Skip to main content

2021 | OriginalPaper | Buchkapitel

Reinforcement of Petroleum Wax By-Product Paraffins as Phase Change Materials for Thermal Energy Storage by Recycled Nanomaterials

verfasst von : Fathi S. Soliman, Heba H. El-Maghrabi, Gomaa A. M. Ali, Mohamed Ayman Kammoun, Amr A. Nada

Erschienen in: Waste Recycling Technologies for Nanomaterials Manufacturing

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The energy derived from the solar activity is a source that can help solve the high demand that humanity presents in terms of thermal energy, but shows disadvantages due to the changes in prolonged periods and to the variability in very short times. The fundamental thing to take advantage of the higher amount of thermal energy derived from the sun is to count on storage systems that accumulate that energy in the form of latent heat. For this purpose, materials that change from the solid phase to the liquid (Phase Change Materials (PCMs)) are used; this way of storing and reserving energy is beneficial because large amounts of material are available, working isothermally during storage and releasing the energy stored in its solidification process. One of the advantages of latent heat storage is that said energy storage and its consequent delivery are presented in a minimal temperature range, called inter-phase or transition zone. The PCMs have appropriate characteristics for the storage of energy. At present, a diverse range of these materials is known with which it has been experienced, obtaining promising results; The most widely used materials are salts and some organic and inorganic materials; It is important to emphasize that these materials are difficult to regenerate insofar as they are subjected to work cycles, noting the decrease in their storage efficiency and consequent dissociation, and on the contrary, paraffins (petroleum by-product) are economical materials with good behavior in storage and with acceptable energy storage ranges.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Leonard MD, Michaelides EE, Michaelides DN (2020) Energy storage needs for the substitution of fossil fuel power plants with renewables. Renew Energy 145:951–962CrossRef Leonard MD, Michaelides EE, Michaelides DN (2020) Energy storage needs for the substitution of fossil fuel power plants with renewables. Renew Energy 145:951–962CrossRef
2.
Zurück zum Zitat Curtin J, McInerney C, Gallachóir BÓ, Hickey C, Deane P, Deeney P (2019) Quantifying stranding risk for fossil fuel assets and implications for renewable energy investment: a review of the literature. Renew Sustain Energy Rev 116:109402CrossRef Curtin J, McInerney C, Gallachóir BÓ, Hickey C, Deane P, Deeney P (2019) Quantifying stranding risk for fossil fuel assets and implications for renewable energy investment: a review of the literature. Renew Sustain Energy Rev 116:109402CrossRef
3.
Zurück zum Zitat Nkwetta DN, Haghighat F (2014) Thermal energy storage with phase change material—a state-of-the art review. Sustain Cities Soc 10:87–100CrossRef Nkwetta DN, Haghighat F (2014) Thermal energy storage with phase change material—a state-of-the art review. Sustain Cities Soc 10:87–100CrossRef
4.
Zurück zum Zitat He M, Yang L, Lin W, Chen J, Mao X, Ma Z (2019) Preparation, thermal characterization and examination of phase change materials (PCMs) enhanced by carbon-based nanoparticles for solar thermal energy storage. J Energy Storage 25:100874CrossRef He M, Yang L, Lin W, Chen J, Mao X, Ma Z (2019) Preparation, thermal characterization and examination of phase change materials (PCMs) enhanced by carbon-based nanoparticles for solar thermal energy storage. J Energy Storage 25:100874CrossRef
5.
Zurück zum Zitat Prieto C, Cabeza LF (2019) Thermal energy storage (TES) with phase change materials (PCM) in solar power plants (CSP). Concept and plant performance. Appl Energy 254:113646CrossRef Prieto C, Cabeza LF (2019) Thermal energy storage (TES) with phase change materials (PCM) in solar power plants (CSP). Concept and plant performance. Appl Energy 254:113646CrossRef
6.
Zurück zum Zitat Paksoy H, Sahan N (2012) Thermally enhanced paraffin for solar applications. Energy Proc 30:350–352CrossRef Paksoy H, Sahan N (2012) Thermally enhanced paraffin for solar applications. Energy Proc 30:350–352CrossRef
7.
Zurück zum Zitat Lingayat AB, Suple YR (2013) Review on phase change material as thermal energy storage medium: materials, application. Int J Eng Res Appl 3:916–921 Lingayat AB, Suple YR (2013) Review on phase change material as thermal energy storage medium: materials, application. Int J Eng Res Appl 3:916–921
8.
Zurück zum Zitat Cui Y, Xie J, Liu J, Pan S (2015) Review of phase change materials integrated in building walls for energy saving. Proc Eng 121:763–770CrossRef Cui Y, Xie J, Liu J, Pan S (2015) Review of phase change materials integrated in building walls for energy saving. Proc Eng 121:763–770CrossRef
9.
Zurück zum Zitat Mhike W, Focke WW, Mofokeng J, Luyt AS (2012) Thermally conductive phase-change materials for energy storage based on low-density polyethylene, soft Fischer-Tropsch wax and graphite. Thermochim Acta 527:75–82CrossRef Mhike W, Focke WW, Mofokeng J, Luyt AS (2012) Thermally conductive phase-change materials for energy storage based on low-density polyethylene, soft Fischer-Tropsch wax and graphite. Thermochim Acta 527:75–82CrossRef
10.
Zurück zum Zitat Hasnain S (1998) Review on sustainable thermal energy storage technologies, part I: heat storage materials and techniques. Energy Convers Manage 39(11):1127–1138CrossRef Hasnain S (1998) Review on sustainable thermal energy storage technologies, part I: heat storage materials and techniques. Energy Convers Manage 39(11):1127–1138CrossRef
11.
Zurück zum Zitat Heine D (1980) Chemische und physikalische Eigenschaften von Latentwärmespeichermaterialien für Solarkraftwerke Heine D (1980) Chemische und physikalische Eigenschaften von Latentwärmespeichermaterialien für Solarkraftwerke
12.
Zurück zum Zitat Xu B, Li P, Chan C (2015) Application of phase change materials for thermal energy storage in concentrated solar thermal power plants: a review to recent developments. Appl Energy 160:286–307CrossRef Xu B, Li P, Chan C (2015) Application of phase change materials for thermal energy storage in concentrated solar thermal power plants: a review to recent developments. Appl Energy 160:286–307CrossRef
13.
Zurück zum Zitat Pielichowska K, Pielichowski K (2014) Phase change materials for thermal energy storage. Prog Mater Sci 65:67–123CrossRef Pielichowska K, Pielichowski K (2014) Phase change materials for thermal energy storage. Prog Mater Sci 65:67–123CrossRef
14.
Zurück zum Zitat Khudhair AM, Farid MM (2004) A review on energy conservation in building applications with thermal storage by latent heat using phase change materials. Energy Convers Manage 45(2):263–275CrossRef Khudhair AM, Farid MM (2004) A review on energy conservation in building applications with thermal storage by latent heat using phase change materials. Energy Convers Manage 45(2):263–275CrossRef
15.
Zurück zum Zitat Naumann R, Emons H-H (1989) Results of thermal analysis for investigation of salt hydrates as latent heat-storage materials. J Therm Anal 35(3):1009–1031CrossRef Naumann R, Emons H-H (1989) Results of thermal analysis for investigation of salt hydrates as latent heat-storage materials. J Therm Anal 35(3):1009–1031CrossRef
16.
