning of mobile robots by adapting animal motion attributes. Robotics and Autonomous Systems, 82(C), 24–34.CrossRef
Zurück zum Zitat Kröse, Ben J. A. (1995). Learning from delayed rewards. Robotics and Autonomous Systems, 15(4), 233–235.CrossRef Kröse, Ben J. A. (1995). Learning from delayed rewards. Robotics and Autonomous Systems, 15(4), 233–235.CrossRef
Zurück zum Zitat Lamini, C., Fathi, Y., & Benhlima, S. (2015). Collaborative Q-learning path planning for autonomous robots based on holonic multi-agent system. In International conference on intelligent systems: theories & applications (pp. 1–6). Lamini, C., Fathi, Y., & Benhlima, S. (2015). Collaborative Q-learning path planning for autonomous robots based on holonic multi-agent system. In International conference on intelligent systems: theories & applications (pp. 1–6).
Zurück zum Zitat Langer, R. A., Coelho, L. S., & Oliveira G. H. C. (2007). K-Bug, a new bug approach for mobile robot’s path planning. Control applications. In 2007 IEEE international conference on control applications (pp. 403–408). Langer, R. A., Coelho, L. S., & Oliveira G. H. C. (2007). K-Bug, a new bug approach for mobile robot’s path planning. Control applications. In 2007 IEEE international conference on control applications (pp. 403–408).
Zurück zum Zitat Li, G., & Chou, W. (2016). An improved potential field method for mobile robot navigation. High Technology Letters, 22(1), 16–23.MathSciNet Li, G., & Chou, W. (2016). An improved potential field method for mobile robot navigation. High Technology Letters, 22(1), 16–23.MathSciNet
Zurück zum Zitat Li, M., Song, Q., Zhao, Q. J., & Zhang, Y. L. (2016). Route planning for unmanned aerial vehicle based on rolling RRT in unknown environment. In 2016 IEEE international conference on computational intelligence and computing research (pp. 1–4). Li, M., Song, Q., Zhao, Q. J., & Zhang, Y. L. (2016). Route planning for unmanned aerial vehicle based on rolling RRT in unknown environment. In 2016 IEEE international conference on computational intelligence and computing research (pp. 1–4).
Zurück zum Zitat Likhachev, M., Ferguson, D., Gordon, G., Stentz, A., & Thrun, S. (2008). Anytime search in dynamic graphs. Artificial Intelligence, 172(14), 1613–1643.MathSciNetCrossRef Likhachev, M., Ferguson, D., Gordon, G., Stentz, A., & Thrun, S. (2008). Anytime search in dynamic graphs. Artificial Intelligence, 172(14), 1613–1643.MathSciNetCrossRef
Zurück zum Zitat Lumelsky, V. J., & Skewis, T. (1990). Incorporating range sensing in the robot navigation function. IEEE Transactions on Systems, Man and Cybernetics, 20(5), 1058–1069.CrossRef Lumelsky, V. J., & Skewis, T. (1990). Incorporating range sensing in the robot navigation function. IEEE Transactions on Systems, Man and Cybernetics, 20(5), 1058–1069.CrossRef
Zurück zum Zitat Lumelsky, V. J., & Stepanov, A. A. (1987). Path-planning strategies for a point mobile automaton moving amidst unknown obstacles of arbitrary shape. Algorithmica, 2(1), 403–430.MathSciNetCrossRef Lumelsky, V. J., & Stepanov, A. A. (1987). Path-planning strategies for a point mobile automaton moving amidst unknown obstacles of arbitrary shape. Algorithmica, 2(1), 403–430.MathSciNetCrossRef
Zurück zum Zitat Lynda, D. (2015). E-Bug: New bug path-planning algorithm for autonomous robot in unknown environment. In 2015 international conference on information procession, security and advanced communications (pp. 1–8). Lynda, D. (2015). E-Bug: New bug path-planning algorithm for autonomous robot in unknown environment. In 2015 international conference on information procession, security and advanced communications (pp. 1–8).
Zurück zum Zitat Maroti, A., Szaloki, D., Kiss, D., & Tevesz, G. (2013). Investigation of dynamic window based navigation algorithms on a real robot. In 2013 IEEE 11th international symposium on applied machine intelligence and informatics (SAMI)(pp. 95–100). Maroti, A., Szaloki, D., Kiss, D., & Tevesz, G. (2013). Investigation of dynamic window based navigation algorithms on a real robot. In 2013 IEEE 11th international symposium on applied machine intelligence and informatics (SAMI)(pp. 95–100).
Zurück zum Zitat Mohanty, P. K., Sah, A. K., Kumar, V., & Kundu, S. (2017). Application of deep Q-learning for wheel mobile robot navigation. International conference on computational intelligence & networks (pp. 88–93). Mohanty, P. K., Sah, A. K., Kumar, V., & Kundu, S. (2017). Application of deep Q-learning for wheel mobile robot navigation. International conference on computational intelligence & networks (pp. 88–93).
Zurück zum Zitat Monfared, H., & Salmanpour, S. (2015). Generalized intelligent water drops algorithm by fuzzy local search and intersection operators on partitioning graph for path planning problem. Journal of Intelligent & Fuzzy Systems, 29(2), 975–986.MathSciNetCrossRef Monfared, H., & Salmanpour, S. (2015). Generalized intelligent water drops algorithm by fuzzy local search and intersection operators on partitioning graph for path planning problem. Journal of Intelligent & Fuzzy Systems, 29(2), 975–986.MathSciNetCrossRef
Zurück zum Zitat Ogren, P., & Leonard, N. E. (2005). A convergent dynamic window approach to obstacle avoidance. IEEE Transactions on Robotics, 21(2), 188–195.CrossRef Ogren, P., & Leonard, N. E. (2005). A convergent dynamic window approach to obstacle avoidance. IEEE Transactions on Robotics, 21(2), 188–195.CrossRef
Zurück zum Zitat Özdemi, A., & Sezer, V. (2018). Follow the gap with dynamic window approach. International Journal of Semantic Computing, 12(01), 43–57.CrossRef Özdemi, A., & Sezer, V. (2018). Follow the gap with dynamic window approach. International Journal of Semantic Computing, 12(01), 43–57.CrossRef
Zurück zum Zitat Pinto, A. M., Moreira, E., Lima, J., Sousa, J. P., & Costa, P. (2016). A cable-driven robot for architectural constructions: a visual-guided approach for motion control and path-planning. Autonomous Robots, 41(7), 1487–1499.CrossRef Pinto, A. M., Moreira, E., Lima, J., Sousa, J. P., & Costa, P. (2016). A cable-driven robot for architectural constructions: a visual-guided approach for motion control and path-planning. Autonomous Robots, 41(7), 1487–1499.CrossRef
Zurück zum Zitat Qureshi, A. H., & Ayaz, Y. (2016). Potential functions based sampling heuristic for optimal path planning. Autonomous Robots, 40(6), 1079–1093.CrossRef Qureshi, A. H., & Ayaz, Y. (2016). Potential functions based sampling heuristic for optimal path planning. Autonomous Robots, 40(6), 1079–1093.CrossRef
Zurück zum Zitat Rickert, M., Brock, O., & Knoll, A. (2008). Balancing exploration and exploitation in motion planning. In IEEE international conference on robotics & automation (pp. 2812–2817). Rickert, M., Brock, O., & Knoll, A. (2008). Balancing exploration and exploitation in motion planning. In IEEE international conference on robotics & automation (pp. 2812–2817).
Zurück zum Zitat Seder, M. & Petrović, I. (2007). Dynamic window based approach to mobile robot motion control in the presence of moving obstacles. In Proceedings of the 2007 IEEE international conference on robotics and automation (pp. 1986–1991). Seder, M. & Petrović, I. (2007). Dynamic window based approach to mobile robot motion control in the presence of moving obstacles. In Proceedings of the 2007 IEEE international conference on robotics and automation (pp. 1986–1991).
Zurück zum Zitat Sharma, A., Gupta, K., Kumar, A., Sharma, A., & Kumar, R. (2017). Model based path planning using Q-Learning. In 2017 IEEE international conference on industrial technology (ICIT) (pp. 837–842). Sharma, A., Gupta, K., Kumar, A., Sharma, A., & Kumar, R. (2017). Model based path planning using Q-Learning. In 2017 IEEE international conference on industrial technology (ICIT) (pp. 837–842).
Zurück zum Zitat Simmons, R. (1996). The curvature-velocity method for local obstacle avoidance. In IEEE international conference on robotics & automation (pp. 3375–3382). Simmons, R. (1996). The curvature-velocity method for local obstacle avoidance. In IEEE international conference on robotics & automation (pp. 3375–3382).