Zurück zum Zitat Paris J, Falardeau M, Villeneuve C (1993) Thermal storage by latent heat: a viable option for energy conservation in buildings. Energy Sources 15(1):85–93CrossRef Paris J, Falardeau M, Villeneuve C (1993) Thermal storage by latent heat: a viable option for energy conservation in buildings. Energy Sources 15(1):85–93CrossRef
17.
Zurück zum Zitat Nagano K, Mochida T, Takeda S, Domański R, Rebow M (2003) Thermal characteristics of manganese (II) nitrate hexahydrate as a phase change material for cooling systems. Appl Therm Eng 23(2):229–241CrossRef Nagano K, Mochida T, Takeda S, Domański R, Rebow M (2003) Thermal characteristics of manganese (II) nitrate hexahydrate as a phase change material for cooling systems. Appl Therm Eng 23(2):229–241CrossRef
18.
Zurück zum Zitat Kousksou T, Jamil A, El Rhafiki T, Zeraouli Y (2010) Paraffin wax mixtures as phase change materials. Sol Energy Mater Sol Cells 94(12):2158–2165CrossRef Kousksou T, Jamil A, El Rhafiki T, Zeraouli Y (2010) Paraffin wax mixtures as phase change materials. Sol Energy Mater Sol Cells 94(12):2158–2165CrossRef
19.
Zurück zum Zitat Evers AC, Medina MA, Fang Y (2010) Evaluation of the thermal performance of frame walls enhanced with paraffin and hydrated salt phase change materials using a dynamic wall simulator. Build Environ 45(8):1762–1768CrossRef Evers AC, Medina MA, Fang Y (2010) Evaluation of the thermal performance of frame walls enhanced with paraffin and hydrated salt phase change materials using a dynamic wall simulator. Build Environ 45(8):1762–1768CrossRef
20.
Zurück zum Zitat Kapsalis V, Karamanis D (2016) Solar thermal energy storage and heat pumps with phase change materials. Appl Therm Eng 99:1212–1224CrossRef Kapsalis V, Karamanis D (2016) Solar thermal energy storage and heat pumps with phase change materials. Appl Therm Eng 99:1212–1224CrossRef
21.
Zurück zum Zitat Sharma A, Tyagi VV, Chen C, Buddhi D (2009) Review on thermal energy storage with phase change materials and applications. Renew Sustain Energy Rev 13(2):318–345CrossRef Sharma A, Tyagi VV, Chen C, Buddhi D (2009) Review on thermal energy storage with phase change materials and applications. Renew Sustain Energy Rev 13(2):318–345CrossRef
22.
Zurück zum Zitat Kenisarin MM, Kenisarina KM (2012) Form-stable phase change materials for thermal energy storage. Renew Sustain Energy Rev 16(4):1999–2040CrossRef Kenisarin MM, Kenisarina KM (2012) Form-stable phase change materials for thermal energy storage. Renew Sustain Energy Rev 16(4):1999–2040CrossRef
23.
Zurück zum Zitat Sevault A, Kauko H, Bugge M, Banasiak K, Haugen N, Skreiberg Ø (2017) Phase change materials for thermal energy storage in low- and high-temperature applications: a state-of-the-art:1–53 Sevault A, Kauko H, Bugge M, Banasiak K, Haugen N, Skreiberg Ø (2017) Phase change materials for thermal energy storage in low- and high-temperature applications: a state-of-the-art:1–53
24.
Zurück zum Zitat Alexiades V, Solomon AD (1993) Mathematical modeling of melting and freezing processes. Hemisphere Publ. Corp., Washington Alexiades V, Solomon AD (1993) Mathematical modeling of melting and freezing processes. Hemisphere Publ. Corp., Washington
25.
Zurück zum Zitat Smith A (1953) The crystal structure of the normal paraffin hydrocarbons. J Chem Phys 21(12):2229–2231CrossRef Smith A (1953) The crystal structure of the normal paraffin hydrocarbons. J Chem Phys 21(12):2229–2231CrossRef
26.
Zurück zum Zitat Sequeira A (1994) Lubricant base oil and wax processing. CRC Press Sequeira A (1994) Lubricant base oil and wax processing. CRC Press
27.
Zurück zum Zitat Zaky MT, Mohamed NH, Farag AS, Soliman FS (2015) Raising the efficiency of petrolatum deoiling process by using non-polar modifier concentrates separated from paraffin wastes to produce different petroleum products. RSC Adv 5(88):71932–71941CrossRef Zaky MT, Mohamed NH, Farag AS, Soliman FS (2015) Raising the efficiency of petrolatum deoiling process by using non-polar modifier concentrates separated from paraffin wastes to produce different petroleum products. RSC Adv 5(88):71932–71941CrossRef
28.
Zurück zum Zitat Mohamed NH (2012) Competitive study on separation and characterization of microcrystalline waxes using two deoiling techniques. Fuel Process Technol 96:116–122CrossRef Mohamed NH (2012) Competitive study on separation and characterization of microcrystalline waxes using two deoiling techniques. Fuel Process Technol 96:116–122CrossRef
29.
Zurück zum Zitat Zaky MT, Mohamed NH, Farag AS (2011) Separation of some paraffin wax grades using solvent extraction technique. Fuel Process Technol 92(10):2024–2029CrossRef Zaky MT, Mohamed NH, Farag AS (2011) Separation of some paraffin wax grades using solvent extraction technique. Fuel Process Technol 92(10):2024–2029CrossRef
30.
Zurück zum Zitat Zaky MT, Mohamed NH (2010) Comparative study on separation and characterization of high melting point macro-and micro-crystalline waxes. J Taiwan Inst Chem Eng 41(3):360–366CrossRef Zaky MT, Mohamed NH (2010) Comparative study on separation and characterization of high melting point macro-and micro-crystalline waxes. J Taiwan Inst Chem Eng 41(3):360–366CrossRef
31.
Zurück zum Zitat Meyer G (2009) Thermal properties of micro-crystalline waxes in dependence on the degree of deoiling. SOFW J 135(8):43–50 Meyer G (2009) Thermal properties of micro-crystalline waxes in dependence on the degree of deoiling. SOFW J 135(8):43–50
32.
Zurück zum Zitat Kuszlik A, Meyer G, Heezen P, Stepanski M (2010) Solvent-free slack wax de-oiling—physical limits. Chem Eng Res Des 88(9):1279–1283CrossRef Kuszlik A, Meyer G, Heezen P, Stepanski M (2010) Solvent-free slack wax de-oiling—physical limits. Chem Eng Res Des 88(9):1279–1283CrossRef
33.
Zurück zum Zitat Ohlberg SM (1959) The stable crystal structures of pure n-paraffins contalmng an even number of carbon atoms in the range C30 to C36. J Phys Chem 63(2):248–250CrossRef Ohlberg SM (1959) The stable crystal structures of pure n-paraffins contalmng an even number of carbon atoms in the range C30 to C36. J Phys Chem 63(2):248–250CrossRef
35.
Zurück zum Zitat Brown W, Marques MR (2013) 14 the United States pharmacopeia/national formulary. In: Generic drug product development: solid oral dosage forms, vol 319 Brown W, Marques MR (2013) 14 the United States pharmacopeia/national formulary. In: Generic drug product development: solid oral dosage forms, vol 319
36.
Zurück zum Zitat Krupa I, Nógellová Z, Špitalský Z, Malíková M, Sobolčiak P, Abdelrazeq HW, Ouederni M, Karkri M, Janigová I, Al-Maadeed MAS (2015) Positive influence of expanded graphite on the physical behavior of phase change materials based on linear low-density polyethylene and paraffin wax. Thermochim Acta 614:218–225CrossRef Krupa I, Nógellová Z, Špitalský Z, Malíková M, Sobolčiak P, Abdelrazeq HW, Ouederni M, Karkri M, Janigová I, Al-Maadeed MAS (2015) Positive influence of expanded graphite on the physical behavior of phase change materials based on linear low-density polyethylene and paraffin wax. Thermochim Acta 614:218–225CrossRef
37.
Zurück zum Zitat Mancin S, Diani A, Doretti L, Hooman K, Rossetto L (2015) Experimental analysis of phase change phenomenon of paraffin waxes embedded in copper foams. Int J Therm Sci 90:79–89CrossRef Mancin S, Diani A, Doretti L, Hooman K, Rossetto L (2015) Experimental analysis of phase change phenomenon of paraffin waxes embedded in copper foams. Int J Therm Sci 90:79–89CrossRef
38.
Zurück zum Zitat Reyes A, Negrete D, Mahn A, Sepúlveda F (2014) Design and evaluation of a heat exchanger that uses paraffin wax and recycled materials as solar energy accumulator. Energy Convers Manage 88:391–398CrossRef Reyes A, Negrete D, Mahn A, Sepúlveda F (2014) Design and evaluation of a heat exchanger that uses paraffin wax and recycled materials as solar energy accumulator. Energy Convers Manage 88:391–398CrossRef
39.
Zurück zum Zitat Oya T, Nomura T, Tsubota M, Okinaka N, Akiyama T (2013) Thermal conductivity enhancement of erythritol as PCM by using graphite and nickel particles. Appl Therm Eng 61(2):825–828CrossRef Oya T, Nomura T, Tsubota M, Okinaka N, Akiyama T (2013) Thermal conductivity enhancement of erythritol as PCM by using graphite and nickel particles. Appl Therm Eng 61(2):825–828CrossRef
40.
Zurück zum Zitat Yu S, Jeong S-G, Chung O, Kim S (2014) Bio-based PCM/carbon nanomaterials composites with enhanced thermal conductivity. Sol Energy Mater Sol Cells 120:549–554CrossRef Yu S, Jeong S-G, Chung O, Kim S (2014) Bio-based PCM/carbon nanomaterials composites with enhanced thermal conductivity. Sol Energy Mater Sol Cells 120:549–554CrossRef
41.
Zurück zum Zitat Li M, Wu Z, Kao H, Tan J (2011) Experimental investigation of preparation and thermal performances of paraffin/bentonite composite phase change material. Energy Convers Manage 52(11):3275–3281CrossRef Li M, Wu Z, Kao H, Tan J (2011) Experimental investigation of preparation and thermal performances of paraffin/bentonite composite phase change material. Energy Convers Manage 52(11):3275–3281CrossRef
42.
Zurück zum Zitat Xu B, Li Z (2014) Paraffin/diatomite/multi-wall carbon nanotubes composite phase change material tailor-made for thermal energy storage cement-based composites. Energy 72:371–380CrossRef Xu B, Li Z (2014) Paraffin/diatomite/multi-wall carbon nanotubes composite phase change material tailor-made for thermal energy storage cement-based composites. Energy 72:371–380CrossRef
43.
Zurück zum Zitat Wang J, Xie H, Guo Z, Guan L, Li Y (2014) Improved thermal properties of paraffin wax by the addition of TiO2 nanoparticles. Appl Therm Eng 73(2):1541–1547CrossRef Wang J, Xie H, Guo Z, Guan L, Li Y (2014) Improved thermal properties of paraffin wax by the addition of TiO2 nanoparticles. Appl Therm Eng 73(2):1541–1547CrossRef
44.
Zurück zum Zitat Jiang X, Luo R, Peng F, Fang Y, Akiyama T, Wang S (2015) Synthesis, characterization and thermal properties of paraffin microcapsules modified with nano-Al2O3. Appl Energy 137:731–737CrossRef Jiang X, Luo R, Peng F, Fang Y, Akiyama T, Wang S (2015) Synthesis, characterization and thermal properties of paraffin microcapsules modified with nano-Al2O3. Appl Energy 137:731–737CrossRef
45.
Zurück zum Zitat Jesumathy S, Udayakumar M, Suresh S (2012) Experimental study of enhanced heat transfer by addition of CuO nanoparticle. Heat Mass Transf 48(6):965–978CrossRef Jesumathy S, Udayakumar M, Suresh S (2012) Experimental study of enhanced heat transfer by addition of CuO nanoparticle. Heat Mass Transf 48(6):965–978CrossRef
46.
Zurück zum Zitat Mohamed NH, Soliman FS, El Maghraby H, Moustfa Y (2017) Thermal conductivity enhancement of treated petroleum waxes, as phase change material, by α nano alumina: energy storage. Renew Sustain Energy Rev 70:1052–1058CrossRef Mohamed NH, Soliman FS, El Maghraby H, Moustfa Y (2017) Thermal conductivity enhancement of treated petroleum waxes, as phase change material, by α nano alumina: energy storage. Renew Sustain Energy Rev 70:1052–1058CrossRef
47.
Zurück zum Zitat Li J, Wang X, Qiao Y, Zhang Y, He Z, Zhang H (2015) High thermal conductivity through interfacial layer optimization in diamond particles dispersed Zr-alloyed Cu matrix composites. Scripta Mater 109:72–75CrossRef Li J, Wang X, Qiao Y, Zhang Y, He Z, Zhang H (2015) High thermal conductivity through interfacial layer optimization in diamond particles dispersed Zr-alloyed Cu matrix composites. Scripta Mater 109:72–75CrossRef
48.
Zurück zum Zitat Dhmees AS, Rashad AM, Eliwa AA, Zawrah M (2019) Preparation and characterization of nano SiO2@ CeO2 extracted from blast furnace slag and uranium extraction waste for wastewater treatment. Ceram Int 45(6):7309–7317CrossRef Dhmees AS, Rashad AM, Eliwa AA, Zawrah M (2019) Preparation and characterization of nano SiO2@ CeO2 extracted from blast furnace slag and uranium extraction waste for wastewater treatment. Ceram Int 45(6):7309–7317CrossRef
49.
Zurück zum Zitat Hegde G, Abdul Manaf SA, Kumar A, Ali GAM, Chong KF, Ngaini Z, Sharma KV (2015) Biowaste sago bark based catalyst free carbon nanospheres: waste to wealth approach. ACS Sustain Chem Eng 5(9):2247–2253CrossRef Hegde G, Abdul Manaf SA, Kumar A, Ali GAM, Chong KF, Ngaini Z, Sharma KV (2015) Biowaste sago bark based catalyst free carbon nanospheres: waste to wealth approach. ACS Sustain Chem Eng 5(9):2247–2253CrossRef
50.