Zurück zum Zitat Smart, W. D., & Kaelbling, L. P. (2002). Effective reinforcement learning for mobile robots. In IEEE international conference on robotics and automation (pp. 3404–3410). Smart, W. D., & Kaelbling, L. P. (2002). Effective reinforcement learning for mobile robots. In IEEE international conference on robotics and automation (pp. 3404–3410).
Zurück zum Zitat Stentz A. (1995). The focussed D* algorithm for real-time replanning. In International joint conference on artificial intelligence (pp. 1662–1669). Stentz A. (1995). The focussed D* algorithm for real-time replanning. In International joint conference on artificial intelligence (pp. 1662–1669).
Zurück zum Zitat Wang, Y. X., Tian, Y. Y., Li, X., & Li, L. H. (2019). Self-adaptive dynamic window approach in dense obstacles. Control and Decision, 34(02), 34–43. Wang, Y. X., Tian, Y. Y., Li, X., & Li, L. H. (2019). Self-adaptive dynamic window approach in dense obstacles. Control and Decision, 34(02), 34–43.
Zurück zum Zitat Wang, Z., Shi, Z., Li, Y., & Tu, J. (2014). The optimization of path planning for multi-robot system using Boltzmann Policy based Q-learning algorithm. In 2013 IEEE international conference on robotics and biomimetics (ROBIO) (pp. 1199–1204). Wang, Z., Shi, Z., Li, Y., & Tu, J. (2014). The optimization of path planning for multi-robot system using Boltzmann Policy based Q-learning algorithm. In 2013 IEEE international conference on robotics and biomimetics (ROBIO) (pp. 1199–1204).
Zurück zum Zitat Watkins. (1992). Technical note: Q-learning. Machine Learning, 8(3–4), 279–292. Watkins. (1992). Technical note: Q-learning. Machine Learning, 8(3–4), 279–292.
Zurück zum Zitat Xin, Y., Liang, H. W., Du, M., Mei, T., Wang, Z. L., & Jiang, R. (2014). An improved A* algorithm for searching infinite neighbourhoods. Robot, 36(5), 627–633. Xin, Y., Liang, H. W., Du, M., Mei, T., Wang, Z. L., & Jiang, R. (2014). An improved A* algorithm for searching infinite neighbourhoods. Robot, 36(5), 627–633.
Zurück zum Zitat Xu, Y. L. (2017). Research on mapping and navigation technology of mobile robot based on ROS. M.A. Thesis. Harbin: Harbin Institute of Technology. Xu, Y. L. (2017). Research on mapping and navigation technology of mobile robot based on ROS. M.A. Thesis. Harbin: Harbin Institute of Technology.
Zurück zum Zitat Zhang, A., Chong, C., & Bi, W. (2016). Rectangle expansion A* pathfinding for grid maps. Chinese Journal of Aeronautics, 29(5), 1385–1396.CrossRef Zhang, A., Chong, C., & Bi, W. (2016). Rectangle expansion A* pathfinding for grid maps. Chinese Journal of Aeronautics, 29(5), 1385–1396.CrossRef
Zurück zum Zitat Zhang, J., & Singh, S. (2017). Low-drift and real-time lidar odometry and mapping. Autonomous Robots, 41(2), 401–416.CrossRef Zhang, J., & Singh, S. (2017). Low-drift and real-time lidar odometry and mapping. Autonomous Robots, 41(2), 401–416.CrossRef
Zurück zum Zitat Zhao, X., Wang, Z., Huang, C. K., & Zhao, Y. W. (2018). Mobile robot path planning based on an improved A* algorithm. Robot, 40(06), 137–144. Zhao, X., Wang, Z., Huang, C. K., & Zhao, Y. W. (2018). Mobile robot path planning based on an improved A* algorithm. Robot, 40(06), 137–144.
Metadaten
Titel
Reinforcement based mobile robot path planning with improved dynamic window approach in unknown environment
verfasst von
Lu Chang
Liang Shan
Chao Jiang
Yuewei Dai
Publikationsdatum
30.09.2020
Verlag
Springer US
Erschienen in
Autonomous Robots / Ausgabe 1/2021
Print ISSN: 0929-5593
Elektronische ISSN: 1573-7527
DOI
https://doi.org/10.1007/s10514-020-09947-4

Weitere Artikel der Ausgabe 1/2021

Autonomous Robots 1/2021 Zur Ausgabe

Neuer Inhalt