Zurück zum Zitat Ali GAM, Habeeb OA, Algarni H, Chong KF (2018) CaO impregnated highly porous honeycomb activated carbon from agriculture waste: symmetrical supercapacitor study. J Mater Sci 54:683–692CrossRef Ali GAM, Habeeb OA, Algarni H, Chong KF (2018) CaO impregnated highly porous honeycomb activated carbon from agriculture waste: symmetrical supercapacitor study. J Mater Sci 54:683–692CrossRef
51.
Zurück zum Zitat Ali GAM, Divyashree A, Supriya S, Chong KF, Ethiraj AS, Reddy M, Algarni H, Hegde G (2017) Carbon nanospheres derived from Lablab purpureus for high performance supercapacitor electrodes: a green approach. Dalton Trans 46(40):14034–14044CrossRef Ali GAM, Divyashree A, Supriya S, Chong KF, Ethiraj AS, Reddy M, Algarni H, Hegde G (2017) Carbon nanospheres derived from Lablab purpureus for high performance supercapacitor electrodes: a green approach. Dalton Trans 46(40):14034–14044CrossRef
52.
Zurück zum Zitat Ali GAM, Tan LL, Jose R, Yusoff MM, Chong KF (2014) Electrochemical performance studies of MnO2 nanoflowers recovered from spent battery. Mater Res Bull 60:5–9CrossRef Ali GAM, Tan LL, Jose R, Yusoff MM, Chong KF (2014) Electrochemical performance studies of MnO2 nanoflowers recovered from spent battery. Mater Res Bull 60:5–9CrossRef
53.
Zurück zum Zitat Ali GAM, Yusoff MM, Shaaban ER, Chong KF (2017) High performance MnO2 nanoflower supercapacitor electrode by electrochemical recycling of spent batteries. Ceram Int 43:8440–8448CrossRef Ali GAM, Yusoff MM, Shaaban ER, Chong KF (2017) High performance MnO2 nanoflower supercapacitor electrode by electrochemical recycling of spent batteries. Ceram Int 43:8440–8448CrossRef
54.
Zurück zum Zitat Ali GAM, Abdul Manaf SA, Kumar A, Chong KF, Hegde G (2014) High performance supercapacitor using catalysis free porous carbon nanoparticles. J Phys D-Appl Phys 47(49):495307–495313CrossRef Ali GAM, Abdul Manaf SA, Kumar A, Chong KF, Hegde G (2014) High performance supercapacitor using catalysis free porous carbon nanoparticles. J Phys D-Appl Phys 47(49):495307–495313CrossRef
55.
Zurück zum Zitat Aboelazm EAA, Ali GAM, Algarni H, Yin H, Zhong YL, Chong KF (2018) Magnetic electrodeposition of the hierarchical cobalt oxide nanostructure from spent lithium-ion batteries: its application as a supercapacitor electrode. J Phys Chem C 122(23):12200–12206CrossRef Aboelazm EAA, Ali GAM, Algarni H, Yin H, Zhong YL, Chong KF (2018) Magnetic electrodeposition of the hierarchical cobalt oxide nanostructure from spent lithium-ion batteries: its application as a supercapacitor electrode. J Phys Chem C 122(23):12200–12206CrossRef
56.
Zurück zum Zitat Ali GAM, Yusoff MM, Algarni H, Chong KF (2018) One-step electrosynthesis of MnO2/rGO nanocomposite and its enhanced electrochemical performance. Ceram Int 44(7):7799–7807CrossRef Ali GAM, Yusoff MM, Algarni H, Chong KF (2018) One-step electrosynthesis of MnO2/rGO nanocomposite and its enhanced electrochemical performance. Ceram Int 44(7):7799–7807CrossRef
57.
Zurück zum Zitat Ali GAM, Supriya S, Chong KF, Shaaban ER, Algarni H, Maiyalagan T, Hegde G (2019) Superior supercapacitance behavior of oxygen self-doped carbon nanospheres: a conversion of allium CEPA peel to energy storage system. Biomass Conv Bioref https://doi.org/10.1007/s13399-019-00520-3 Ali GAM, Supriya S, Chong KF, Shaaban ER, Algarni H, Maiyalagan T, Hegde G (2019) Superior supercapacitance behavior of oxygen self-doped carbon nanospheres: a conversion of allium CEPA peel to energy storage system. Biomass Conv Bioref https://​doi.​org/​10.​1007/​s13399-019-00520-3
58.
Zurück zum Zitat Ali GAM, Manaf SAA, Divyashree A, Chong KF, Hegde G (2016) Superior supercapacitive performance in porous nanocarbons. J Energy Chem 25(4):734–739 Ali GAM, Manaf SAA, Divyashree A, Chong KF, Hegde G (2016) Superior supercapacitive performance in porous nanocarbons. J Energy Chem 25(4):734–739
59.
Zurück zum Zitat Afroz R, Masud MM, Akhtar R, Duasa JB (2013) Survey and analysis of public knowledge, awareness and willingness to pay in Kuala Lumpur, Malaysia—a case study on household WEEE management. J Clean Product 52:185–193CrossRef Afroz R, Masud MM, Akhtar R, Duasa JB (2013) Survey and analysis of public knowledge, awareness and willingness to pay in Kuala Lumpur, Malaysia—a case study on household WEEE management. J Clean Product 52:185–193CrossRef
60.
Zurück zum Zitat Zeng X, Yang C, Chiang JF, Li J (2017) Innovating e-waste management: from macroscopic to microscopic scales. Sci Total Environ 575:1–5CrossRef Zeng X, Yang C, Chiang JF, Li J (2017) Innovating e-waste management: from macroscopic to microscopic scales. Sci Total Environ 575:1–5CrossRef
61.
Zurück zum Zitat Ruan J, Huang J, Dong L, Huang Z (2017) Environmentally friendly technology of recovering nickel resources and producing nano-Al2O3 from waste metal film resistors. ACS Sustain Chem Eng 5(9):8234–8240CrossRef Ruan J, Huang J, Dong L, Huang Z (2017) Environmentally friendly technology of recovering nickel resources and producing nano-Al2O3 from waste metal film resistors. ACS Sustain Chem Eng 5(9):8234–8240CrossRef
62.
Zurück zum Zitat Ilgin MA, Gupta SM (2010) Environmentally conscious manufacturing and product recovery (ECMPRO): a review of the state of the art. J Environ Manage 91(3):563–591CrossRef Ilgin MA, Gupta SM (2010) Environmentally conscious manufacturing and product recovery (ECMPRO): a review of the state of the art. J Environ Manage 91(3):563–591CrossRef
63.
Zurück zum Zitat Deep A, Kumar K, Kumar P, Kumar P, Sharma AL, Gupta B, Bharadwaj LM (2011) Recovery of pure ZnO nanoparticles from spent Zn–MnO2 alkaline batteries. Environ Sci Technol 45(24):10551–10556CrossRef Deep A, Kumar K, Kumar P, Kumar P, Sharma AL, Gupta B, Bharadwaj LM (2011) Recovery of pure ZnO nanoparticles from spent Zn–MnO2 alkaline batteries. Environ Sci Technol 45(24):10551–10556CrossRef
64.
Zurück zum Zitat Dutta T, Kim K-H, Deep A, Szulejko JE, Vellingiri K, Kumar S, Kwon EE, Yun S-T (2018) Recovery of nanomaterials from battery and electronic wastes: a new paradigm of environmental waste management. Renew Sustain Energy Rev 82:3694–3704CrossRef Dutta T, Kim K-H, Deep A, Szulejko JE, Vellingiri K, Kumar S, Kwon EE, Yun S-T (2018) Recovery of nanomaterials from battery and electronic wastes: a new paradigm of environmental waste management. Renew Sustain Energy Rev 82:3694–3704CrossRef
65.
Zurück zum Zitat Li Y, Ye D, Sun Y, Wang Y, Shi B, Liu W, Guo R, Pei H, Zhao H, Zhang J (2020) Recycling materials from degraded lithium-ion batteries for Na-ion storage. Mater Today Energy 15:100368CrossRef Li Y, Ye D, Sun Y, Wang Y, Shi B, Liu W, Guo R, Pei H, Zhao H, Zhang J (2020) Recycling materials from degraded lithium-ion batteries for Na-ion storage. Mater Today Energy 15:100368CrossRef
66.
Zurück zum Zitat Qu J, Feng Y, Zhang Q, Cong Q, Luo C, Yuan X (2015) A new insight of recycling of spent Zn–Mn alkaline batteries: Synthesis of ZnxMn1−xO nanoparticles and solar light driven photocatalytic degradation of bisphenol A using them. J Alloy Compd 622:703–707CrossRef Qu J, Feng Y, Zhang Q, Cong Q, Luo C, Yuan X (2015) A new insight of recycling of spent Zn–Mn alkaline batteries: Synthesis of ZnxMn1−xO nanoparticles and solar light driven photocatalytic degradation of bisphenol A using them. J Alloy Compd 622:703–707CrossRef
67.
Zurück zum Zitat Deep A, Sharma AL, Mohanta GC, Kumar P, Kim K-H (2016) A facile chemical route for recovery of high quality zinc oxide nanoparticles from spent alkaline batteries. Waste Manage 51:190–195CrossRef Deep A, Sharma AL, Mohanta GC, Kumar P, Kim K-H (2016) A facile chemical route for recovery of high quality zinc oxide nanoparticles from spent alkaline batteries. Waste Manage 51:190–195CrossRef
68.
Zurück zum Zitat Mantuano DP, Dorella G, Elias RCA, Mansur MB (2006) Analysis of a hydrometallurgical route to recover base metals from spent rechargeable batteries by liquid–liquid extraction with Cyanex 272. J Power Sources 159(2):1510–1518CrossRef Mantuano DP, Dorella G, Elias RCA, Mansur MB (2006) Analysis of a hydrometallurgical route to recover base metals from spent rechargeable batteries by liquid–liquid extraction with Cyanex 272. J Power Sources 159(2):1510–1518CrossRef
69.
Zurück zum Zitat Xi G, Li Y, Liu Y (2004) Study on preparation of manganese–zinc ferrites using spent Zn–Mn batteries. Mater Lett 58(7–8):1164–1167CrossRef Xi G, Li Y, Liu Y (2004) Study on preparation of manganese–zinc ferrites using spent Zn–Mn batteries. Mater Lett 58(7–8):1164–1167CrossRef
70.
Zurück zum Zitat Gabal M, Al-Harthy E, Al Angari Y, Salam MA, Asiri A (2016) Synthesis, characterization and magnetic properties of MWCNTs decorated with Zn-substituted MnFe2O4 nanoparticles using waste batteries extract. J Magn Magn Mater 407:175–181CrossRef Gabal M, Al-Harthy E, Al Angari Y, Salam MA, Asiri A (2016) Synthesis, characterization and magnetic properties of MWCNTs decorated with Zn-substituted MnFe2O4 nanoparticles using waste batteries extract. J Magn Magn Mater 407:175–181CrossRef
71.
Zurück zum Zitat Kim T, Senanayake G, Kang J, Sohn J, Rhee K, Lee S, Shin S (2009) Reductive acid leaching of spent zinc–carbon batteries and oxidative precipitation of Mn–Zn ferrite nanoparticles. Hydrometallurgy 96(1–2):154–158CrossRef Kim T, Senanayake G, Kang J, Sohn J, Rhee K, Lee S, Shin S (2009) Reductive acid leaching of spent zinc–carbon batteries and oxidative precipitation of Mn–Zn ferrite nanoparticles. Hydrometallurgy 96(1–2):154–158CrossRef
72.
Zurück zum Zitat Nan J, Han D, Cui M, Yang M, Pan L (2006) Recycling spent zinc manganese dioxide batteries through synthesizing Zn–Mn ferrite magnetic materials. J Hazard Mater 133(1–3):257–261CrossRef Nan J, Han D, Cui M, Yang M, Pan L (2006) Recycling spent zinc manganese dioxide batteries through synthesizing Zn–Mn ferrite magnetic materials. J Hazard Mater 133(1–3):257–261CrossRef
73.
Zurück zum Zitat Duan X, Deng J, Wang X, Guo J, Liu P (2016) Manufacturing conductive polyaniline/graphite nanocomposites with spent battery powder (SBP) for energy storage: a potential approach for sustainable waste management. J Hazard Mater 312:319–328CrossRef Duan X, Deng J, Wang X, Guo J, Liu P (2016) Manufacturing conductive polyaniline/graphite nanocomposites with spent battery powder (SBP) for energy storage: a potential approach for sustainable waste management. J Hazard Mater 312:319–328CrossRef
74.
Zurück zum Zitat Wen X, Qiao X, Han X, Niu L, Huo L, Bai G (2016) Multifunctional magnetic branched polyethylenimine nanogels with in-situ generated Fe3O4 and their applications as dye adsorbent and catalyst support. J Mater Sci 51(6):3170–3181CrossRef Wen X, Qiao X, Han X, Niu L, Huo L, Bai G (2016) Multifunctional magnetic branched polyethylenimine nanogels with in-situ generated Fe3O4 and their applications as dye adsorbent and catalyst support. J Mater Sci 51(6):3170–3181CrossRef
75.
Zurück zum Zitat Xiang X, Xia F, Zhan L, Xie B (2015) Preparation of zinc nano structured particles from spent zinc manganese batteries by vacuum separation and inert gas condensation. Sep Purif Technol 142:227–233CrossRef Xiang X, Xia F, Zhan L, Xie B (2015) Preparation of zinc nano structured particles from spent zinc manganese batteries by vacuum separation and inert gas condensation. Sep Purif Technol 142:227–233CrossRef
76.
Zurück zum Zitat Xi G-X, Jiao Y-Z, Lu M-X (2008) Preparation of CoFe2O4 nanocrystal from spent lithium-ion batteries with coprecipitation method. Electron Compon Mater 27(5):19 Xi G-X, Jiao Y-Z, Lu M-X (2008) Preparation of CoFe2O4 nanocrystal from spent lithium-ion batteries with coprecipitation method. Electron Compon Mater 27(5):19
77.
Zurück zum Zitat Deng J, Wang X, Duan X, Liu P (2015) Facile preparation of MnO2/graphene nanocomposites with spent battery powder for electrochemical energy storage. ACS Sustain Chem Eng 3(7):1330–1338CrossRef Deng J, Wang X, Duan X, Liu P (2015) Facile preparation of MnO2/graphene nanocomposites with spent battery powder for electrochemical energy storage. ACS Sustain Chem Eng 3(7):1330–1338CrossRef
78.
Zurück zum Zitat Yang L, Xi G, Lou T, Wang X, Wang J, He Y (2016) Preparation and magnetic performance of Co0.8Fe2.2O4 by a sol–gel method using cathode materials of spent Li-ion batteries. Ceram Int 42(1):1897–1902 Yang L, Xi G, Lou T, Wang X, Wang J, He Y (2016) Preparation and magnetic performance of Co0.8Fe2.2O4 by a sol–gel method using cathode materials of spent Li-ion batteries. Ceram Int 42(1):1897–1902
79.
Zurück zum Zitat Yao L, Xi Y, Xi G, Feng Y (2016) Synthesis of cobalt ferrite with enhanced magnetostriction properties by the sol−gel−hydrothermal route using spent Li-ion battery. J Alloy Compd 680:73–79CrossRef Yao L, Xi Y, Xi G, Feng Y (2016) Synthesis of cobalt ferrite with enhanced magnetostriction properties by the sol−gel−hydrothermal route using spent Li-ion battery. J Alloy Compd 680:73–79CrossRef
80.
Zurück zum Zitat Belcher AM, Chen P-Y, Hammond-Cunningham PT, Qi J (2017) Recycling car batteries for perovskite solar cells. Google Patents Belcher AM, Chen P-Y, Hammond-Cunningham PT, Qi J (2017) Recycling car batteries for perovskite solar cells. Google Patents
81.
Zurück zum Zitat Singh J, Lee B-K (2016) Recovery of precious metals from low-grade automobile shredder residue: a novel approach for the recovery of nanozero-valent copper particles. Waste Manage 48:353–365CrossRef Singh J, Lee B-K (2016) Recovery of precious metals from low-grade automobile shredder residue: a novel approach for the recovery of nanozero-valent copper particles. Waste Manage 48:353–365CrossRef
82.
Zurück zum Zitat Xiu F-R, Zhang F-S (2012) Size-controlled preparation of Cu2O nanoparticles from waste printed circuit boards by supercritical water combined with electrokinetic process. J Hazard Mater 233:200–206CrossRef Xiu F-R, Zhang F-S (2012) Size-controlled preparation of Cu2O nanoparticles from waste printed circuit boards by supercritical water combined with electrokinetic process. J Hazard Mater 233:200–206CrossRef
83.
Zurück zum Zitat Vermisoglou EC, Giannouri M, Todorova N, Giannakopoulou T, Lekakou C, Trapalis C (2016) Recycling of typical supercapacitor materials. Waste Manage Res 34(4):337–344CrossRef Vermisoglou EC, Giannouri M, Todorova N, Giannakopoulou T, Lekakou C, Trapalis C (2016) Recycling of typical supercapacitor materials. Waste Manage Res 34(4):337–344CrossRef
84.
Zurück zum Zitat Zhan L, Xiang X, Xie B, Sun J (2016) A novel method of preparing highly dispersed spherical lead nanoparticles from solders of waste printed circuit boards. Chem Eng J 303:261–267CrossRef Zhan L, Xiang X, Xie B, Sun J (2016) A novel method of preparing highly dispersed spherical lead nanoparticles from solders of waste printed circuit boards. Chem Eng J 303:261–267CrossRef
85.
Zurück zum Zitat Wu J-Y, Chang F-C (2016) Recovery of nano-Al2O3 from waste aluminum electrolytic solution generated during the manufacturing of capacitors. Desalin Water Treat 57(60):29479–29487CrossRef Wu J-Y, Chang F-C (2016) Recovery of nano-Al2O3 from waste aluminum electrolytic solution generated during the manufacturing of capacitors. Desalin Water Treat 57(60):29479–29487CrossRef
86.
Zurück zum Zitat Hu Z, Kurien U, Murwira K, Ghoshdastidar A, Nepotchatykh O, Ariya PA (2016) Development of a green technology for mercury recycling from spent compact fluorescent lamps using iron oxides nanoparticles and electrochemistry. ACS Sustain Chem Eng 4(4):2150–2157CrossRef Hu Z, Kurien U, Murwira K, Ghoshdastidar A, Nepotchatykh O, Ariya PA (2016) Development of a green technology for mercury recycling from spent compact fluorescent lamps using iron oxides nanoparticles and electrochemistry. ACS Sustain Chem Eng 4(4):2150–2157CrossRef
87.
Zurück zum Zitat Tunsu C, Petranikova M, Gergorić M, Ekberg C, Retegan T (2015) Reclaiming rare earth elements from end-of-life products: a review of the perspectives for urban mining using hydrometallurgical unit operations. Hydrometallurgy 156:239–258CrossRef Tunsu C, Petranikova M, Gergorić M, Ekberg C, Retegan T (2015) Reclaiming rare earth elements from end-of-life products: a review of the perspectives for urban mining using hydrometallurgical unit operations. Hydrometallurgy 156:239–258CrossRef
88.
Zurück zum Zitat Bandara HD, Field KD, Emmert MH (2016) Rare earth recovery from end-of-life motors employing green chemistry design principles. Green Chem 18(3):753–759CrossRef Bandara HD, Field KD, Emmert MH (2016) Rare earth recovery from end-of-life motors employing green chemistry design principles. Green Chem 18(3):753–759CrossRef
89.
Zurück zum Zitat Dupont D, Binnemans K (2015) Rare-earth recycling using a functionalized ionic liquid for the selective dissolution and revalorization of Y2O3: Eu3+ from lamp phosphor waste. Green Chem 17(2):856–868CrossRef Dupont D, Binnemans K (2015) Rare-earth recycling using a functionalized ionic liquid for the selective dissolution and revalorization of Y2O3: Eu3+ from lamp phosphor waste. Green Chem 17(2):856–868CrossRef
90.
Zurück zum Zitat Tan Q, Deng C, Li J (2016) Innovative application of mechanical activation for rare earth elements recovering: process optimization and mechanism exploration. Sci Rep 6:19961CrossRef Tan Q, Deng C, Li J (2016) Innovative application of mechanical activation for rare earth elements recovering: process optimization and mechanism exploration. Sci Rep 6:19961CrossRef
91.
Zurück zum Zitat Bennett JA, Wilson K, Lee AF (2016) Catalytic applications of waste derived materials. J Mater Chem A 4(10):3617–3637CrossRef Bennett JA, Wilson K, Lee AF (2016) Catalytic applications of waste derived materials. J Mater Chem A 4(10):3617–3637CrossRef
92.
Zurück zum Zitat Chen D, Li Q, Shao L, Zhang F, Qian G (2016) Recovery and application of heavy metals from pickling waste liquor (PWL) and electroplating wastewater (EPW) by the combination process of ferrite nanoparticles. Desalin Water Treat 57(60):29264–29273CrossRef Chen D, Li Q, Shao L, Zhang F, Qian G (2016) Recovery and application of heavy metals from pickling waste liquor (PWL) and electroplating wastewater (EPW) by the combination process of ferrite nanoparticles. Desalin Water Treat 57(60):29264–29273CrossRef
93.
Zurück zum Zitat Tang B, Yuan L, Shi T, Yu L, Zhu Y (2009) Preparation of nano-sized magnetic particles from spent pickling liquors by ultrasonic-assisted chemical co-precipitation. J Hazard Mater 163(2–3):1173–1178CrossRef Tang B, Yuan L, Shi T, Yu L, Zhu Y (2009) Preparation of nano-sized magnetic particles from spent pickling liquors by ultrasonic-assisted chemical co-precipitation. J Hazard Mater 163(2–3):1173–1178CrossRef
94.
Zurück zum Zitat Nabil M, Khodadadi J (2013) Experimental determination of temperature-dependent thermal conductivity of solid eicosane-based nanostructure-enhanced phase change materials. Int J Heat Mass Transf 67:301–310CrossRef Nabil M, Khodadadi J (2013) Experimental determination of temperature-dependent thermal conductivity of solid eicosane-based nanostructure-enhanced phase change materials. Int J Heat Mass Transf 67:301–310CrossRef
95.
Zurück zum Zitat Khodadadi J, Fan L, Babaei H (2013) Thermal conductivity enhancement of nanostructure-based colloidal suspensions utilized as phase change materials for thermal energy storage: a review. Renew Sustain Energy Rev 24:418–444CrossRef Khodadadi J, Fan L, Babaei H (2013) Thermal conductivity enhancement of nanostructure-based colloidal suspensions utilized as phase change materials for thermal energy storage: a review. Renew Sustain Energy Rev 24:418–444CrossRef
96.
Zurück zum Zitat Chintakrinda K, Weinstein RD, Fleischer AS (2011) A direct comparison of three different material enhancement methods on the transient thermal response of paraffin phase change material exposed to high heat fluxes. Int J Therm Sci 50(9):1639–1647CrossRef Chintakrinda K, Weinstein RD, Fleischer AS (2011) A direct comparison of three different material enhancement methods on the transient thermal response of paraffin phase change material exposed to high heat fluxes. Int J Therm Sci 50(9):1639–1647CrossRef
97.
Zurück zum Zitat Pincemin S, Py X, Olives R, Christ M, Oettinger O (2008) Elaboration of conductive thermal storage composites made of phase change materials and graphite for solar plant. J Sol Energy Eng 130(1):011005CrossRef Pincemin S, Py X, Olives R, Christ M, Oettinger O (2008) Elaboration of conductive thermal storage composites made of phase change materials and graphite for solar plant. J Sol Energy Eng 130(1):011005CrossRef
98.
Zurück zum Zitat Lafdi K, Mesalhy O, Elgafy A (2008) Merits of employing foam encapsulated phase change materials for pulsed power electronics cooling applications. J Electron Packag 130(2):021004CrossRef Lafdi K, Mesalhy O, Elgafy A (2008) Merits of employing foam encapsulated phase change materials for pulsed power electronics cooling applications. J Electron Packag 130(2):021004CrossRef
99.
Zurück zum Zitat Sarı A, Karaipekli A (2007) Thermal conductivity and latent heat thermal energy storage characteristics of paraffin/expanded graphite composite as phase change material. Appl Therm Eng 27(8–9):1271–1277CrossRef Sarı A, Karaipekli A (2007) Thermal conductivity and latent heat thermal energy storage characteristics of paraffin/expanded graphite composite as phase change material. Appl Therm Eng 27(8–9):1271–1277CrossRef
100.
Zurück zum Zitat Wu J, Feng Y, Liu C, Li H (2018) Heat transfer characteristics of an expanded graphite/paraffin PCM-heat exchanger used in an instantaneous heat pump water heater. Appl Therm Eng 142:644–655CrossRef Wu J, Feng Y, Liu C, Li H (2018) Heat transfer characteristics of an expanded graphite/paraffin PCM-heat exchanger used in an instantaneous heat pump water heater. Appl Therm Eng 142:644–655CrossRef
101.
Zurück zum Zitat Xin G, Sun H, Scott SM, Yao T, Lu F, Shao D, Hu T, Wang G, Ran G, Lian J (2014) Advanced phase change composite by thermally annealed defect-free graphene for thermal energy storage. ACS Appl Mater Interfaces 6(17):15262–15271CrossRef Xin G, Sun H, Scott SM, Yao T, Lu F, Shao D, Hu T, Wang G, Ran G, Lian J (2014) Advanced phase change composite by thermally annealed defect-free graphene for thermal energy storage. ACS Appl Mater Interfaces 6(17):15262–15271CrossRef
102.
Zurück zum Zitat Teng T-P, Yu C-C (2012) Characteristics of phase-change materials containing oxide nano-additives for thermal storage. Nanoscale Res Lett 7(1):611CrossRef Teng T-P, Yu C-C (2012) Characteristics of phase-change materials containing oxide nano-additives for thermal storage. Nanoscale Res Lett 7(1):611CrossRef
103.
Zurück zum Zitat Arasu AV, Mujumdar AS (2012) Numerical study on melting of paraffin wax with Al2O3 in a square enclosure. Int Commun Heat Mass Transfer 39(1):8–16CrossRef Arasu AV, Mujumdar AS (2012) Numerical study on melting of paraffin wax with Al2O3 in a square enclosure. Int Commun Heat Mass Transfer 39(1):8–16CrossRef
104.
Zurück zum Zitat Buddhi D, Sawhney R, Sehgal P, Bansal N (1987) A simplification of the differential thermal analysis method to determine the latent heat of fusion of phase change materials. J Phys D Appl Phys 20(12):1601CrossRef Buddhi D, Sawhney R, Sehgal P, Bansal N (1987) A simplification of the differential thermal analysis method to determine the latent heat of fusion of phase change materials. J Phys D Appl Phys 20(12):1601CrossRef
105.
Zurück zum Zitat Baetens R, Jelle B, Gustavsen A (2010) Phase change materials for building applications: a state-of-the-art review. Energy Build Baetens R, Jelle B, Gustavsen A (2010) Phase change materials for building applications: a state-of-the-art review. Energy Build
106.
Zurück zum Zitat Macía A (2007) Almacenamiento de Energía Solar Térmica Usando Cloruro de Magnesio Hexahidratado. 2007, Tesis de Maestría. Universidad Nacional de Colombia. Medellín Macía A (2007) Almacenamiento de Energía Solar Térmica Usando Cloruro de Magnesio Hexahidratado. 2007, Tesis de Maestría. Universidad Nacional de Colombia. Medellín
107.
Zurück zum Zitat Pause B (2010) Phase change materials and their application in coatings and laminates for textiles. In: Smart textile coatings and laminates. Elsevier, pp 236–250 Pause B (2010) Phase change materials and their application in coatings and laminates for textiles. In: Smart textile coatings and laminates. Elsevier, pp 236–250
108.
Zurück zum Zitat Nejman A, Cieślak M (2017) The impact of the heating/cooling rate on the thermoregulating properties of textile materials modified with PCM microcapsules. Appl Therm Eng 127:212–223CrossRef Nejman A, Cieślak M (2017) The impact of the heating/cooling rate on the thermoregulating properties of textile materials modified with PCM microcapsules. Appl Therm Eng 127:212–223CrossRef
109.
Zurück zum Zitat Bahrar M, Djamai ZI, Mankibi ME, Larbi AS, Salvia M (2018) Numerical and experimental study on the use of microencapsulated phase change materials (PCMs) in textile reinforced concrete panels for energy storage. Sustain Cities Soc 41:455–468CrossRef Bahrar M, Djamai ZI, Mankibi ME, Larbi AS, Salvia M (2018) Numerical and experimental study on the use of microencapsulated phase change materials (PCMs) in textile reinforced concrete panels for energy storage. Sustain Cities Soc 41:455–468CrossRef
110.
Zurück zum Zitat Nejman A, Goetzendorf-Grabowska B (2013) Heat balance of textile materials modified with the mixtures of PCM microcapsules. Thermochim Acta 569:144–150CrossRef Nejman A, Goetzendorf-Grabowska B (2013) Heat balance of textile materials modified with the mixtures of PCM microcapsules. Thermochim Acta 569:144–150CrossRef
111.
Zurück zum Zitat Haghighat F, Ravandi SAH, Esfahany MN, Valipouri A, Zarezade Z (2019) Thermal performance of electrospun core-shell phase change fibrous layers at simulated body conditions. Appl Therm Eng 161:113924CrossRef Haghighat F, Ravandi SAH, Esfahany MN, Valipouri A, Zarezade Z (2019) Thermal performance of electrospun core-shell phase change fibrous layers at simulated body conditions. Appl Therm Eng 161:113924CrossRef
112.
Zurück zum Zitat Hassabo AG, Mohamed AL (2017) Enhancement the thermo-regulating property of cellulosic fabric using encapsulated paraffins in modified pectin. Carbohyd Polym 165:421–428CrossRef Hassabo AG, Mohamed AL (2017) Enhancement the thermo-regulating property of cellulosic fabric using encapsulated paraffins in modified pectin. Carbohyd Polym 165:421–428CrossRef
113.
Zurück zum Zitat Bai D, Feng H, Chen N, Tan L, Qiu J (2018) Synthesis, characterization and microwave characteristics of ATP/BaFe12O19/PANI ternary composites. J Magn Magn Mater 457:75–82CrossRef Bai D, Feng H, Chen N, Tan L, Qiu J (2018) Synthesis, characterization and microwave characteristics of ATP/BaFe12O19/PANI ternary composites. J Magn Magn Mater 457:75–82CrossRef
114.
Zurück zum Zitat Liu P, Yao Z, Zhou J (2016) Fabrication and microwave absorption of reduced graphene oxide/Ni0.4Zn0.4Co0.2Fe2O4 nanocomposites. Ceram Int 42(7):9241–9249 Liu P, Yao Z, Zhou J (2016) Fabrication and microwave absorption of reduced graphene oxide/Ni0.4Zn0.4Co0.2Fe2O4 nanocomposites. Ceram Int 42(7):9241–9249
115.
Zurück zum Zitat Xu H, Yin X, Li Z, Liu C, Wang Z, Li M, Zhang L, Cheng L (2018) Tunable dielectric properties of mesoporous carbon hollow microspheres via textural properties. Nanotechnology 29(18):184003CrossRef Xu H, Yin X, Li Z, Liu C, Wang Z, Li M, Zhang L, Cheng L (2018) Tunable dielectric properties of mesoporous carbon hollow microspheres via textural properties. Nanotechnology 29(18):184003CrossRef
116.
Zurück zum Zitat Jiang F, Wang X, Wu D (2014) Design and synthesis of magnetic microcapsules based on n-eicosane core and Fe3O4/SiO2 hybrid shell for dual-functional phase change materials. Appl Energy 134:456–468CrossRef Jiang F, Wang X, Wu D (2014) Design and synthesis of magnetic microcapsules based on n-eicosane core and Fe3O4/SiO2 hybrid shell for dual-functional phase change materials. Appl Energy 134:456–468CrossRef
117.
Zurück zum Zitat Vracknos N (2013) Method and apparatus of paraffin treatment of the skin. Google Patents Vracknos N (2013) Method and apparatus of paraffin treatment of the skin. Google Patents
118.
Zurück zum Zitat Zhang Q, He Z, Fang X, Zhang X, Zhang Z (2017) Experimental and numerical investigations on a flexible paraffin/fiber composite phase change material for thermal therapy mask. Energy Storage Mater 6:36–45CrossRef Zhang Q, He Z, Fang X, Zhang X, Zhang Z (2017) Experimental and numerical investigations on a flexible paraffin/fiber composite phase change material for thermal therapy mask. Energy Storage Mater 6:36–45CrossRef
119.
Zurück zum Zitat de Lima FA, Gobinet C, Sockalingum G, Garcia SB, Manfait M, Untereiner V, Piot O, Bachmann L (2017) Digital de-waxing on FTIR images. Analyst 142(8):1358–1370CrossRef de Lima FA, Gobinet C, Sockalingum G, Garcia SB, Manfait M, Untereiner V, Piot O, Bachmann L (2017) Digital de-waxing on FTIR images. Analyst 142(8):1358–1370CrossRef
120.
Zurück zum Zitat Nallala J, Lloyd GR, Stone N (2015) Evaluation of different tissue de-paraffinization procedures for infrared spectral imaging. Analyst 140(7):2369–2375CrossRef Nallala J, Lloyd GR, Stone N (2015) Evaluation of different tissue de-paraffinization procedures for infrared spectral imaging. Analyst 140(7):2369–2375CrossRef
121.
Zurück zum Zitat El-Maghrabi HH, Abdelmaged SM, Nada AA, Zahran F, Abd El-Wahab S, Yahea D, Hussein GM, Atrees MS (2017) Magnetic graphene based nanocomposite for uranium scavenging. J Hazardous Mate 322:370–379 El-Maghrabi HH, Abdelmaged SM, Nada AA, Zahran F, Abd El-Wahab S, Yahea D, Hussein GM, Atrees MS (2017) Magnetic graphene based nanocomposite for uranium scavenging. J Hazardous Mate 322:370–379
122.
Zurück zum Zitat El-Maghrabi HH, Al-Kahlawy AA, Nada AA, Zakia T (2018) Photocorrosion resistant Ag2CO3@Fe2O3/TiO2-NT nanocomposite for efficient visible light photocatalytic degradation activities. J Hazardous Mate 360:250–256 El-Maghrabi HH, Al-Kahlawy AA, Nada AA, Zakia T (2018) Photocorrosion resistant Ag2CO3@Fe2O3/TiO2-NT nanocomposite for efficient visible light photocatalytic degradation activities. J Hazardous Mate 360:250–256
Metadaten
Titel
Reinforcement of Petroleum Wax By-Product Paraffins as Phase Change Materials for Thermal Energy Storage by Recycled Nanomaterials
verfasst von
Fathi S. Soliman
Heba H. El-Maghrabi
Gomaa A. M. Ali
Mohamed Ayman Kammoun
Amr A. Nada
Copyright-Jahr
2021
DOI
https://doi.org/10.1007/978-3-030-68031-2_29

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.